

EKU Faculty Disclosure

In compliance with ACCME Guidelines, I hereby declare:

Royalties from Springer Publishing

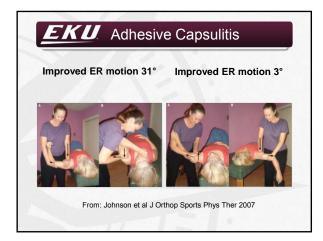
Aaron Sciascia, PhD, ATC, PES Assistant Professor: Eastern Kentucky University Adjunct Faculty: Moravian College Orthopedic Research Specialist: Lexington Clinic President, American Society of Shoulder and Elbow Therapists

EKU Why This Topic?

- Do we know which maneuvers are best for reducing pain and/or gaining motion?
- Is there evidence that supports or refutes clinical perceptions of joint mobilizations?

What Do We Know From the EKU Literature?

- · Joint mobilizations decrease pain
 - Ho et al Man Ther 2009
 - Moon et al J Phys Ther Sci 2015
 Desjardins-Charbonneau et al J Orthop Sports Phys Ther 2015
- High grade mobilizations better than low grade for improving motion


 Vermeulen et al Phys Ther 2006
 Ho et al Man Ther 2009
 Muraki et al J Orthop Sports Phys Ther 2014
- Joint mobilizations may need to supplement other interventions
 - o Should not serve as stand alone treatment
 - Bergman et al Ann Inter Med 2004
 - Harshbarger et al J Sport Rehabil 2012
 Tsertsvadze et al J Manipulative Physiol Ther 2014
 - Desjardins-Charbonneau et al J Orthop Sports Phys Ther 2015


EKU Controversy

- Manual therapy alone vs. manual therapy plus exercise
 - oBoth reduce pain but one not better than another
 - Ho et al Man Ther 2009
 - Desjardins-Charbonneau et al J Orthop Sports Phys Ther 2015
- Exercise alone vs. manual therapy plus exercise
 - oBenefit inconclusive
 - Brudvig et al J Orthop Sports Phys Ther 2011
 - Gebremarium et al Br J Sports Med 2014

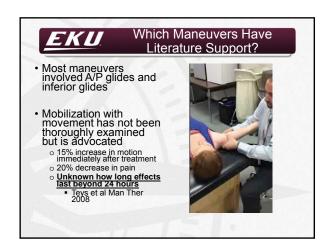
EKU Adhesive Capsulitis

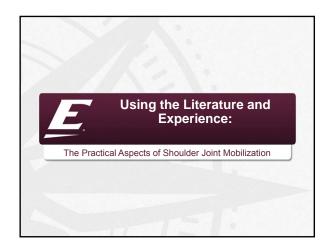
- Vermeulen et al Phys Ther 2006
 - High grade mobilization better than low grade for improving AROM and PROM o No difference on pain relief
- Moon et al J Phys Ther Sci 2015
- o Mobilization techniques (oscillation vs. traction) decrease pain and improve motion, but one not better than another
- Johnson et al J Orthop Sports Phys Ther 2007
 - o No difference for pain and disability between anterior and posterior mobs
 - o Posterior mobilization improved ER better

EKU Impingement/General Pain

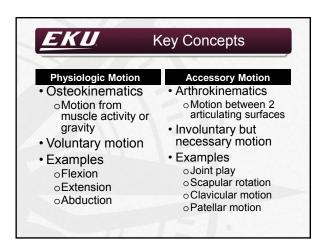
- Bergman et al Ann Inter Med 2004
 o Joint mobilization as supplement to other treatment for general shoulder pain
- Ho et al Man Ther 2009
 No clear evidence to suggest additional benefits of manual therapy over other interventions
- Brudvig et al J Orthop Sports Phys Ther 2011 • No clear evidence that exercise plus mobilization better than exercise alone or vice versa

EKU Rotator Cuff Tendinopathy

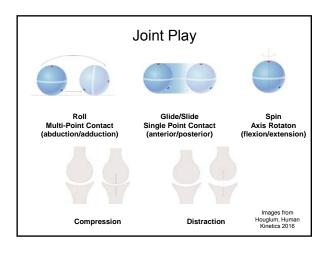

- Green et al Cochrane Reviews 2003

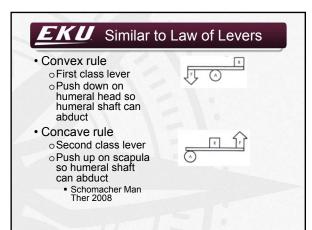

 Favorable but inconclusive evidence supporting joint mobilization for rotator cuff pain
- Desjardins-Charbonneau et al J Orthop Sports Phys Ther 2015 OManual therapy can decrease pain but not function

