

HHS Public Access

Author manuscript *Mol Reprod Dev.* Author manuscript; available in PMC 2016 June 03.

Published in final edited form as:

Mol Reprod Dev. 2015 June ; 82(6): 408-409. doi:10.1002/mrd.22504.

A Testis-specific Gene, *UbqInI*, Is Dispensable for Mouse Embryonic Development and Spermatogenesis

Shuiqiao Yuan¹, Hayden Mcswiggin¹, Huili Zheng¹, and And Wei Yan1,2*^{1,2,*}

¹Department of Physiology and Cell Biology, University of Nevada School of Medicine, 1664 North Virginia Street, MS575, Reno, NV 89557, USA

²Department of Biology, College of Sciences, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV 89557, USA

Spermatogenesis is a complex process through which male germ-line stem cells proliferate and differentiate, eventually becoming spermatozoa. Successful spermatogenesis requires precise regulation of gene expression at transcriptional, post-transcriptional, translational and post-translational levels. Ubiquitination is a post-translational modification known to control protein turnover and, thus, plays a critical role in numerous biological processes, including spermatogenesis (Hou et al., 2012). The ubiquilin family consists of five ubiquitin-like proteins (*Ubqln1-4* and *Ubqln1*), all of which contain an N-terminal UBL domain and a C-terminal ubiquitin-associated (UBA) domain (Hou et al., 2012).

We previously demonstrated that *Ubqln3* is exclusively expressed in the testis, yet ablation of *Ubqln3* causes no discernable phenotype, suggesting it has a dispensable role in mouse spermatogenesis (Yuan S, 2015). We subsequently discovered that another member of the ubiquilin gene family, *Ubqlnl*, is only ~5 kb apart from *Ubqln3* on mouse chromosome 7. Of 10 different mouse organs assessed using quantitative reverse-transcriptase PCR (qPCR), we found that, similar to *Ubqln3*, *Ubqlnl* was exclusively detected in the testis (Fig. 1A). *Ubqlnl* transcript was first detected in the testes by postnatal day 28 (P28) and plateaued in adults (P56) (Fig. 1B). The timing of *Ubqlnl* expression onset at ~P28 suggests that it is mainly expressed in elongating/elongated spermatids, which is a pattern similar to *Ubqln3* (Yuan S, 2015).

To study the physiological role of *Ubqlnl*, we generated *Ubqlnl* global knockout (KO) mice using cryopreserved sperm carrying a null *Ubqlnl* allele (allele information: *Ubqlnl_*A06, C57Bl/6N-Ubqlnl^{tm1(KOMP)Vlcg}) that is available from the Knockout Mouse Project (KOMP) repository. The *Ubqlnl*-null allele was generated using the "gene trap" strategy, in which a gene-trap cassette (ZEN-UB1) was inserted into the *Ubqlnl* locus (KOMP project ID: VG11289). Genotyping analyses demonstrated that *Ubqlnl* KO mice were homozygous for *Ubqlnl*-null alleles (Fig. 1C), and qPCR analyses confirmed the absence of *Ubqlnl* expression in the testes of KO males (Fig. 1D). Both female and male *Ubqlnl*-KO mice were

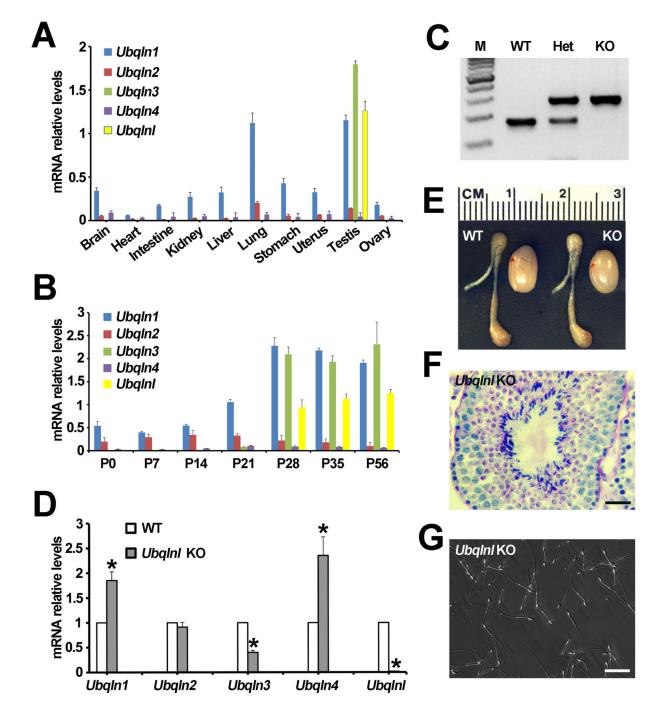
^{*}Corresponding author: Department of Physiology and Cell Biology, University of Nevada School of Medicine, 1664 North Virginia Street, MS575, Reno, NV 89557, USA. wyan@medicine.nevada.edu.

