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Abstract- Outdoor images may cause limited visibility and low contrast due to haze noise. That haze noise is removed based on the 

estimate airlighting. Contrast and colour of the captured pictures are degraded under foggy weather conditions and this degradation is 

often attributed to estimate airlight. In this case, haze limits visibility and reduces image contrast in outdoor images. The degeneration 

is different for every pixel and depends on the distance of the scene point from the camera. This dependency is expressed in the 

transmission coefficients. Existing methods solve the single image dehazing problem using various patch-based priors. Compared to 

previous work, we propose an efficient algorithm that is linear in size and shape of the image. In this, First we are taking the image as 

per the commands, using the technique as local data set. So, we are clustering the RGB pixel values of each image, using K-means of 

a maximum of nearly 1000 clusters. Due tohaze, small particles in the air that scatter the light in the atmosphere so, the outdoor 

images often suffer from low contrast and limited visibility So that, the problem was cleared by using function as estimate airlighting. 

In this airlighting, several types of sub functions are used to remove unwanted noise in outdoor images and gives clear visibility of an 
image. 

I. INTRODUCTION 

In this, Outdoor images often suffer from low contrast and finite visibility due to haze, tiny particles in the air that disperse the light in 

the atmosphere. Haze is independent of scene brightness and has two effects on the captured image. It decreased the signal of the 

watched location, and it found an extra part to the image, termed the position light, or airlight. The image degeneration caused by haze 

increases with the distance from the camera, since the scene radiance decreases and the airlight magnitude increases. Thus, hazy 

images can be modelled as a per-pixel convex combination of a haze-free image and the global airlight. Our goal is to recover the 
RGB values of the haze-free image and the transmission for each pixel. This is an ill posed problem that has an underdetermined 

system of three equations and 

 

 

Fig.1: Non-Local Image Dehazing. (a) Pixels of a haze free colour image are clustered using K-means. Pixels belonging to four of the 

clusters are marked. Note that the pixels are non-local and are spread all over the image plane. (b) The four colour clusters are 

depicted in RGB space. Colours of the clusters correspond to the highlighted pixels in (a). (c) Synthetic haze is added to (a). The same 

clustered pixels are marked, but their observed colours are affected by different amounts of haze. (d) The hazy pixels depicted in RGB 

colour space. They are distributed along lines, termed haze-lines, passing through the airlight, marked in black. Here, we use the 

observation that colours of a haze-free image can be well approximated by a few hundred distinct colours [14]. This implies that 

pixels in a hazy image can be modelled by lines in RGB space that pass through the airlight coordinates. We term these lines haze-
lines to pressure this characteristic (Figs. 1, 2). Pixels along a haze-line come from objects that have similar radiance colours, located 

over the entire image plane. These objects can be truly are located at different distances from the camera. Since their acquired colour 

can be modelled by a convex combination of the radiance colour and the airlight colour. 
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The pixels in the orange square form a colour-line in RGB colour space 

 

Fig.2: Haze lines (ours) vs. Colour lines [3]. (a) An input hazy image. Six pixels belonging to related objects in different distances 
are marked by round colour markers, and a local spot is marked by an orange frame. (b) The colour coordinates of the pixels outline 

in (a) with round markers are shown in RGB colour space, with a corresponding colour coding. They are distributed over a haze line, 

as identified by our method. The line passes through the airlight, marked in black. The other end of the line is the haze-free colour of 

these pixels, not the origin. (c) As opposed to our method, the pixels in the local spot marked by an orange square are distributed 

along a colour line [3] that intersects the vector from the origin to the airlight. 

We suggest an efficient algorithm that is linear in the size of the image. We naturally detect haze-lines and use them to dehaze the 

image. We also conduct extensive experiments to validate our assumptions and report quantitative and qualitative results on many 

outdoor images. 

II. PREVIOUS WORK 
A variety of approaches have been suggested to solve image dehazing. Several methods require additional data to dehaze images, such 

as multiple images taken under different weather conditions, or two images with different polarization states. Otherwise, the scene 

geometry is used. Single image dehazing methods assume only the input image is available and depend on image priors. 

Haze reduces the contrast in the image, and various methods depend on this observation for restoration. Tan [18] maximizes the 

contrast per patch, while maintaining a global coherent image. In the amount of haze is estimated from the difference between the 

RGB channels, which decreases as haze increases.  

