
IJRECE VOL. 1 ISSUE 1 OCT-DEC 2013 ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING
 A UNIT OF I2OR 17 | P a g e

Taxonomy of Scheduling Algorithms

Abhilash Sharma1, Anjali Sen2

1Assistant.Professor, Vaishno College of Engineering, Thapkour, Kangra, HP, India
2Lecturer, Vaishno College of Polytech and Engineering, Thapkour, Kangra, HP, India

Abstract- The scheduling algorithm is the last component
of a scheduling system. It has the task to generate a valid
schedule for the actual stream of submission data in an online
fashion. A good scheduling algorithm is expected to produce
very good if not optimal schedule with respect to the objective
function while not taking ‘too much’ time resources to
determine the schedule. Unfortunately, most scheduling
problems are computationally very hard. This is even true for
online problems with simple objective functions and few
additional requirements see from instance. Therefore, it is not
reasonable to hope in general for an algorithm that always
guarantees the best possible schedule. In addition, some job
data may not be immediately available or may be incorrect
which makes the task for the algorithm even harder. In order
to obtain good schedule the administrator of a parallel
machine is therefore faced with the problem to pick an
appropriate algorithm among a variety of suboptimal ones.
She may even decide to design an entirely new method if the
available ones do not yield satisfactory result. The selection of
the algorithm is highly dependent on a variety of constraints.

Keywords- Taxonomy, Scheduling Algorithms, Time

Sharing Policies, Space Sharing Policies.

I. INTRODUCTION
A task is the unit of computation in our computing

systems, and several tasks working towards a common goal
are called a job. There are two levels of scheduling in
multiprocessor system: global scheduling and local scheduling
[casavant and kuhi, 1988]. Local scheduling determines which
of the set of variables tasks at a processor runs next on that
processor. Global scheduling involves assigning a task to a
particular processor within the system. This is also known as
mapping, task placement, and matching. Global scheduling
takes places before local scheduling, although task migration,
or dynamic reassignment, can change the global mapping by
moving a task to a new processor. To migrate a task, the
system freezes the task, save its state, transfer the saved state
to a new processor, and restart the task. There is substantial
overhead involved in migration a running task.

One of the main uses for global scheduling is to perform

load sharing between processors. Load sharing allows busy
processors to offload some of their work to less busy, or even

idle, processors. Load balancing is a special case of load
sharing, in which the goal of the global scheduling algorithm
is to keep the load even (or balanced) across all processor.
Sender-initiated load sharing occurs when busy processors try
to find idle processors seek busy processors. It is now
accepted wisdom that load balancing is generally not worth
doing, as the small gain in execution time of the tasks is more
than offset by the effort expended in maintaining the balanced
load. A global scheduling policy may be thought of as having
four distinct parts:

 The transfer policy
 The selection policy
 The location policy, and
 The information policy.

The transfer policy decides when a node should migrate a

task, and the selection policy decides which task to migrate.
The location policy determines a partner node for the task
migration and the information policy determines how node
state information is disseminated among the processor in the
systems. An important feature of the selection policy is
whether it restricts the candidates set of task to new tasks
which have not yet run, or allow the transfer of tasks that have
begun execution[1].

Non- preemptive policies only transfer new jobs, while

preemptive policies will transfer running jobs as well.
preemptive policies have a larger set of candidates for transfer
, but the overhead of migration a job that has begun execution
is higher than for a new job because of the accumulated state
of the running job (such as open descriptors, allocated
memory , etc). As the system runs, new tasks arrives while the
old tasks complete execution (or served). It arrival rate is
greater than the service rate , the process waiting queues
within the system will grow without bound and the system is
said to be unstable, if , however , tasks are serviced as least as
fast as they arrive, the queues in the system will have
bounded length and the system is said to be stable. If the
arrival rate is just slightly less than the service rate for a
system, it is possible for the additional overhead of load
sharing to push the system into instability. A stable scheduling
policy does not have this property, and will never make a
stable system unstable. In most cases, work in distributed

IJRECE VOL. 1 ISSUE 1 OCT-DEC 2013 ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING
 A UNIT OF I2OR 18 | P a g e

scheduling concentrates on global scheduling because of the
architecture of the underlying system. Casavant and kuhl
[casavant and kuhi, 1988] [12] defines a taxonomy of task
placement algorithms for distributed systems. The two major
categories of global algorithms are static and dynamic.

