Math 2471 Calculus III - Sample Test 2

1. Classify the critical points for

$$
\begin{aligned}
& \text { (i) } z=x^{3}+y^{3}-3 x-12 y+20 \\
& \text { (ii) } z=3 x y-x^{2} y-x y^{2}
\end{aligned}
$$

2. Reverse the order of integration and integrate showing your steps.

$$
\int_{0}^{1} \int_{\sqrt{y}}^{1} \frac{3 d x d y}{1+x^{3}}
$$

3. Find the volume bound by the paraboloid $z=2-x^{2}-y^{2}$ and the cone $z=\sqrt{x^{2}+y^{2}}$
4. Find the limits of integration of the triple integral

$$
\iiint_{V} f(x, y, z) d V
$$

where the volume is bound by
(i) $x=0, x=1, y=0, z=0, z=1$, and $z=2-y$.
(ii) $x=0, z=0, z=1-y^{2}$, and $z=2-x$.
5. Set of the triple integral $\iiint_{V} z d V$ in both cylindrical and spherical coordinates for the volume inside both the hemisphere $x^{2}+y^{2}+z^{2}=8$ and the cone $z=\sqrt{x^{2}+y^{2}}$.

