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CAP 4630

Artificial Intelligence

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu



2

• http://www.ultimateaiclass.com/

• https://moodle.cis.fiu.edu/

http://www.ultimateaiclass.com/
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Solving problems by search
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8-puzzle
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8-queens
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Search problem definition

• States

• Initial state

• Actions

• Transition model

• Goal test

• Path cost
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Definition for 8-queens problem

• States: Any arrangement of 0 to 8 queens on the 

board is a state.

• Initial state: No queens on the board.

• Actions: Add a queen to any empty square.

• Transition model: Returns the board with a 

queen added to the specified square

• Goal test: 8 queens are on the board, none 

attacked

• Path cost: (Not applicable)
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Problem-solving approach
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Searching Romania
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General tree and graph search algorithm
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Real-world search

• Driving directions (e.g., Google maps)

• Airline travel problems: Find “optimal” flight subject to 

conditions entered by user (e.g., for kayak.com)

• Tourism problems: E.g., “Visit every city in Romania map at 

least once, starting and ending in Bucharest.”

• Traveling salesman problem: Find shortest tour in which each 

city visited exactly once

• VLSI layout: Positioning millions of components and 

connections on a chip to minimize area, circuit delays, stray 

capacitances, and maximize manufacturing yield

• Robot navigation: generalization of route-finding problem to 

continuous space with potentially infinite set of actions and states.

• Automatic assembly sequencing of complex objects by a robot, 

e.g., electric motors and protein design
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Evaluating performance

• Completeness: Is the algorithm guaranteed to find a 

solution when there is one?

• Optimality: Does the strategy find the optimal 

solution, as defined on page 68 (i.e., lowest path cost 

among all solutions)

• Time complexity: How long does it take to find a 

solution?

• Space complexity: How much memory is needed to 

perform the search?
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Complexity

• Time and space complexity are always 

considered with respect to some measure of the 

problem difficulty. In theoretical computer 

science, the typical measure is the size of the 

state space graph, |V| + |E|, where V is the set of 

vertices (nodes) of the graph and E is the set of 

edges (links). This is appropriate when the 

graph is an explicit data structure that is input to 

the search program (e.g., map of Romania).
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Complexity

• In AI, the graph is often represented implicitly by the 

initial state, actions, and transition model, and is 

frequently infinite. For these reasons, complexity is 

expressed in terms of three quantities:

– b, the branching factor or maximum number of successors 

of any node; 

– d, the depth of the shallowest goal node (i.e., the number of 

steps along the path from the root);

– m, the maximum length of any path in the state space

• Time is often measured in terms of the number of 

nodes generated during the search, and space in terms 

of the maximum number of nodes stored in memory.
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Search algorithm effectiveness

• To assess the effectiveness of a search algorithm we 

can consider just the search cost—which typically 

depends on the time complexity but can include a term 

for memory usage– or we can use total cost, which 

combines the search cost and the path cost of the 

solution found. 

• For problem of finding route from Arad to Bucharest, 

the search cost is the amount of time taken by the 

search (milliseconds) and the solution cost is the total 

length of the path in kilometers. 

– To compute total cost, we can convert km to ms by using a 

car’s average speed.
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Uninformed and informed search

• For uninformed search (aka blind search), the 

strategies have no additional information about states 

beyond that provided in the problem definition. All 

they can do is generate successors and distinguish a 

goal state from a non-goal state. All search strategies 

are distinguished by the order in which nodes are 

expanded. Strategies that know whether one non-goal 

state is “more promising” that another are called 

informed search or heuristic search strategies.
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Breadth-first search (BFS)
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Breadth-first search (BFS)
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BFS

• Shallowest unexpanded node is chosen next for expansion

• Uses first-in-first-out (FIFO) queue

– Queue: “pops” oldest element (first in)

– Stack: pops newest element (LIFO queue)

– Priority queue: pops element with highest “priority”

• One slight tweak on the general graph-search algorithm is 

that the goal test is applied to each node when it is 

generated rather than when it is selected for expansion
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BFS
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BFS

• Is BFS “complete”?

– Is BFS guaranteed to find a solution when one exists?
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BFS 

• Yes we can easily see that it is complete – if the shallowest goal 

node is at some finite depth d, BFS will eventually find it after 

generating all shallower nodes (provided the branching factor b 

is finite). Note that as soon as a goal node is generated, we know 

it is the shallowest goal node because all shallower nodes must 

have been generated already and failed the goal test. Now the 

shallowest goal node is not necessarily the optimal one; 

technically BFS is optimal if the path cost is a nondecreasing

function of the depth of the node. The most common such 

scenario is that all actions have the same cost.
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BFS running time

• b nodes at first level each of which generates b more 

nodes at second level, for a total of b^2 at the second 

level, b^3 at third level, etc. If we suppose that the 

solution is at depth d, then in the worst case it is the 

last node generated at that level. Then the total number 

of nodes generated is b + b^2 + b^3 + … + b^d = 

O(b^d)

• If the algorithm were to apply the goal test to nodes 

when selected for expansion, rather than when 

generated, the whole layer at depth d would be 

expanded before the goal was detected and the time 

complexity would be O(b^(d+1))
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BFS memory

• For any kind of graph search, which stores every 

expanded node in the explored set, the space 

complexity is always within a factor of b of the time 

complexity. For breadth-first graph search, every node 

generated remains in memory. There will be O(b^(d-

1)) nodes in the explored set and O(b^d) nodes in the 

frontier, so the space complexity is O(b^d), i.e., it is 

dominated by the size of the frontier. 