Some methods use a proceeding on the depth of the image. A smoothness preceding on the airlight is used in, assuming it is smooth 

except for depth discontinuities. Nishino assume the scene albedo and depth are statistically independent and collectively measure 

them using priors on both. Manually, either as piece wise constant for urban scenes or smoothly varying for nonurban landscapes. 

Several methods assume that transmission and brightness are piece wise constant, and employ a prior on a patch basis.The dark 
channel priorassumes that within small image patches there will be at least one pixel with a dark colour channel and use this minimal 

value as an estimate of the present haze. This prior works very well, except in bright areas of the scene where the prior does not hold. 

In colour flipsides are matched in RGB space per patch. These flipsides are used to provide a unified approach for previous single 

image dehazing methods, and a new method is proposed to estimate the transmission in each ellipsoid. 

In colour lines are fitted in RGB space per-patch, looking for tiny patches with a constant transmission. This prior is based on the 

observation that pixels in a haze free image form colour lines in RGB space. These lines pass through the origin and stem from 

shading variations within objects.  

Instead of tiny patches, in [7] the image is segmented to regions with similar distances, and the contrast is stretched within each 

segment. This may create artefacts at the boundaries between segments. 
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A. The Prior 

While our haze lines might seem similar to [3, 4], they are inherently different. The differences are shown in Fig. 2. In [3], lines are 

defined by the pixels of small strips in the image plane assuming constant transmission, with intensity differences caused by shading 

and therefore nearly small (Fig. 2c). This is a local phenomena that does not always hold and truly, in [3] care is taken to ensure only 

strips where the assumption holds are considered. We, on the other hand, look at lines that are formed by separate pixels that are 

scattered over the entire image. These pixels usually have large intensity differences that are caused by changes in transmission and 
not local shading effects, as demonstrated in Fig. 2b. 

 

III. PROPOSED WORK 

Compared to previous work, we propose an active algorithm that is linear in the size and shape of the image. Haze causes trouble to 

many computers graphics/vision applications as it reduces the visibility of the scene. So that we are using the EstimateAirlighting. 

Estimate airlighting is the basic phenomena of haze.Airlight is increase or decrease the brightness levels in the image. Compared to 

past,first we are taking the image as per the commands,using the technique as Local Data Set.Compared to previous years, we are 

clustering the RGB pixel values of each image,using K-means of a maximum of nearly 1000 clusters. 

We first present the haze model and then describe how we use non-local haze-lines for image dehazing. 

 

A. 3.1. Haze Model 

The common hazy image formation model is [9]: 
 

I(x) = t(x) · J(x) + [1 − t(x)] · A , (1) 

Wherex is the pixel coordinates, I is the observed hazy image, and J is the true brightness of the scene point imaged at x. The airlight 

A is a single colour representing the airlightin image areas where t= 0. 
The scene transmission t(x) is distance dependent: 

 

t(x) = e−βd(x) , (2) 

Whereβ is the attenuation coefficient of the atmosphere and d(x)is the distance of the scene at pixel x. Generally, β iswavelength 

dependent and therefore t is different per colour channel. This dependency has been assumed negligible in previous single image 

dehazing methods to reduce the number of unknowns and we follow this assumption. The transmission t(x) acts as a matting 

coefficient between the scene J and the airlight.  

Our procedure is found on the review that the number of different colours in an image is orders of magnitude smaller than the number 

of pixels.This assumption has been used broadly in the past and is used for saving colour images using indexed colourmaps. We 

validate and quantify it on the Berkeley Segmentation Dataset (BSDS300).  We clustered the RGB pixel values of each image using 

K-means to a extreme of 500 clusters, and return to every pixel in the image with its corresponding cluster centre. The result is an 
image with 500 different RGB values at 
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Fig3: Prior validation: (a) A PSNR histogram of the quantization errors on the Berkeley Segmentation Dataset (BSDS300): The RGB 

values of each image were clustered using K-means to 500 clusters and recovered by the cluster centre. The histogram shows the 

PSNRs measured on the full dataset. (b,d) The image that had the worst PSNR, 36.64dB, before (b) and after (d) colour quantization. 

(c) Absolute difference image to colour quantized version. 

The PSNR of the images develop with the reduced colour set, compared to the original ones, were high and arrange from 36.6dB to 

52.6dB. A histogram of the obtained PSNR values is shown in Fig 3, as well as the image that had the worst PSNR, before and after 
colour quantization. 

The survey regarding a small number of different colours holds for haze-free images. In the spirit of haze, object points that belong to 

the same colour cluster end up with different obtain colours, since they are located in different image areas and thus have different 

distances from the camera.  

