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Abstract

Crop tolerance to crowding stress, specifically plant population density, is an important tar-

get to improve productivity in processing sweet corn. Due to limited knowledge of biological

mechanisms involved in crowding stress in sweet corn, a study was conducted to 1) investi-

gate phenotypic and transcriptional response of sweet corn hybrids under different plant

densties, 2) compare the crowding stress response mechanisms between hybrids and 3)

identify candidate biological mechanisms involved in crowding stress response. Yield per

hectare of a tolerant hybrid (DMC21-84) increased with plant density. Yield per hectare of a

sensitive hybrid (GSS2259P) declined with plant density. Transcriptional analysis found

694, 537, 359 and 483 crowding stress differentially expressed genes (DEGs) for

GSS2259P at the Fruit Farm and Vegetable Farm and for DMC21-84 at the Fruit Farm and

Vegetable Farm, respectively. Strong transcriptional change due to hybrid was observed.

Functional analyses of DEGs involved in crowding stress also revealed that protein folding

and photosynthetic processes were common response mechanisms for both hybrids. How-

ever, DEGs related to starch biosynthetic, carbohydrate metabolism, and ABA related pro-

cesses were significant only for DMC21-84, suggesting the genes have closer relationship

to plant productivity under stress than other processes. These results collectively provide

initial insight into potential crowding stress response mechanisms in sweet corn.

Introduction

Generally as plant density increases, plants experience crowding stress due to resource compe-

tition including nutrients, water, and light quantity and quality. Other studies of plant compe-

tition also suggest resource independent factors such as resource use efficiency [1] or light

signaling [2] to be important. Crowding stress is a long-term and cumulative stress factor that

impacts plant growth through much of the growing season. Multiple abiotic stress conditions

such as drought, heat, shade, and nutrient deficiency can happen simultaneously under crowd-

ing stress, depending on the plant’s genetic ability. Therefore, biological mechanisms involved

in crowding stress can be more complex relative to individual abiotic stresses.
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Crowding stress tolerance, also known as plant density tolerance, is defined as the ability of

the crop to maintain yield per plant during increased plant population density (hereafter called

simply ‘plant density’). Development of field corn hybrids with improved crowding stress tol-

erance have greatly contributed to increased grain production in the last half-century [3–7]. In

contrast, less attention appears to have been paid to improving tolerance to crowding stress in

sweet corn, one of the most popular vegetable crops in North America. Plant density that max-

imized yield varied by 22,100 plants ha-1 among processing sweet corn hybrids [8], demon-

strating that crowding stress tolerance varies widely in commercial germplasm. Among

numerous phenotypic traits related to crowding stress tolerance, kernel mass per plant was the

most important indicator identifying crowding stress tolerance [9] and productivity [10] in

processing sweet corn. Also, recent studies in sweet corn showed significant economic profit

by using plant densities higher than normal of crowding stress tolerant hybrids [11, 12]. Since

crowding stress tolerance and profitability are positively related [8], such variability in crowd-

ing stress response will provide unexploited genetic potential to improve not only sweet corn

production but also profitability.

Although most crowding stress researches were conducted on field corn, such works are a

valuable starting point for understanding mechanisms of crowding stress in sweet corn. Previ-

ous researches identified various field corn responses to crowding stress, including reduced

leaf CO2 exchange rate [13], down-regulated C4 carbon metabolism enzymes [1], increased

plant height, delayed flowering, reduced kernel number per ear [14, 15] or increased ear bar-

renness [16]. As corn plant density increases to levels causing crowding stress, individual plant

yield may decline, but overall yield per unit area climbs until maximum grain yield per unit

area is reached [17–19]. Plant densities beyond this level reduce all yield measures due to

excessive intraplant competition. Individual plant yield loss occurs through reduction in the

plant’s ability to supply assimilate from source to sink organ while maintaining vegetative

growth [20]. Kernel abortion and ear barrenness is attributed to poor pollination from a gap

between silking and pollen shed [21] or ear (or kernel) abortion from limited photosynthetic

supply [14, 22]. Abiotic stress, such as water deficit during pollination, increases kernel abor-

tion by disrupting carbohydrate metabolism in corn ovaries [23]. Kernel weight and density

decreased due to various abiotic stresses, including excess heat during grain fill by reducing

enzyme functions related to sugar and starch metabolism [24]. Therefore, plant mechanisms

to tolerate abiotic stress, to maximize assimilate source/sink strength, and to optimize assimi-

late partitioning are targets for improving crop production.

Transcriptional profiling of various abiotic stresses was studied in controlled conditions

[25–27] or field conditions [28–30] including field corn response to both intra- and inter-spe-

cific competition [1]. Genes involved in crowding stress of field corn and barley seedlings were

identified, with little overlap among cultivars [26]. Transcriptional investigation of multiple

sweet corn hybrids under crowding stress has been conducted to connect plant response to

crowding stress tolerance and identify candidate crowding stress tolerance mechanisms [31].