 Static algorithms make scheduling decisions based purely on
information available at compilation time. For example, the
typical input into a static algorithm would include the machine
configuration and the number of tasks and estimates of their
running time.

 Dynamic algorithms, on the other hand, take factor into

account such as the current load processor. Adaptive
algorithms are subclass of dynamic algorithms, and are
important enough that they are often discussed separately.
Adaptive algorithms go one step further algorithms, in that
they may change the policy based on dynamic information. A
dynamic load sharing algorithm might use the current system
state information to seek out a lightly-loaded host, while an
adaptive algorithm might switch from sender-initiated to
receiver–initiated load rises above a threshold.

 In physically non- distributed, or centralized, scheduling

policies, as single processor makes all decisions regarding
task placement. Under physically distributed algorithm, the
logical authority for the decision- making process is
distributed among the processors that constitute the system.
[12]

 Under non-cooperative distributed scheduling policies,

individual processors make scheduling choices independent of
the choices made by other processors. With cooperative
scheduling, the processor subordinates local autonomy to the
achievement of a common goal. [12]

 Both static and cooperative distributed scheduling have

optimal and sub optimal branches. Optimal assignments can
be reached if complete information describing the system and
the task force is available. Suboptimal information is either
approximate or heuristic. Heuristic algorithm use guiding
principle s, such as assigning tasks with heavy inter-task
communication to the same processor, or placing large job
first. [12]

Approximate solutions use the same computational

methods as optimal solutions that are within an acceptable
range, according to an algorithm-dependent metric.
Approximate and optimal algorithms employ techniques based
on one of four computational approaches: enumeration of all
possible solutions, graph theory, mathematical programming,
or queuing theory. In the taxonomy, the sub tree appearing
below optimal and approximate in static branch is also present

under the optimal and approximate nodes on the dynamic
branch, [12]

II. COMPARISON BETWEEN DIFFERENT CLASSES OF
ALGORITHMS

A. Local versus Global
At the highest level, we may distinguish between local and

global scheduling. Local scheduling in involved with the
assignment of processes to the time-slices of a single
processor. Global scheduling is the problem of deciding where
to execute a process, and the job of local scheduling is left to
the operating system of the processor to which the process is
ultimately allocated. This allow the processors in a
multiprocessor increased autonomy while reducing the
responsibility (and consequently overhead) of the global
scheduling mechanism. Note that this does not imply that
global scheduling must be done by single central authority ,
but rather , we view the problems of local and global
scheduling as separate issues , and (at least logically) separate
mechanism are not work solving each[1;12]

B. Static versus Dynamic
The next level in the hierarchy is a choice between static

and dynamic scheduling. This choice indicates the time at
which the scheduling or assignment decision is made. In the
case of static scheduling, information regarding are made. In
the case of static scheduling, information regarding the total
mix of processes in the system as well as the independent sub
tasks involved in job or task force is assumed to be available
by the time the program object modules are linked into load
modules. Hence, each executable image in as system has a
static assignment to a particular processor, and each time that
process image is submitted for execution, it is assigned to that
processor. A more relaxed definition of static scheduling may
include algorithms that schedule task forces for a particular
hardware configuration. Over a period of time, the topology of
the system may change, but characteristics describing the task
force remain the same. Hence, the scheduler may generate a
new assignment of processes to processors to serve as the
schedule until the topology changes again. Note here that the
static scheduling as used in this paper has the same meaning
as deterministic scheduling in and task scheduling. These
alternatives terms will not be used, however, in an attempt to
develop a consistent set of terms and taxonomy. [12]

C. Optimal versus sub optimal
In the case that all information regarding the state of the

system as well as the resources need of a processes are known,
an optimal assignment can be made based on some criteria
function. Examples of optimizing measures are minimizing
total process completion time, maximizing utilization of
resources in the system, or maximizing system throughput, In
the event that these problems are computationally infeasible,

IJRECE VOL. 1 ISSUE 1 OCT-DEC 2013 ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING
 A UNIT OF I2OR 19 | P a g e

suboptimal solutions may be tired. Within the realm of
suboptimal solutions to the scheduling problem, we may think
two general categories [12]