This prior is determined in Fig. 1. A haze-free image is clustered using K-means to 500 clusters. The pixels belonging to four of these 

clusters are decided by different colour markers in Fig. 1a and their RGB coordinates are plot-ted in Fig. 1b, show tight clusters. Note 

that the clusters include pixels distributed over the entire image that come from objects with different distances from the 

camera.However, now, colours of pixels that belonged to the same colour cluster are no longer similar. This is depicted in RGB space 

in Fig. 1d, where the colour coordinates of these pixels are distributed along a haze-line spanned by the original colour and the 

airlight. The pixels marked by purple circles (originating from the sand patch) are located 

 
Fig.4: Airlight attract spherical representation. The sphere was sampled uniformly using 500 points. The colour at each point [φ, θ] 

indicates the number of pixelsxwith these angles whenwriting IA(x) in spherical coordinates (image size 768×1024). 

in the real world, so they are distributed along the haze-line. 

Fig. In same distances, so their handling along the haze-line is preferably tight. However, the pixels marked by orange triangles are 

based at different locations 2 demonstrates the haze-lines prior on a hazy out-door image. Six different pixels recognize by our 

method as be owned by the same haze line are circled. All of them are on shaded tree trunks and branches, and are likely to have same 

radiance J. However, their observed intensity I is quite different, as shown in Fig. 2b, where these pixels form a haze-line in RGB 
space that passes through the airlight. 

IV. HAZE REMOVAL 

In this method, Our algorithm is at ease of four essential steps: clustering the pixels into haze-lines, estimating an initial transmission 

map, regularization, and dehazing 

A. Finding Haze-Lines:  

We measure A using one of the previous methods [2, 5, 18]. Let us define IA as: 

A(x) = I(x) −A, 

i.e., the 3D RGB coordinate system is adapted such that the airlight is at the origin. Following Eq. (1), 

A(x) = t(x) · [J(x) −A]  . 

We express IA(x) in spherical coordinates: 

IA(x) = [r(x), θ(x), φ(x)]  . 

Here r is the distance to the origin (i.e., I−A)), θ and φ are the longitude and latitude, respectively. 
The colours of the pixels are now represented in a spherical coordinate system around the airlight. Fig. 4 shows the histogram of the 

Forest image (Fig. 2a) projected onto a sphere. The colour represents the number of pixels pointing at each direction. The equator (φ= 0) 

is marked by a bold dashed blue line, while the longitudes θ= 0,π2 are marked by dotted blue lines. The triangulation is told later. The 

colour mapping is logarithmic for analogy purposes. The histogram make that the pixels are highly concentrated in terms of their 

longitude and latitude. 
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Let us look at Eq. (4). For given values of J and A, scene points at different distances from the camera differ only in the value of t. In 

the spherical coordinate system Wc .we defined, changes in t affect only r(x) without changing either φ(x) or θ(x). In other words, 

pixels x andy have same RGB values in the basic haze-free image if their [φ, θ] are same: 

 

J(x) ≈ J(y)⇒ {φ(x) ≈ φ(y) , θ(x) ≈ θ(y)}, ∀t. (6) 
 

Therefore, pixels belong to the same haze-line if their [φ(x), θ(x)] values are same. Each point on the spherein Fig. 4 represents a 

haze-line, in which all the pixels have around the same angles [φ(x), θ(x)]. The pixels on each haze-line have same values in the non 

hazy image J with high probability. 

 

Note that there is inherent uncertainty between colour and haze for colours which are collinear with the airlight: 

1 − A =α (J2 − A)⇒ J1= (1 − α)A + αJ2  , (7) 

 

Whereα is a scale factor. In this case all single image dehazing methods will correct J1 and J2 to the same colour. This is the only case 

in our method when two colour clusters will be mapped to the same haze-line. 

In order to determine which pixels are on the same haze-line, pixels should be grouped according to their angles [φ, θ]. A 2-D 
histogram binning ofθandφwith uniformedges in the range [0,2π]×[0, π] will not generate a uniform sampling of a sphere. Instead, the 

samples will be denser near the poles [8], since the distance on the sphere is relative to sin(θ)., where each vertex is a sample point. 

Each vertex corresponds to a haze-line. For clarity of display, the number of samples in Fig. 4 is smaller than the actual number we 

use. We group the pixels based on their [φ(x), θ(x)] values, according to the closest sample point on the surface. This can be 

implemented efficiently by building a KD-Tree from the predefined tessellation andquerying the tree for each pixel. This is much 

faster than running a clustering algorithm such as k-means. 