The study showed that each hybrid had a distinctive mechanisms to crowding stress. More-

over, certain modules of genes were correlated to crop yield response while other modules

were associated with plant or ear traits. On the other hand, it is suggested that not only increas-

ing replication but also increasing the number of independent environmental setup would

provide robust and reproducible molecular and transcriptional results on abiotic stress [32].

Capturing transcriptional responses of crowding stress under different environmental condi-

tions will help understanding of complex nature of crowding stress.

Of agronomic interest are the molecular mechanisms involved in crowding stress tolerance

that impacts sweet corn yield. Most transcriptional research on crowding stress was conducted

at early or late vegetative stages. However, flowering is also one of the most sensitive growth
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stages to stress [33], especially when silk growth, pollination, and kernel set occur [34]. Tran-

scriptional changes during flowering will improve our understanding of crowding stress toler-

ance by making a connection from the vegetative stage (before flowering) stress response to

later growth stage (at flowering). Moreover, ear leaf is the important ‘source’ of assimilate

impacting kernel yield under stress. Studies showed that accumulation of photosynthate in

kernel is largely affected by photosynthesis on the five or six leaves near and above the ear [35,

36]. Therefore, the research was conducted in sweet corn to 1) investigate the phenotypic and

transcriptional response of sweet corn hybrids under different plant densities, 2) compare the

crowding stress response mechanisms between hybrids, and 3) identify candidate biological

mechanisms involved in crowding stress response.

Materials and methods

Plant materials and field experiments

Two widely used shrunken2 (sh2) sweet corn processing hybrids, DMC21-84, and GSS2259P,

were planted in two sites, the Fruit Farm and Vegetable Farm, at the University of Illinois

Crop Sciences Research and Education Center, near Urbana, IL in 2014. Hybrids were selected

from the evaluation of 26 modern processing hybrids from 8 commercial sweet corn seed com-

panies that had distinct phenotypic responses to crowding stress; specifically, DMC21-84

exhibited high tolerance to crowding stress, whereas GSS2259P exhibited low tolerance to

crowding stress [37]. Each site received two plant density treatments with 4 replications, which

were targeted at low (51,500 plants ha-1) and high (96,100 plants ha-1) densities. The average

plant density of sweet corn in the Midwest U. S. is ~57,000 plants ha-1. Each plot consisted of

four rows 9 m long on 0. 76 m row spacing. Stand counts were done at the 3-collar growth

stage to ensure target planting densities were achieved. Production practices common to the

region (i. e. tillage, pest, and weed control) were used (Table 1). Soil samples were collected

from both sites after the experiment was established and sent to A & L Great Lakes

Table 1. Description of sites used for plant density experiment near Urbana, IL.

Fruit Farm Vegetable Farm

Coordinates 40˚04’59. 2"N 88˚12’40. 9"W 40˚04’35. 7"N 88˚14’34. 6"W

Soil Type Dana Silt Loam Drummer Silty Clay Loam

OM (%) 6. 5 3. 0

pH 6. 3 5. 9

Sand (%) 8. 0 5. 0

Silt (%) 68. 8 67. 7

Clay (%) 23. 2 27. 3

NH4 (ppm) 5 5

NO3 (ppm) 108 55

P (ppm) 123 50

K (ppm) 595 193

Previous crop sweet corn Soybean

Planting date 5/27/2014 5/27/2014

Harvest date 8/11/2014 8/13/2014

Water supply Rainfed Rainfed

Applied N (kg

ha-1)

135 135

Herbicides atrazine (2. 26 kg a. i. ha-1) + S-metolachlor (1.

75 kg a. i. ha-1)

atrazine (2. 26 kg a. i. ha-1) + S-metolachlor (1.

75 kg a. i. ha-1)

https://doi.org/10.1371/journal.pone.0253190.t001
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Laboratories, Inc. (Fort Wayne, IN) for analysis. Green ears>4. 5 cm in diameter were hand

harvested 21 days after mid-silk date from the center two rows, 6. 1 m in length, of each plot.

Phenotypic traits were collected including ear number per plant, ear mass per plant, fresh ker-

nel mass per plant, ear number per hectare, ear mass per hectare, fresh kernel mass per hectare,

average ear length, and average filled ear length.

Phenotypic traits were analyzed with ANOVA using PROC MIXED in SAS version 9. 2

[38]. Site was considered a random effect, and hybrid and density were considered fixed

effects. Data complied with ANOVA assumptions of homogeneity of variance based on the

modified Levene’s test [39] and normality based on the diagnostic test of residuals.

Microarray experiment

Plant tissue samples were collected by bulking 4 primary ear leaves per plot at the R1 growth

stage on July 23, 2014 between 10:00 A. M. to 12:00 P. M. Four biological replications from

each hybrid x site x density treatment were frozen in liquid nitrogen immediately after collec-

tion and stored at -80 ˚C until RNA extraction. Total RNA was extracted using RNeasy mini

kit (Qiagen, Hilden, North Rhine-Westphalia, Germany). Total RNA was submitted to Roy J.

