1. Find the derivative of the following

$$
\begin{array}{cc}
(i) & y=x \sin ^{-1} x \tag{i}\\
(i i) & y=\ln \left(x^{2}+e^{x}\right) \\
(i i i) & x^{2}-x y+y^{4}=x-y
\end{array}
$$

2. Find the absolute minimium and maximum of the following on the given interval

$$
\begin{align*}
(i) & f(x)=2 x^{2}-12 x+1 \text { on }[0,6] \tag{i}\\
\text { (ii) } & f(x)=2 x^{3}-15 x^{2}+24 x \text { on }[0,3]
\end{align*}
$$

3. State Rolles Theorem. Verify Rolles Theorem for the following:

$$
\begin{align*}
& f(x)=x^{2}-2 x+3 \quad \text { on }[0,2] \tag{i}\\
& f(x)=x^{4}-2 x^{2}+1 \quad \text { on }[-2,2] \tag{ii}
\end{align*}
$$

4. State the Mean Value Theorem. Verify the Mean Value Theorem for the following:

$$
\begin{align*}
\text { (i) } & f(x)=x^{3}-x \tag{i}\\
\text { (ii) } & \text { on }[0,2] \\
& f(x)=\frac{x}{x+2} \quad \text { on }[1,10]
\end{align*}
$$

5. If $y=x(x-4)^{3}$ calculate the following
(i) The critical numbers
(ii) When y is increasing and decreasing.
(iii) Determine whether any of the critical numbers are minimum or maximum.
(iv) When y is concave up and down and determine the points of inflection.
(v) Then sketch the curve.
6. A ladder 13 feet long is resting against the wall of a house. The base of the ladder is pulled away from the wall at a rate of $2 \mathrm{ft} / \mathrm{sec}$. At rate is the tip of the ladder moving down the wall when the base of the ladder is 5 ft away from the wall?
7. A paper cup in the shape of an inverted cone with height 10 cm and a base of radius 3 cm , is being filled at a rate of $2 \mathrm{~cm}^{3} / \mathrm{min}$. Find the rate of change in the height of the water when the height of the water is 5 cm .