Based on the search described in section 3.2, several hundreds of haze-lines represent an image with a good similarity. Fig. 5a depicts 

the layout of two different haze-lines in the image plane for the Forest image. 

B. Estimating Initial Transmission: 

For a given haze-line decide by J and A, r(x) depends on object distance: 

              r(x) = t(x) J(x) − A  , 0 ≤ t(x) ≤ 1 . (8) 

Thus, t = 1 corresponds to the largest radial coordinate: 
Def J − A  . (9) 

rmax =   

 
Combining Eqs. (8,9) results in an expression for the transmission based on radii in the haze-line 

Figure 5. Distance distribution per haze-line: (a) Pixels belonging to two different haze-lines are represent in green and blue, 

respectively. (b) A histogram of r(x) within each cluster. The horizontal axis is limited to the range [0, A], as no pixel can have a 

radius outside that range in this particular image. 

Pixel, then rˆmax is the maximal radius of that haze-line: 

rˆmax(x) = max { r(x) } , (11) 
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x ∈ H   

where the estimation is done per haze-line H. Fig. 5b displays the radii histograms of the two clusters. 

˜ (12) 

t(x) = r(x)/rˆmax(x) . 

C. Regularization:  

Since the light Jis  positive  (i.e.,≥ 0), Eq. (1) gives a lower bound on the transmission: 
tLB (x) = 1 − c min {Ic(x)/Ac} . (13) 

  { }  

In [5], the transmission measure is based on an eroded version of tLB . We demand this bound on the measured transmission, per pixel: 

˜ ˜ (14) 

tLB(x) = max{t(x), tLB(x)} . 

 ˜ 

t(x)that is similar to tLB(x)and is smooth when the input 

image is smooth. Mathematically, we minimize the following function w.r.t. t(x): 

 ˆ    
    

 tˆ(x)−t˜LB(x)
2 

+ λ tˆ(x)−tˆ(y)
2 , 

  

x σ2(x) x  y∈Nx  I(x) − I(y)2  

(15) 

 

Where λ is a parameter that controls trade off between the 

data and the smoothness terms, Nx denotes the four nearest 
Neighbours of x in the image plane and σ(x) is the standard 

deviation of tLB , which is calculated per haze-line 

 

D. Algorithm  Haze Removal 

Step-1:We can read the input image. 

Step-2:Convert the input image into Double     

Step-3:Convert the  Double image into index . 

Step-4:Reshaping the given image. 

Step-5:After the obtained image, we are subjected to airlighting, where the light increased or decreased. 

Step-6:Considered the hazy lines and corrected the hazy lines i.e., line by line. 

Step-7:Estimate the initial transmission. 

Step-8:Implementing the above process using regularization. 
 Step-9:Dehazing the obtained image. 

 

σ(x)plays a expressive role since it allows us to apply our estimate only to pixels where the assumptions hold. When the variance is 

high, the initial estimation is less reliable. σ(x) increases as the number of pixels in a haze line decreases. When the radii distribution 

in a given haze-line is small, our haze-line assumption does not hold since we do not observe pixels with different amounts of haze. In 

such cases, σ(x) increases as well. 
ˆ(x) 

E. Dehazing:  

Once t is calculated as the minimum ofEq. (15), the dehazed image is calculated using Eq. (1): 

ˆ − − ˆ ˆ 

J(x) =I(x) 1-t(x) A-t(x) . (16) 
 

The method is compile in Alg. 1 and establish in Fig. 6. Fig. 6a shows the input hazy image. The final, dehazed image is shown in 

Fig. 6b. Fig. 6c shows the distance in RGB space of every pixel in the hazy image to the airlight. Note that this space decreases as 

haze increases. Fig. 6d shows the maximum radii rˆmax(x) per haze-line. Observe that Fig. 6d is much brighter than Fig. 6c. Since 

larger values are represented by brighter colours, this indicates that the distance to the airlight is increased. The pixels with the 
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maximum radius in their haze-line are decided on the hazy image . Therefore mentioned pixels are found in the sky, since the distance 

to the airlight in RGB space is very short. σ >2, since the model expectation do not hold for these haze lines. The aforementioned 

pixels are form in the sky, since the distance to the airlight in RGB space is very short. Therefore, clustering them according to their 

angles is not reliable due to noise. In the regularization step this fact is taken into attention through the data term weight 21, which is 

shown in Fig. 6f  

 
σ (x) 

 
Figure 6. Intermediate and final results of our method: (a) An input hazy image; (b) The output image; (c) The distance r(x) of every 

pixel of the hazy image to the airlight; (d) the estimated radii (x) calculated according to Eq. (11); (e) The input image isshown, with 

the pixels x for which r(x) =rˆmax(x) marked by cyan circles; (f) The data term confidence in Eq. (15) colourmapped (warm colours 

show the larger values); (g) The estimated transmission map tˆ(x) before the regularization; (h) The final transmission map t˜(x) after 

regularization. (g) and (h) are colourmapped. 