Carver Biotechnology Center at the University of Illinois to check for quantity and quality

using the Agilent 2100 Bioanalyzer and to perform a microarray experiment.

The microarray was designed from field corn inbred B73 coding sequences from Mai-

zeGDB (http://www.MaizeGDB.org). A unique set of gene representations was created by

retaining the longest transcript from each gene. Then 39,653 coding sequences were submitted

to Agilent earray for probe design resulting in 39,091 successful probes. The probe set was

used to create a custom corn microarray (Agilent Amadid # 060449). The array contained

39,091 unique probes, of which 34,379 were spotted once and 4,712 were spotted twice, plus

1,264 positive controls and 153 negative controls. Seventy-five ng of total RNA was labeled

using the Agilent 2-color Low Input Quickamp Whole Transcriptome Labeling kit (Agilent

Technologies, Santa Clara, CA) according to the manufacturer’s protocols. Labeled samples

were hybridized to custom-designed Agilent corn 4x44K earray. Samples were paired such

that only one of the 3 factors (hybrid, site, density) differed between 2 samples on an array;

since crowding stress response was of primary interest, 2 pairings, alternating dyes, were done

between high and low densities for each hybrid x site group. One pairing was done between

Vegetable Farm and Fruit Farm for each hybrid x density group and one pairing was done

between GSS2259P and DMC21-84 hybrids of the same site x density group, alternating dyes

so that all factor combinations and replicates within a group were balanced. The arrays were

scanned on an Axon 4000B microarray scanner (Molecular Devices, Sunnyvale, CA) at 5 μm

resolution. Spotfinding was carried out using GenePix 6. 1 image analysis software (Molecular

Devices, Sunnyvale, CA).

Statistial analyses of microarray data

Microarray data pre-processing and statistical analyses were done in R [40] (v 3. 1. 3) using the

limma package [41] (v 3. 22. 6). Median foreground values from the 16 arrays were read into

R, and microarray spots that were flagged (-100 values) or that did not pass the median of the

control spots within the dye and microarray were removed from the analysis. The individual

Cy5 and Cy3 values were all normalized together using the quantile method and then logarith-

mic base 2 transformation of the background substracted foreground intensities were normal-

ized to remove dye bias within the microarray [42]. Then, the duplicate values for the probes

spotted twice were averaged together because they were highly correlated. The positive and

negative control probes were used to assess what minimum expression level could be
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considered "detectable above background noise" (6. 25 on the log2 scale) and then discarded.

A mixed effects statistical model [43], incorporating a 2x2x2 ANOVA, dye as a fixed effect,

array as a random effect, and labeling efficiency as a covariate, was fit on the 39,091 unique

probes. After fitting the model, 10,659 probes were discarded because they did not have

expression values > 6. 25 in at least 4 samples out of 32 samples, leaving 28,432 unique probes

further analyses. For ease of discussion, these probes will be called ‘genes’ from this point

forward.

After normalization of the expression of selected genes, we performed a Principal Compo-

nent Analysis (PCA) of all individual samples to see the overall patterns of responding genes

based on hybrid, site, and density effects. Gene expression values were compared between high

and low plant densities using the t-test for the four site and hybrid combinations. Differentially

expressed genes (DEGs) were identified for each comparison based on p-value <0. 01. These

DEGs were interpreted as the genes involved in crowding stress. DEGs had positive and nega-

tive fold change differences when they had up- and down-regulation in high plant density

compared with low plant density, respectively.

In order to understand the biological pathway associated with density effects, we performed

Gene Ontology (GO) enrichment analysis using DAVID program, which provides compre-

hensive functional annotations associated with DEGs. Since our microarray array probe is

annotated with Agilent ProbeID, we transformed them into the GenPept Assession ID using

MaizeGDB, and these IDs are used for Function enrichment analysis.

Validation of gene expression using RT-qPCR

The microarray result was validated by performing a quantitative reverse transcription-poly-

merase chain reaction (RT-qPCR). A set of transcripts were selected based on their importance

to crowding stress response. The gene for ubiquitin-conjugating enzyme was selected as the

endogenous control. The average expression value of ubiquitin-conjugating enzyme gene

(GRMZM2G018447_T01) was above the minimum expression value (9. 99) and it was not dif-

ferentially expressed in any of the comparisons. Using the same mRNA samples from the

microarray experiment, cDNA was synthesized using Invitrogen Superscript First-Strand Syn-

thesis System (Invitrogen). Primers were designed using Primer Express Software Version 3. 0

(Applied Biosystems, Foster, CA). RT-qPCR was performed on the ABI 7900 real-time PCR

machine using Power SYBR Green Master Mix Kit (Applied Biosystems, Foster, CA). Thresh-

old values were identified using SDS2. 4 software (Applied Biosystems, Foster, CA). Three

technical replications were used for each sample and averaged for the analysis, and all values

had a PCR efficiency between 90 and 100% and R2 close to 0. 99 [44]. The cycle threshold val-

ues were normalized to the expression of control genes and the ΔΔCt method was used for

comparing the gene expression values involved in crowding stress [44].