What Don't We Know From the Literature? Not all conditions examined Not all grades of mobilization have been examined individually Most studies permitted grades I-IV simultaneously Traction grades not often reported

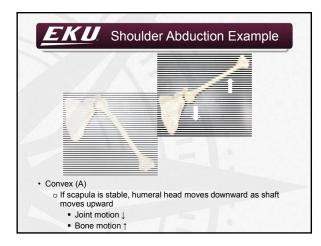

• Review of 3 databases revealed no empirical investigations that examined

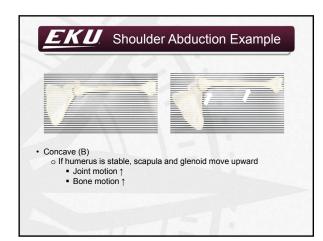
- Review of 3 databases revealed no empirical investigations that examined the effectiveness of joint mobilization for the shoulder following surgery
- In other words NO EVIDENCE!!!!
- BUT....
 - Clinical experience suggests we continue to use them



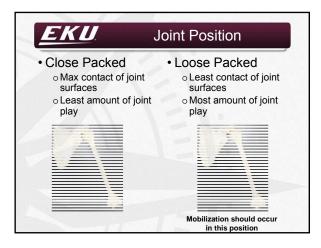

EKU Joint Play Key Points

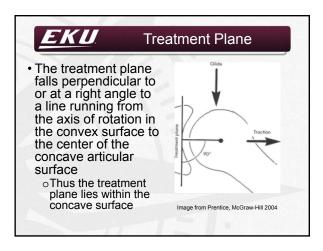
- Since there is never pure congruency between joint surfaces; all motions require rolling and gliding to occur simultaneously
- This combination of roll and glide is simultaneous but not necessarily in proportion to one another

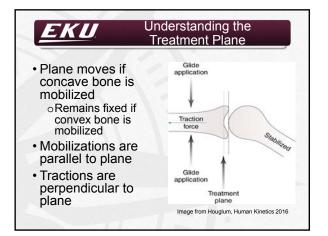


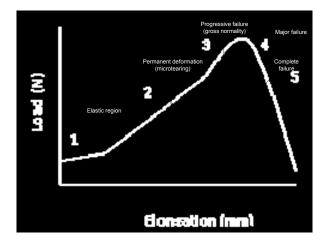

EKU Convex-Concave Patterns

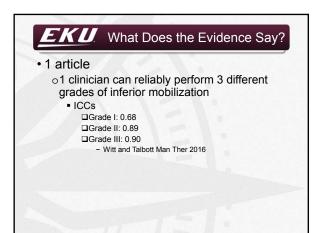

- Basis for determining the direction of the mobilizing force when joint mobilization gliding techniques are used to increase a certain joint motion
 - oConvex bone
 - If the moving joint surface is <u>CONVEX</u> and the stationary surface is CONCAVE, the arthrokinematic motion (joint) moves in the <u>OPPOSITE</u> direction as the osteokinematic motion (bone).
 - Concave bone
 - If the moving joint surface is <u>CONCAVE</u> and the stationary surface is CONVEX, the arthrokinematic motion (joint) moves in the <u>SAME</u> direction as the osteokinematic motion (bone).









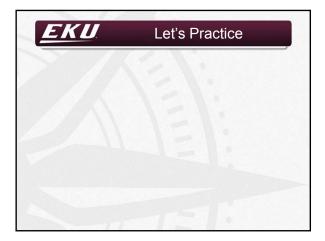


• Maitland • 5 grades of oscillatory mobilizations • Kaltenborn • 3 grades of traction

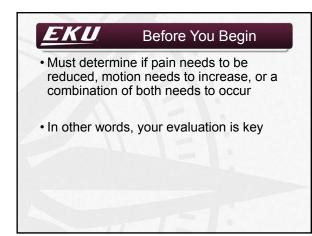
<u>EKU</u>	Maitland Grades of Mobilization	of	
Grade I			
 small amplitud 	le at the beginning of motion		
Grade II		-	For Pai
 large amplitud 	e in the midrange of motion		
Grade III			
 large amplitud 	e up to the pathological limit		
Grade IV			
small amplitud	le at the end range of motion	-	For Mot
Grade V			
 small amplitud (manipulation) 	le at end range of motion		