Mission map after regularization is shown in Fig. 6h. While 
˜(x) 

Tcontains fine details even in grass areas that are at the 
ˆ(x) 

Same distance from the camera, t does not exhibit this behaviour. This indicates the regularization is necessary. 

V. RESULTS 

We calculate our arrangement on a large dataset involves both natural and fabricated images and related our performance to state-of-

the-art algorithms.  

A. Quantitative results: 

A assemble dataset of hazy images of natural scenes was introduced by [3], and is available online. The dataset containsenliven haze 
free images, fabricated distance maps 

Table 1. Comparison of L1 errors over fabricated hazy images with various amount of noise. The noise standard deviation is given 

and the images are scaled to the range [0,1]. The table compares the L1errors of the estimated transmission maps (left value) and the 

dehazed images (right value). 
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 σ [5] [3] ours 

 0 0.097/ 0.051 0.069/ 0.033 0.058/ 0.040 

Road1 0.01 0.100/ 0.058 0.068/ 0.038 0.061/ 0.045 

 0.025 0.106/ 0.074 0.084/ 0.065 0.072/ 0.064 

 0.05 0.136/ 0.107 0.120/ 0.114 0.091/ 0.100 

 0 0.118/ 0.063 0.077/ 0.035 0.032/ 0.026 

Lawn1 0.01 0.116/ 0.067 0.056/ 0.038 0.032/ 0.032 

 0.025 0.109/ 0.077 0.056/ 0.065 0.052/ 0.056 

 0.05 0.115/ 0.102 0.114/ 0.121 0.099/ 0.107 

 0 0.074/ 0.043 0.042/ 0.022 0.080/ 0.049 

Mansion 0.01 0.067/ 0.040 0.048/ 0.030 0.088/ 0.056 

 0.025 0.057/ 0.044 0.065/ 0.051 0.104/ 0.072 

 0.05 0.083/ 0.075 0.081/ 0.080 0.116/ 0.095 

 0 0.07/ 0.048 0.039/ 0.025 0.047/ 0.032 

Church 0.01 0.067/ 0.050 0.053/ 0.043 0.049/ 0.041 
 0.025 0.058/ 0.059 0.089/ 0.081 0.047/ 0.057 

 0.05 0.087/ 0.121 0.121/ 0.136 0.043/ 0.092 

 0 0.127/ 0.068 0.066/ 0.034 0.089/ 0.045 

Raindeer 0.01 0.119/ 0.066 0.077/ 0.042 0.093/ 0.049 

 0.025 0.109/ 0.067 0.084/ 0.054 0.104/ 0.063 

 0.05 0.117/ 0.085 0.106/ 0.083 0.131/ 0.092 

And corresponding simulated haze images. An identically distributed zero mean Gaussian noise with three different noise level: σn= 

0.01,0.025,0.05 was added to these images (with image intensity scaled to [0,1]). Table 1 summarizes the L1 err`ors on non sky pixels 

(same metric used in [3]) of the transmission maps and the dehazed images. Our method is compared to the method of [3] and an 

implementation of [5] by [3]. For five images out of this dataset, results of both clear and noisy images are provided by [3]1. 

Our method outperforms previous methods in most cases, and handles the noise well. As expected, our performance degrades when 

the noise variance increases. How-ever, our method maintains its ranking, with respect to other methods, regardless of the amount of 

noise. This shows that our algorithm is quite strong to noise, despite being pixel-based. 

 

B. Qualitative results 
Figs. 7 and 8 compare our results to state-of-the-art single image dehazing methods. As previously notedby the image after haze 

removal might look dim, since the scene radiance is usually not as bright as the airlight.  

A complete summary of results and more is available on the project’s website. 
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Fig.7: Comparison on natural images: [Left] Input with pixels that set the maximum radius in their haze-line circled in pink. 

[Right] Ourresult. Middle columns display results by several methods, since each paper reports results on a different set of images. 