Results and discussion

Phenotypic response to plant density

The main effect of site on response variables was not significant, indicating the difference

between sites did not significantly affect the patterns of phenotypic responses. Due to the

relative closeness between sites (< 4km), water supply and air temperatures were similar

(Table 1). Pest management was identical between sites. Although organic matter and some

nutrients differed between sites, results were combined for further phenotypic trait compari-

sons given overall similiarities between sites.

The main effect of hybrid and plant density on response variables were significant for most

traits. Hybrids used in this study differed phenotypically. Despite shorter ears and fill length,
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DMC21-84 was higher yielding than GSS2259P (Table 2). Relative to low plant density, high

plant density reduced yield plant-1 as well as ear traits. High plant density resulted in crowding

stress as evidenced by <1. 0 ear plant-1 (Table 2). While high plant density reduced yield

plant-1, relative to low plant density, more ears ha-1 were observed. Ear mass ha-1 and kernel

mass ha-1 were comparable between high and low plant densities (Table 2). A previous study

showed the optimum plant density for crowding stress-tolerant hybrid DMC21-84 averaged

73,075 plants ha-1 [12] while average sweet corn plant density used in Midwest U. S. is ~57,000

plant ha-1. Low (51,500 plant ha-1) and high plant density (96,100 plants ha-1) used in this

study were below average and above optimum plant density to minimize and maximize

crowding stress environments. As a result, the high crowding stress environment reduced

individual plant ability to produce marketable ear size, ear number, ear mass or kernel mass.

However, overall yield ha-1 was maintained in the high-stress environment compared to the

low-stress environment by producing a higher number of ears ha-1.

Hybrids responded differently to plant densities. Most interactions among hybrid, site, and

plant density, were not significant (P>0. 05). Yet among the interactions, hybrid by plant den-

sity for fill length, ear number ha-1 and ear mass ha-1 were significant (P<0. 05). When the per-

cent change from low to high plant density for each hybrid was compared, reduction of overall

plant traits, especially fill length, and yield plant-1 traits were greater for GSS2259P than

DMC21-84 (Table 2). It resulted in a lower percentage of number of ears ha-1 and reduction in

overall ear mass ha-1 and kernel mass ha-1 for GSS2259P, while DMC21-84 increased overall

ear mass ha-1 and kernel mass ha-1 under crowding stress. Previous investigation showed that

DMC21-84 had high crowding stress tolerance whereas GSS2259P had low crowding stress

tolerance [37]. Our result also confirmed that GSS2259P exhibited less tolerance to crowding

stress than DMC21-84 by reducing individual plant ability to maintain marketable ear size or

kernel mass under crowding stress condition.

Transcriptional response to plant density

Transcriptional profiling was conduct on 32 samples, consisting of two hybrids, two sites, and

two plant density treatments with four biological replications. After correcting for dye, array,

and labeling efficiency, hierarchical clustering showed consistency among replications. Micro-

array results have been deposited in NCBI’s Gene Expression Omnibus database [45] and are

accessible through GEO Series accession number GSE72434 (http://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE72434). Gene expression was validated as evidenced by the RT-

qPCR following the same patterns as microarray results (S1 Table). Genes used in the

Table 2. Phenotypic yield trait results of two sweet corn hybrids in high (96,100plants ha-1) and low (51,500 plants ha-1) densities and the percent change of each

phenotypic trait of two sweet corn hybrids from low to high plant densities.

Hybrid Density Ear trait Yield Plant-1 Yield Ha-1

Ear length Fill length Ear number Plant-1 Ear mass Plant-1 Kernel mass Plant-1 Ear number Ha-1 Ear mass Ha-1 Kernel mass Ha-1

DMC21-

84

Low 19. 1 a 17. 9 a 1. 05 a 0. 95 a 203. 4 a 53954 a 26. 9 a 10. 5 a

High 18. 0 b 15. 7 b 0. 87 b 0. 56 b 113. 1 b 87321 b 30. 9 b 11. 4 a

% Change -6. 10 -12. 42 -17. 58 -41. 63 -44. 38 61. 85 14. 72 8. 38

GSS2259P Low 20. 8 a 20. 3 a 0. 96 a 0. 73 a 144. 2 a 49110 a 20. 5 a 7. 4 a

High 19. 1 b 16. 0 b 0. 75 b 0. 39 b 76. 1 b 70234 b 20. 1 a 7. 1 a

% Change -7. 72 -21. 09 -22. 01 -46. 37 -47. 23 43. 01 -1. 93 -3. 48

Mean difference was significant at P<0. 05.

https://doi.org/10.1371/journal.pone.0253190.t002

PLOS ONE Sweet corn transcriptional response to crowding stress

PLOS ONE | https://doi.org/10.1371/journal.pone.0253190 June 17, 2021 6 / 18

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72434
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72434
https://doi.org/10.1371/journal.pone.0253190.t002
https://doi.org/10.1371/journal.pone.0253190


validation were selected based on the microarray results that showed at least one significant

expression in comparisons.