D. Approximate versus Heuristic
The first is to use the same formal computational model for

the algorithm, but instead of searching the entire solution
space for optimal solution, we are satisfied when we find a
‘good’ one. We will categorize these solutions as suboptimal-
approximate. The assumption that a good solution can be
recognized may not be so insignificant, but in the cases where
a metric is available for evaluating a solution , this technique
can be used to decrease the time taken to find an acceptable
solution schedule[12], the factors which determine whether
this approach is worthy pursuit include:
 The time required to evaluate a solution
 The ability to judge according to some metric the value of

an optimal solution.
 Availability of a mechanism for intelligently pruning the

solution space.

The second branch beneath the suboptimal category is
labeled heuristic. This branch represents the category of static
algorithm which makes the most realistic assumptions about
prior knowledge concerning process and system loading
characteristics. It also represents the solution to the static
scheduling problem which requires the most reasonable
amount of time and other system resources to perform their
function. The most distinguishing feature of heuristic
scheduler is that they make use of special parameters which
affect the system in indirect ways. Often, the parameters being
monitored are correlated to system performance in an indirect
instead of a direct way, and this alternate parameter is much
simpler to monitor or calculate. For example, clustering
groups of processes which communicate heavily on the same
processor and physically separating processes which would
benefit from parallelism directly decreases the overhead
involved in passing information between processors, while
reducing the interface among processes which may run
without synchronization with one another. This result has
impact on the overall service that user receive, but cannot be
directly related to system performance as the user sees it.
Hence, our intuition, if nothing else, leads us to believe that
talking the aforementioned action when possible will improve
system performance. However we may not be able to prove
that a first order relationship between the mechanism
employed and the desired result exists.

E. Optimal and suboptimal Approximate Techniques
Regardless of whether a static solution is optimal or

suboptimal – approximate, there are four basic categories of
task allocation algorithms which can be used to arrive at an
assignment of processes to processors.

 Solution space enumeration and search
 Graph theoretic
 Mathematical programming
 Queuing theoretic

F. Distributed versus Non –distributed
The next issue involves whether the responsibility for the

t5ask of global dynamic scheduling physically reside in a
single processor (physically non-distributed) or whether the
work involved decisions should be physically distributed
among the processors. Here the concern is with the logical
authority of the decision – making process [12].

G. Cooperative versus Non cooperative
In non-cooperative case, individual processors act along as

autonomous entities and arrive decisions regarding the use of
their resources independent of the effect of their decision on
the rest of the system. In the cooperative case each processor
has the responsibility to carry out his own portion of the
scheduling task, but all processors work together to achieve a
system wide goal. [12]

H. Adaptive versus Non-adaptive Algorithm
An adaptive allocation algorithm [1, 12] is one in which

algorithm and parameters used to implement allocation policy
changes dynamically according to the previous and current
system behavior. An example of such an adaptive algorithm
would be one which curtails all allocation activities as the
system load increases above some threshold value.

III. TIME SHARING AND SPACE SHARING POLICIES

An alternate classification of multiprocessor scheduling

algorithms is described below.
Job scheduling policies decide how many processors to

allocate to each job. At this level of decision, the processor
scheduler can implement three types of policies: timesharing,
space sharing, and gang scheduling. In time sharing, the
processor scheduler considers the kernel thread as the unit of
scheduling. Space sharing policies consider the job as the unit
of scheduling. They divide the processor scheduling policy
into two levels: processors to jobs, and processors allocated to
jobs to kernel; threads, gang scheduling is a combination of
time –sharing and space sharing. It implements a time sharing
among jobs, where each job implements a one to one mapping
between processors and kernel threads. Fig.1 shows the three
processor scheduling options.

IJRECE VOL. 1 ISSUE 1 OCT-DEC 2013 ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING
 A UNIT OF I2OR 20 | P a g e

 Figure 1: Categories of Scheduling Policies

A. Time-sharing policies
Time-sharing policies are the automatic extension from uni

processor policies to multiprocessor policies. Time sharing
policies do not consider grouping of threads. These policies
are usually designed to deal with the problem of many-to-few
mapping of threads to processors. There are two main
approaches to deal with this problem: local queues (typically
one per processor) or a global queue (shared by all the
processors.)

