Math 1496 Calc 1 - Homework \#3

Pg. 103-4, \#5, 7, 9, 33, 51, 55 and 61
Pg. 112, \#3, 11, 13, 37 and 39
Pg. 127, \#15, 17, 21, 29, 33 and 35
Pg. 246, \# 13, 25 and 29

Pg. 103, \#5, 7 and 9 (the graphs are in the book)
Determine the limit and discuss the continuity of each function
(a) $\lim _{x \rightarrow c^{+}} f(x)$
(b) $\lim _{x \rightarrow c^{-}} f(x)$
(c) $\lim _{x \rightarrow c} f(x)$
\#33 Discuss the continuity of the function (the graph are in the book)

$$
f(x)=\frac{1}{x^{2}-4}
$$

Pg. 104, \#51, 55 and 62
Find x values (if any) at which f is not continuous. Which ones are removable?

$$
\begin{aligned}
& \text { \#51 } f(x)= \begin{cases}\frac{1}{2} x+1, & x \leq 2 \\
3-x, & x>2\end{cases} \\
& \text { \#55 } f(x)= \begin{cases}\ln (x+1), & x \geq 0 \\
1-x^{2}, & x<0\end{cases} \\
& \text { \#62 } f(x)=\left\{\begin{array}{ll}
3 x^{2}, & x \leq 1 \\
a x-4, & x>1
\end{array} \quad(\text { find } a)\right.
\end{aligned}
$$

Pg. 112, \# 3 From the graph (in the book) determine whether $f(x)$ approaches $-\infty$ or ∞ as x approaches 2

$$
f(x)=2\left|\frac{x}{x^{2}-4}\right|
$$

\# 11, 13 From the graph determine whether $f(x)$ approaches $-\infty$ or ∞ as x approaches -3

$$
\begin{aligned}
& \text { \#11 } f(x)=\frac{1}{x^{2}-9} \\
& \text { \#13 } f(x)=\frac{x^{2}}{x^{2}-9}
\end{aligned}
$$

\# 37, 39 Find the one-sided limit (if it exists)

$$
\begin{array}{ll}
\text { \#37 } & \lim _{x \rightarrow 2^{+}} \frac{x}{x-2} \\
\text { \#39 } & \lim _{x \rightarrow-3^{-}} \frac{x+3}{x^{2}+x-6}
\end{array}
$$

Pg. 246, \# 13, 25 and 29
Find the following limits (if it exists

$$
\begin{array}{ll}
\text { \#13 } & \lim _{x \rightarrow \infty} \frac{x^{2}+2}{x^{3}-1} \\
& \lim _{x \rightarrow \infty} \frac{x^{2}+2}{x^{2}-1} \\
& \lim _{x \rightarrow \infty} \frac{x^{2}+2}{x-1} \\
\text { \#25 } & \lim _{x \rightarrow-\infty} \frac{x}{\sqrt{x^{2}-x}} \\
\text { \#29 } & \lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}-1}}{2 x-1}
\end{array}
$$

Pg. 127, \#15, 17, 21, Find the derivative of the following using the limit process.

$$
\begin{array}{ll}
\text { \#15 } & f(x)=7 \\
\text { \#17 } & f(x)=-5 x \\
\text { \#21 } & f(x)=x^{2}+x-3
\end{array}
$$

\#29 and 35, Find the equation of the tangent line at the given point.

$$
\begin{aligned}
& \text { \#29 } f(x)=x^{2}+3, \quad(-1,4) \\
& \text { \#33 } f(x)=\sqrt{x}, \quad(1,1) \\
& \text { \#35 } f(x)=x+\frac{4}{x}, \quad(-4,-5)
\end{aligned}
$$