Initial analyses of gene expression patterns using PCA and hierarchical cluster analysis

identified a stronger transcriptional signal due to hybrid and site than plant density. Principal

component 1 revealed clear hybrid differences, while principal component 2 showed a site

effect (Fig 1). Principal component 3 distinguished some samples due to plant density. The

sample grouping for a low and high plant density of GSS2259P was clearer than grouping of

DMC21-84, indicating GSS2259P had more expression changes due to plant density than

DMC21-84. The hierarchical cluster also showed clearer hybrid grouping than samples

grouped by site and plant density (S1 Fig).

Pairwise comparisons between low and high plant density were conducted to identify

crowding stress DEGs for each hybrid and site combination. The result showed 694 (421 up-

and 273 down-regulated) and 537 (393 up- and 144 down-regulated) DEGs for GSS2259P

grown at Fruit Farm and Vegetable Farm, respectively. For DMC21-84, 359 (206 up- and 153

down-regulated) and 483 (286 up- and 197 down-regulated) DEGs were identified at Fruit

Farm and Vegetable Farm, respectively (Fig 2). No common DEGs were observed among all

sites and hybrid combinations.

Distinct PCA grouping of transcriptional response due to hybrid and site, rather than plant

density, as well as the lack of common crowding stress DEGs shared across hybrids and sites,

indicated molecular mechanisms involved in crowding stress are driven largely by genotypic

and environmental factors. The importance of genotypes in transcriptional response to high

plant density was evident from field corn seedlings grown in a greenhouse [26] and from sweet

corn hybrids grown in the field [31]. Also, while management and weather were similar

between sites, differences in environmental factors such as water and nutrient concentrations

existed in each site. Unknown environmental factors may have contributed the difference in

overall transcriptional response. Yet, this study was conducted in two fields that resulted in

similar crowding stress phenotypic responses; therefore, transcriptional changes may have

captured wider crowding response, providing greater agronomic relevance to sweet corn than

previous studies conducted in single or controlled environments. Since crowding stress effec-

tively influenced plant response on both sites, DEGs identified from each site collectively

should be considered crowding stress response genes. Sixteen, three, nine and, three GO terms

were significant for GSS2259P at Fruit Farm and Vegetable Farm and for DMC21-84 at Fruit

Farm and Vegetable Farm, respectively (Table 3).

The over-represented GO terms for each hybrid were different, indicating diverse crowding

stress response mechanisms. By comparing biological functions of crowding stress DEGs and

their associated genes, we found some similarities and differences on how the hybrids respond

to crowding stress. Most associated genes were related to previously identified, diverse abiotic

stress responses. For example, translation was the most significant biological function in

crowding stress response of GSS2259P at Fruit Farm, and a number of ribosomal proteins

identified from this function involved in abiotic stress such as drought and salt stress in rice

[46]. Associated genes were compared to maize stress genes from Plant Stress Gene Database

[47] and found three genes that were related to salt and heat stress (S2 Table).

Among the significant biological functions involved in crowding stress, protein folding and

photosynthesis were commonly significant between hybrids (Table 3) indicating the impor-

tance of these functions in crowding stress response. Protein folding is an important process of

plant adaptation to stress environment. In GSS2259P, Shepherd-like 2 (shpl2), an ortholog of

heat shock protein 90 (HSP90), were significant. In DMC21-84, HSP90 and HSP22 were sig-

nificant in this process. Induction of HSP is an important candidate stress tolerance mecha-

nism by protecting photosynthesis during thermal stress conditions and maintaining cellular
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homeostasis [48–51]. Due to the costly nitrogen requirement of HSP production, HSP produc-

tion is poor under low nitrogen [52] or elevated CO2 [53]. A number of HSPs also were

involved in soybean response to weed competition [54]. The HSPs found in both hybrids

including some other genes such as FK506 binding protein were also significant to crowding

stress tolerance gene expression analysis among sweet corn hybrids [31].

Fig 1. PCA plots with respect to a. PC1 and PC2, and b. PC2 and PC3. Treatments are identified by hybrid, site

(FF = Fruit Farm; VF = Vegetable Farm), and plant density.

https://doi.org/10.1371/journal.pone.0253190.g001
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In photosynthesis, the crowding stress response genes identified from GSS2259P were asso-

ciated with energy capture and electron transfer. For example, PsbS encoding gene (PsbS1)

from GSS2259P is the light-harvesting protein necessary for non-photochemical quenching

metabolism in photosystem II [55]. The PsbS has an important role in plant fitness under field

conditions by increasing plant tolerance to variation in light intensity through capturing solar

energy and dissipating heat [56]. Also, two ferredoxin encoding genes (fdx1 and fdx5) from

GSS2259P, light-sensitive electron carriers, were significant. Ferredoxin is involved in linear

electron flow and photosynthesis capacity [57]. Notably, fdx1 was also significant in one of

crowding stress tolerance modules (Module 13) associated with yield traits in sweet corn

hybrids [31], indicating this gene may be a candidate crowding stress tolerance gene for fur-

ther improvement.