Figure 2: Time-sharing policies

B. Gang Scheduling
Gang scheduling is a technique that combines space and

time sharing and it was presented as the solution to the
problem of static space sharing policies. We define gang
scheduling as a scheme that combines three features:
 Application threads are grouped into gang(typically all

the threads of the application in the same gang)
 Threads in each gang are executed simultaneously, using

a one to one mapping.
 Time slicing is used among gangs (all the threads in the

gang are preempted at the same time)

Figure 3: Gang scheduling policies diagram

Fig.3 show the diagram that represents the gang scheduling
policies behavior. Periodically, at each time-sharing quantum
expiration, the system selects a new slot to execute. A slot is a
set of applications that will be concurrently executed. If
during the last quantum, any new job has arrived to the
system, or any job has finished, the slot will be re-organized.
The algorithm to re organize one slot is called re-packing
algorithm. The re-packing algorithm is applied to migrate
some job from ant other slot to the currently selected.
Traditionally, the scheduling phase is traduced by a single
dispatch, to allocate as many processors to jobs as they
request. Gang scheduling policies mainly differs in the re-
packing algorithms applied.

Figure 4: Gang scheduling policy classification

Fig.4 shows taxonomy as a function of the three elements
that define a gang scheduling policy: the repacking algorithm,
the job mapping, the scheduling algorithm applied.

The simplest version of gang, where threads are always

rescheduled in the same set of processors is the most popular
one. However there have been proposed more flexible
versions one of this is migratable preemptions, where threads
are preempted in one set of processors and resumed in another

IJRECE VOL. 1 ISSUE 1 OCT-DEC 2013 ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING
 A UNIT OF I2OR 21 | P a g e

to reduce the fragmentation. Traditionally, systems that a gang
scheduling policy do not include a job scheduling policy
because one of the goals of gang scheduling is to reduce the
impact of incorrect job scheduling decisions. They show that,
even theoretically gang scheduling policies allows the
execution of any new job, due resource limitation some jobs
remain queued until some running job finishes. Combining
backfilling and gang scheduling the queued time can be
reduced.

IV. REFRENCES

[1] MANACHER, G.K. Production and stabilization of real-time
task schedules. J. ACM 14' 3 (July 1967), 439-465.

[2] McKINNEY, J M. A survey of analytical time-sharing models.
Computing Surveys 1, 2 (June 1969), 105-116.

[3] CODD, E.F. Multiprogramming scheduling. Comm. ACM 8, 6,
7 (June, July 1960), 347-350; 413-418.

[4] HELI~ER, J. Sequencing aspects of multiprogramming. J. ACM
8, 3 (July 1961), 426.-439.

[5] GRAHAM, R.L. Bounds for certain multiprocessing anomalies.
Bell System Tech. J. 45, 9 (Nov. 1966), 1563-1581.

[6] OSCHNER, B.P. Controlling a multiprocessor system. Bell
Labs Record 44, 2 (Feb. 1966), 59-62.

[7] MUNTZ, R. R., AND COFFM~N, E. G., JR. Preemptive
scheduling of real-time tasks on multiprocessor systems. J.
ACM 17, 2 (Apr 1970), 324-338.

[8] BERNSTEIN, A. J., AND SHARP, J.C. A policy-driven
scheduler for a time-sharing system. Comm. ACM 14, 2 (Feb.
1971), 74-78.

[9] LAMPSON, B.W. A scheduling philosophy for multiprocessing
systems. Comm. ACM 11, 5 (May, 1968), 347-360.

[10] MARTIN, J. Programming Real-Time Computer Systems,
Prentice-Hall, Englewood Cliffs, N.J., 1965.

[11] JIRAUCH, D.H. Software design techniques for automatic
checkout. IEEE Trans. AES-$, 6 (Nov. 1967), 9. MARTIN.

[12] Liu, C.L. Scheduling algorithms for hard-real-time
multiprogramming of a single processor. JPL Space Programs
Summary 37-60, Vol. II, Jet Propulsion Lab., Calif. Inst.of
Tech., Pasadena, Calif., Nov. 1969.