EKU Kaltenborn Grades of Traction

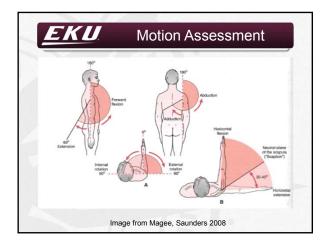
Grade I

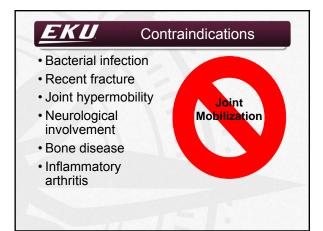

- Small distraction with no stress on capsule
 Use for pain relief
- Grade II
 - Enough distraction to "tighten" tissue around joint
 - Taking up the slack
 - $\circ\,\text{Use}$ to maintain joint play when ROM not allowed

Grade III


- Enough distraction to stretch capsule and
- surrounding tissue
- $_{\odot}$ Use to increase joint play

EKU Maitland vs. Kaltenborn


- Both techniques reduce pain and increase motion but one not better than another
 - This was in adhesive capsulitis patients
 Moon et al J Phys Ther Sci 2015
- No difference between grade 2 and grade 3 traction on increasing joint space width
 - More spacing with grade 3 but not statistically significant
 - Moon et al J Phys Ther Sci 2016

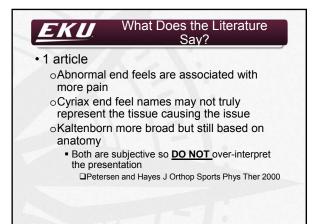


EKU Start Here Start Here Generalized laxity assessment 5 maneuvers to assess joint laxity Thumb parallel to ventral aspect of forearm Fingers parallel to dorsal aspect of forearm ≥10° of elbow hyperextension ≥10° of knee hyperextension ≥40° dorsiflexion Any 3 of 5 maneuvers present = generalized joint laxity Carter and Wilkerson J Bone Joint Surg (Br) 1964

EKU If Joint Mobilizations are Indicated

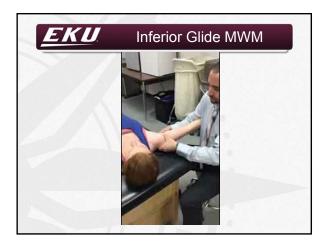
- Relax the patient
- · Clinician must be relaxed
- Be aware of the patient's pain
- Consider direction, amplitude, and velocity of movement
- · One movement is performed at a time
- Always reassess • Compare motion to opposite side

Normal End Feel	Example	Abnormal End Feel
Capsular	All shoulder motions at end range	Capsular at abnormal point in motion
Bone-to-Bone	End range abduction	Bone-to-Bone at abnormal point in motion
Tissue Approximation	Horizontal adduction	Springy block: Internal derangement
		Spasm: Muscle guarding
		Empty: Premature cessation of motion due to pain



Normal End Feel	Example	Abnormal End Feel
Capsular	All shoulder motions at end range	Capsular at abnormal point in motion
Bone-to-Bone	End range abduction	Bone-to-Bone at abnormal point in motion
Tissue Approximation	Horizontal adduction	Springy block: Internal derangement
		Spasm: Muscle guarding
		Empty: Premature cessation of motion due to pain

End Feel Equivalent End Feel Cause Soft Soft tissue approximation Firm Scar tiss adhesic Firm Capsular Soft Increas muscle t	Feel Equivalent End Feel Cause oft Soft tissue approximation Firm Scar tissue adhesions rm Capsular Soft Increased muscle tone	EKU Kaltenborn End Feels			
approximation adhesio Firm Capsular Soft Increas muscle t	approximation adhesions rm Capsular Soft Increased muscle tone ard Bone-to-bone Empty Premature cessation o motion				
muscle t	ard Bone-to-bone Empty Premature cessation o motion	Soft		Firm	
Hard Bone-to-bone Empty Premate	cessation o motion	Firm	Capsular	Soft	
motio		Hard	Bone-to-bone	Empty	cessation o motion



Patient position	Supine
Limb position	Neutral
Stabilizing hand	 Distal humerus
Mobilizing hand	Humeral head

14