Along with the importance of photosynthesis genes, genes involved in carbon utilization

were also significant for GSS2259P (Table 3). Carbonic anhydrase (cah1, cah2, cah3 and cah6)

were associated genes encoding enzymes with an important role in interconversion of CO2

and HCO3
- crutial for photosynthesis rate in C4 plants (Fig 3) [58]. It also functions in stomatal

conductance and guard cell movement [59]. Carbonic anhydrase was a critical rate-limiting

factor in maintaining corn photosynthesis activity under a low CO2 level due to abiotic stress

such as high temperature or drought [60].

Fig 2. Number of DEGs identified in pairwise comparisons between low and high plant density for each hybrid and site combination (p-value<0.

01). Plus and minus sign represents number of DEGs with up- and down-regulation, respectively. Number of DEGs identified two or more hybrid and

site combinations is shown where the combinations overlap.

https://doi.org/10.1371/journal.pone.0253190.g002
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Table 3. Over-represented biological processes of DEGs involved in crowding stress on each hybrid and associated genes.

Hybrid Site GO ID GO terms (Biological process) Associated genes

GSS2259P Fruit Farm GO:0006412 Translation rpl19, rpl29, mch1, rps4

GO:0006099 Tricarboxylic acid cycle pep1, cts1, cts2, idh1, cts4

GO:0015979 Photosynthesis pep1, fdx1, fdx5, psbs1, pspb2

GO:0046688 Response to copper ion prp6, prp7

GO:0009617 Response to bacterium prp6, prp7

GO:0009646 Response to absence of light prp6, prp7

GO:0009737 Response to abscisic acid prp6, prp7

GO:0009651 Response to salt stress prp6, prp7

GO:0055114 Oxidation-reduction process ftr1, sum1

GO:0042542 Response to hydrogen peroxide prp6, prp7

GO:0010207 Photosystem II assembly hcf244

GO:0009620 Response to fungus prp6, prp7

GO:0015976 Carbon utilization cah1, cah2, cah3, cah6

GO:0009735 Response to cytokinin prp6, prp7, pep1

GO:0009751 Response to salicylic acid prp6, prp7

GO:0006662 Glycerol ether metabolic process trh1

Vegetable Farm GO:0006857 Oligopeptide transport npf3, npf7, npf8

GO:0006457 Protein folding shpl2, crt2

GO:0009735 Response to cytokinin pep1, crr1

DMC21-84 Fruit Farm GO:0019252 Starch biosynthetic process gbss1, ss6, ss1, ss4, agpll1

GO:0005975 Carbohydrate metabolic process glu1, shbp1, prk1, rpe1, chn1, geb1, pmdh2

GO:0006950 Response to stress aasr1, aasr2, aasr6, hsp90

GO:0006595 Polyamine metabolic process -

GO:0006108 Malate metabolic process me2, me3, me5

GO:0006457 Protein folding hsp90

GO:0015979 Photosynthesis ssu1, ssu2, pdk2, psan2

GO:0009086 Methionine biosynthetic process mthr1, csu503(met)

GO:0009853 Photorespiration ssu1, ssu2

Vegetable Farm GO:0009408 Response to heat sca1, cdj2, hsp22

GO:0016192 Vesicle-mediated transport -

GO:0051716 Cellular response to stimulus pcap1, drepp2

Rpl19, ribosomal protein L19; rpl29, ribosomal protein L29; mch1, maize CRY1 homolog 1; rsp4, ribosomal protein S4; pep1, phosphoenolpyruvate carboxylase 1; cts1,

citrate synthase 1; cts2, citrate synthase 2; idh1, isocitrate dehydrogenase 1; fdx1, ferredoxin 1; fdx5, ferredoxin 5; psbs1, photosystem II subunit PsbS1; pspb2,

photosystem II oxygen evolving polypeptide 2; prp6, pathogenesis-related protein 6; prp7, pathogenesis-related protein 7; ftr1, ferredoxin-thioredoxin 1; sum1, siroheme

uroporphyrinogen methyltransferase 1; hcf244, high chlorophyll fluorescence 244; cah1, carbonic anhydrase 1; cah2, carbonic anhydrase 2; cah3, carbonic anhydrase 3;

cah6, carbonic anhydrase 6; trh1, thioredoxin h homolog 1; npf3, nitrate transporter/peptide transporter family 3; npf7, nitrate transporter/peptide transporter family 7;

npf8, nitrate transporter/peptide transporter family 8; shpl2, shepherd-like 2; crt2, calreticulin 2; crr7, cytokinin response regulator 7; gbss1, granule-bound starch

synthase1; ss1, starch synthase 1; ss4, starch synthase 4; ss6, starch synthase 6; agpll1, ADP glucose pyrophosphorylase large subunit 1; glu1, beta glucosidase 1; rpe1,