 

 
 

Top to bottom: hazy image: Forest He et al. [5] results Fattal [3] results our results 

 
Fig. 8: Comparison of transmission maps and dehazed images 
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The method of [1] split haze in the results, as seen in the areas circled in yellow in Fig.7. In the result of [7] there are artefacts in the 

boundary between portions (pointed by arrows). The method of [12] tends to overinfuse (e.g., House). The methods of [5, 19] 

assembled excellent results in common but lack some micro contrast when compared to [3] and to ours. This is clear in the zoomed in 

buildings shown in Cityscape results, where in our result and in [3] the windows are sharper than in [5, 19] (best viewed on a 

monitor). The result of [4] was not enlarged as it has a low resolution. Results of [3] are sometimes sniped, e.g., the blades in House 

and in the sky in Forest. 
Our expectation about having a haze-free pixel in each haze-line does not hold in Cityscape, as marked by several hazy pixels that set 

a maximum radius, e.g. the red buildings. Against that, the transmission in those areas is estimated correctly due to the regularization 

that cultivates the depth information spatially from the other haze-lines. 

Fig. 8 compares both the transmission maps and the de-hazed images. It shows our method is comparable to other methods, and in 

conclusive cases works improved. For example, the two rows of trees are well divided in our result when compared to [5]. 

The main advantage of the global approach is the ability to conduct well with fast variations in depth, when the details are smaller 

than the patch size. Fig. 9 shows an extended  

 

 

 

 

 
 

 

 
Fig.9: (a) Hazy input.  (b) The result of [5].  (c) The result of 

 

(d) Our result. Note the artefacts around the leaves and the branch at (c). This is a result of the patch-based method. While is also a 

patch-based and does not exhibit these artefacts, this method underestimates the haze in this image, so the depth gap is not 

pronounced. Note the missing details in the tree trunk of (b) compared to (c) and (d). 

 

 

 

 

 

 
 

 

Fig.10: Colour Clustering: Left: a crop of Fig. 6a). Right: a cluster map eachcolourrepresents a different haze line. The steady tone 

change of the pumpkins is preserved in the clustering. 
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Fig.11: Top row: clear day image and ground truth depth of the scene. Two bottom rows, from left to right: an image taken in bad 

climate conditions, our result and the transmission map.Portion of an image, where clear artefacts are visible in the result of [3], 

around the leaves and at the boundary between the trunk and the background. A patch-based method is less likely to approximate the 

distance of such scenes accurately. The result of [5] does not fair these artefacts in Fig. 9, since the dehazing is less adequate in this 

image and the details are less clear (e.g, the circled trunk). This phenomena is also visible in Fig. 7 in the dehazed Cityscape image of 

[4], where glory between the trees in the foreground and the background is visible, and also in the train output of [3] around the pillar 
(marked by a yellow square). 

Using a fixed tessellation of the unit sphere might raise a concern that fine tones will not be distinguished. Fig. 10 demonstrates this is 

not the case. The pumpkins (a crop of Fig. 6a) are lit from above, and therefore are shining at the top and slowly become darker 

towards the ground 

(Fig. 10 left). Fig. 10 right depicts the cluster map - each colour symbolizes a different haze-line. The gradual tone change is evident 

in the cluster map. 

The climate and Illumination Database (WILD) [10] carry multiple images of the same scene and the ground truth depth. Fig. 11 

shows on the top row a clear day image of the scene as well as the depth. Below are images taken under bad climate conditions and 

our results. The image at the middle row was taken in light rain and mist, and our method restores the visibility while estimating a 

rough depth map. The image at the bottom left was taken down heavy fog and limited visibility.  

C. Complexity analysis 

Our method is definite in N, the number of pixels in the image, and therefore fast. The clustering is done using a nearest neighbour 
search on a KD-Tree with a fixed number of points. Estimating the radius within each cluster is linear in N . Therefore, the initial 

radius estimation is O(N). Seeking the minimum of Eq. (15) requires explanation of a sparse definite system, which is also O(N). 

Restoring the dehazed image from the transmission map is O(N) as well. 

 

VI. CONCLUSION 
We have introduced a technique to removal of the foggy noise in outdoor images is based on estimate airlighting. Compared to 

existing work, we proposed an efficient algorithm that is linear in size and shape of the image. Due  to the haze, small particles in  the  

air  that scatter the light in the atmosphere so, the outdoor images often suffer from low contrast and finite visibility So that, the 

problem was cleared by using function as estimate airlighting. In this airlighting, several types of sub functions are used to remove 

unwanted noise in outdoor images and gives clear visibility of an image. 
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