• Switching to a tree search would not save much space, 

and in a state space with many redundant paths 

switching could cost a great deal of time.



25

BFS
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BFS lessons

• The memory requirements are a bigger problem for 

BFS than is the execution time. One might wait 13 days 

for the solution to an important problem with search 

depth 12, but no personal computer has the petabyte of 

memory it would take. Fortunately, other strategies 

require less memory.

• The second lesson is that time is still a major factor. If 

your problem has a solution at depth 16, then (given 

our assumptions) it will take about 350 years for BFS 

(or indeed any uninformed search) to find it. In 

general, exponential-complexity search problems 

cannot be solved by uninformed methods for any but 

the smallest instances.
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Uniform-cost search (UCS)

• When all step costs are equal, BFS is optimal because 

it always expands the shallowest unexpanded node. By 

simple extension, we can find an algorithm that is 

optimal with any step-cost function. Instead of 

expanding the shallowest node, uniform-cost search

expands the node n with the lowest path cost g(n). This 

is done by storing the frontier as a priority queue 

ordered by g.
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Uniform-cost search

• In addition to the ordering of the queue by path cost, 

there are two other significant differences from BFS. 

The first is that the goal test is applied to a node when 

it is selected for expansion (as in the generic graph-

search algorithm) rather than when it is first generated. 

The reason is that the first goal node that is generated

may be on a suboptimal path. 

• The second difference is that a test is added in case a 

better path is found to a node currently on the frontier.
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UCS
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UCS

• Problem: get from Sibiu to Bucharest

• Successors of Sibiu are Rimnicu Vilcea and Fagaras, with costs 

80 and 99 respectively.

• The least-cost node, Rimnicu Vilcea, is expanded next, adding 

Pitesti with cost 80 + 97 = 177. The least-cost node is now 

Fagaras, so it is expanded, adding Bucharest with cost 99 + 211 

= 310. 

• Now a goal node has been generated, but UCS keeps going, 

choosing Pitesti for expansion and adding a second path to 

Bucharest with cost 80 + 97 + 101 = 278.

• Now the algorithm checks to see if this new path is better than 

the old one; it is, so the old one is discarded. Bucharest, now 

with g-cost 278, is selected for expansion and the solution is 

returned.
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UCS

• How does UCS shape up on the “Big 4”?

– Optimality, completeness, time, space
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UCS

• It is easy to see that UCS is optimal in general. First, 

we observe that whenever UCS selects a node n for 

expansion, the optimal path to that node has been 

found. (Were this not the case, there would have to be 

another frontier node n’ on the optimal path from the 

start node to b; by definition, n’ would have lower g-

cost than n and would have been selected first.) Then, 

because step costs are nonnegative, paths never get 

shorter as nodes are added. These two facts together 

imply that UCS expands nodes in order of their 

optimal path cost. Hence, the first goal node selected 

for expansion must be the optimal solution.
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UCS

• UCS does not care about the number of steps a path 

has, but only about their total cost. Therefore, it will 

get stuck in an infinite loop if there is a path with an 

infinite sequence of zero-cost actions—for example, a 

sequence of NoOp actions. Completeness is guaranteed 

provided the cost of every step exceeds some small 

positive constant ε.
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UCS

• UCS is guided by path costs rather than depths, so its 

complexity is not easily characterized in terms of b and d. 

Instead, let C* be the cost of the optimal solution, and assume 

that every action costs at least ε. Then the algorithm’s worst-

case time and space complexity is O(b^(1+floor(C*/ ε)), which 

can be much greater than b^d. This is because UCS can explore 

large trees of small steps before exploring paths involving large 

and perhaps useful steps. When all step costs are equal, it is 

O(b^(d+1)). When all step costs are the same, UCS is similar to 

BFS, except that the latter stops as soon as it generates a goal, 

whereas UCS examines all the nodes at the goal’s depth to see if 

one has lower cost; thus, UCS does strictly more work by 

expanding nodes at depth d unnecessarily.
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Depth-first search (DFS)
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Depth-limited search (DLS)

• Imposes a depth limit L on DFS to prevent it 

from getting “stuck” along hopeless path.
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Iterated deepening depth-first search

• Runs DLS with depth limit 0, 1, 2, etc. Ends 

when depth limit reaches d, depth of the 

shallowest goal node.
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Bidirectional search

• Run two simultaneous searches—one forward 

from the initial state and the other backward 

from the goal—hoping that the two searches 

meet in the middle.
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Comparing uninformed search strategies
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Informed search algorithms

• Greedy best-first search

• A* search

• Memory-bounded heuristic search

• These algorithms have a heuristic function to 

help guide the search.
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Homework for next class

• Chapter 4 from Russell-Norvig textbook.