Ribulose-phosphate 3-epimerase1; prk1, phosphoribulokinase 1; chn1, chitinase chem 5; geb1, glucan endo-1,3-beta-glucosidase homolog 1; pmdh2, peroxisomal NAD-

malate dehydrogenase 2; aasr1, abscisic acid stress ripening 1; aasr2, abscisic acid stress ripening 2; aasr6, abscisic acid stress ripening 6; hsp90, heat shock protein, 90

kDa; me2, NADP malic enzyme 2; me3, NADP malic enzyme 3; me5, NADP malic enzyme 5; ssu1, ribulose bisphosphate carboxylase small subunit1; ssu2, ribulose

bisphosphate carboxylase small subunit 2; pdk2, pyruvate, orthophosphate dikinase 2; psan2, photosystem I N subunit2; mthr1, methionine synthase homolog 1; csu503

(met), 5-methyltetrahydropteroyltriglutamate-homocysteine S-methyltransferase/ methionine synthase; sca1, short chain alcohol dehydrogenase 1; cdj2, chaperone

DNA J2; hsp22, heat shock protein 22; pcap1, plasma membrane-associated cation-binding protein; drepp2, developmentally regulated plasma membrane polypeptide2.

https://doi.org/10.1371/journal.pone.0253190.t003
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The early part of carbon fixation process in photosynthesis also was important for crowding

stress response in both hybrids. Genes encoding three critical enzymes, phosphoenolpyruvate

carboxylase (pep1), NADP-dependent malic enzyme (me2, me3, and me5), and pyruvate,

orthophosphate dikinase (pdk2) were identified in GSS2259P and DMC21-84 (Table 3). Phos-

phoenolpyruvate carboxylase1 (pep1) was associated with photosynthesis in GSS2259P and it

is involved in the initial step of atmospheric CO2 fixation in mesophyll cells (Fig 3). After cata-

lyzing phosphoenolpyruvate (PEP) and transferring C4 to bundle sheath cells, NADP-depen-

dent malic enzyme (me2, me3, and me5 found in DMC21-84) provide CO2 to ribulose-

Fig 3. Schemetic drawing of carbon fixation in photosynthetic process (adapted from KEGG pathway zma00710)

[61]. Associated genes found significant for crowding stress response are listed in italic in pink boxes for GSS2259P

and yellow boxes for DMC21-84.

https://doi.org/10.1371/journal.pone.0253190.g003
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1,5-bisphosphate carboxylase (Rubisco) by decarboxylation. Regeneration of PEP is catalyzed

by pyruvate, orthophosphate dikinase (pdk2 found in DMC21-84). Three enzymes collectively

showed important roles in abiotic stress such as drought, salt, ozone, nutrient deficiency, or

metal toxicity stress of various plant species [62]. With the importance of the carbon fixation

process in crowding stress response, Rubisco small units 1 and 2 (ssu1 and ssu2) also were

identified from DMC21-84 under photosynthesis mechanism (Table 3, Fig 3). Rubisco is a

critical enzyme for carbon fixation and directly related to photosynthetic efficiency. It is

involved in a number of abiotic stress response mechanisms in plants such as heat stress in cot-

ton and wheat [63] and salt, drought, cold, or heat stress in rice [64].

Furthermore, the carbohydrate metabolic process in DMC21-84 was significant, indicating

crowding stress also affected the allocation of biomass (Table 3). Number of genes including

Phosphoribulokinase 1 (prk1) and sedoheptulose bisphosphatase1 (shbp1) were identified

from DMC21-84 associated with later part of carbon fixation process in response to crowding

stress (Fig 3). A gene related to phosphoribulokinase activity (PRK) showed a positive associa-

tion with photosynthesis under limited N supply, thereby influencing biomass accumulation

in tobacco [65]. Sedoheptulose-1,7-bisphosphate (SBPASE) is an enzyme that has an impor-

tant role in regulating carbon flow in the Calvin cycle [66, 67], and in improving tolerance of

CO2 assimilation to heat stress by maintaining Rubisco activation [68].

The effect of crowding stress on the allocation of biomass in DMC21-84 also is supported

by the starch biosynthetic process, which was the most significant biological process in

DMC21-84 (Table 3). Starch biosynthesis is an important determinant of plant fitness under

stress condition, i. e. ability to produce viable seeds and minimize seed abortion [69]. Plants

can reduce the effect of stress by remobilizing starch reserves and releasing energy, sugar, or

metabolites [69]. Multiple starch synthase enzymes (ss1, ss4 and ss6) and granule-bound starch

synthase1 (gbss1) were found in DMC21-84 (Table 3). Studies found significant activities of

starch synthases in drought stress of potato [70], drought stress of triticale [71], and salt stress

and ABA treatment of Arabidopsis thaliana [72]. Also, a significant change of granule-bound

starch synthase was reported on rice under salt stress and osmotic stress [73].

Genes related to abscisic acid (ABA), a phytohormone with an important role in plant

stress response, were found in DMC21-84. Abscisic acid is involved in physiological pro-

cesses such as seed development, stomatal closure, leaf senescence and storage proteins and

lipids synthesis. The plant has to rapidly adjust the level of ABA in response to environmen-

tal changes. A study suggested Arabidopsis beta-glucosidase hydrolyzes glucose-conjugated

(AtBG1), enables ABA levels to adjust to environmental stress by polymerizing AtBG1,

and rapidly activating inactive ABA pool [74]. We also found beta glucosidase1 (glu1) in

DMC21-84 response to crowding stress, indicating it may have a connection to rapid plant

adaptation to the stress. Abscisic acid stress ripening genes have a close relationship with

ABA level and showed significant expression in fruit ripening [75–77] and closely related to

water stress response [78]. Three abscisic acid stress ripening genes (aasr1, aasr2, and aasr6)

also were significant in DMC21-84, indicating the continuous effect of crowding stress on

these genes.

Genes involved in sweet corn crowding stress response did not overlap in function with

genes identified in a previous crowding stress experiment with field corn seedlings [26]. The

difference in gene functions between the experiments may be due to differences in the devel-

opmental stage at which tissue was collected (12 days after planting vs. R1), genetic back-

ground (field corn vs. sweet corn), or growing environment (controlled environment vs. field

conditions). Conceivably, transcriptional events at R1 would differ from an early vegetative

stage. Certain expression patterns in the present work, such as involvement of genes related to

carbohydrate metabolism and HSPs, were similar to transcriptional response to plant
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competition at a later vegetative stage (V12) of field corn [1]. Perhaps such biological processes

are broadly important in response to late-season intraplant and interplant competition.

Differences in gene expression between hybrids provide evidence that each hybrid has

unique crowding stress response mechanisms as shown in previous research [31]. Yet, by com-

paring related genes and functions, we found genes related to protein folding, photosynthesis,

carbohydrate metabolism, starch synthesis, and ABA metabolism were important for crowding

stress response. Photosynthesis and ABA signaling were commonly found important from

previous ear leaf transcriptome study under drought stress showing ear leaf working as ‘source’

organ critical for biomass accumation around flowering stage [79]. The number of genes and

functions were commonly significant between the present study and previous research [31]

(S3 Table) despite the difference in crowding stress tolerance among hybrids. It may indicate

there are selected crowding stress response mechanisms that can be utilized for further

improvement for productivity. For example, some processes found significant in this study

such as HSPs related to protein folding and were previously identified on the expression of

crowding stress-sensitive hybrid as compared to tolerant hybrids, while ferredoxin was identi-

fied on crowding stress-tolerant module in the previous study. Since the networks associated

with crowding stress tolerance are highly inter-connected, further investigation on finding key

factor(s) or functional evaluation should be followed.

Maintaining the plant’s ability to produce a marketable ear without kernel abortion is one

strategy to improve crowding stress tolerance. Our phenotypic result showed that the reduc-

tion of GSS2259P productivity under crowding stress was greater than that of DMC21-84 due

to a significant reduction in fill length and ears per hectare. Plant development during grain

fill is sensitive to abiotic stress because ear barrenness, kernel abortion, and kernel weight are

determined at this time. Our transcriptional profile has captured this point of time and gives a

clue to the biological processes potentially behind these hybrid difference. The results showed

that the initial photosynthetic process was critical for both hybrids to respond crowding stress.

However, genes related to starch biosynthetic, carbohydrate metabolism, and ABA related pro-

cess were critical for DMC21-84, the crowding stress tolerant hybrid. These crowding stress

response genes and processes may have a direct relationship to regulate kernel development

under stress that can be utilized for improving crowding stress tolerance.

Conclusion

Genetic diversity in tolerance to crowding stress needs to be exploited to improve sweet corn

productivity and profitability. One of the promising biological targets to tolerate crowding

stress and achieve maximum productivity would be increasing plant ability to maintain indi-

vidual plant yield by reducing kernel abortion and maximizing biomass allocation under stress

conditions. By comparing plant yield responses to plant densities and capturing gene expres-

sion relevant to kernel formation, the present work identified genes and biological processes

involved in crowding stress response. Overall, the genes associated with protein folding and

photosynthesis were commonly important for crowding stress response. However, genes

related to carbohydrate metabolism, starch biosynthetic, and ABA related process were signifi-

cant in the crowding stress-tolerant hybrid, indicating they may have direct relevance to

improving productivity under crowding stress.
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