Yuan et al.

viable, and did not exhibit discernable differences in either growth or behavior compared to their wild-type (WT) or heterozygous littermates.

A 5-month-long fecundity test using *Ubqlnl*-KO males bred with WT females of proven fertility revealed no significant difference in either litter size $(7.7 \pm 1.2 \text{ for WT and } 7.3 \pm 1.1 \text{ for KO}, n=6, P > 0.05; t-test)$ or litter interval (22.8 ± 2.8 for WT and 23.3 ± 2.2 for KO, n=6, P > 0.05; t-test) compared to WT breeding pairs, suggesting that *Ubqlnl* KO males are fertile. Consistent with their normal fertility, testis size and weight of adult *Ubqlnl* KO males were similar to those of WT males (Fig. 1E), and *Ubqlnl* KO males displayed normal testicular histology with robust spermatogenesis (Fig. 1F) and normal sperm morphology (Fig.1G). Taken together, our data suggest that, despite its testis-exclusive expression, *Ubqlnl* is not required for spermatogenesis or fertility in male mice.

We also analyzed transcripts levels of the other four ubiquilin genes (Marin, 2014), in WT and *Ubqlnl*-KO testes using qPCR. Interestingly, levels of *Ubqln1* and *Ubqln4* mRNAs were significantly increased in *Ubqlnl*-KO compared to WT testes (Fig. 1D). This suggests that other ubiquilin family members may have compensated for the loss of *Ubqln1*, thus maintaining a normal phenotype in *Ubqln1*-KO males. Together, these findings demonstrate that *Ubqln1* is dispensable for both embryonic and postnatal development and for spermatogenesis in mice.


ACKNOWLEDGEMENTS

This work was supported, in part, by National Institutes of Health (NIH) Grants HD060858, HD071736, and HD074573 (to W.Y.).

REFERENCES

- Hou X, Zhang W, Xiao Z, Gan H, Lin X, Liao S, Han C. Mining and characterization of ubiquitin E3 ligases expressed in the mouse testis. BMC genomics. 2012; 13:495. [PubMed: 22992278]
- Marin I. The ubiquilin gene family: evolutionary patterns and functional insights. BMC evolutionary biology. 2014; 14:63. [PubMed: 24674348]
- Yuan S, Qin W, Riordan CR, Mcswiggin H, Zheng H, Yan W. Ubqln3, a testis-specific gene, is dispensable for embryonic development and spermatogenesis in mice. Molecular reproduction and development. 2015; 82(4):266–267. [PubMed: 25776854]

Yuan et al.

Figure 1.

Ubqlnl is a testis-specific gene dispensable for spermatogenesis. **A**: qPCR analyses of expression levels of five ubiquilin genes (*Ubqln1-4* and *Ubqlnl*) in 10 organs of adult mice. **B**: Expression levels of five ubiquilin genes in developing testes, based on qPCR analysis, from mouse testes at postnatal day 0 (P0, newborn), P7, P14, P21, P28, P35, and P56. **C**: A representative genotyping PCR result. M, MW marker; WT, wild-type; Het, heterozygous; KO, knockout. **D**: qPCR assays of mRNA levels of five ubiquilin genes in *Ubqlnl*-KO testes. **P* < 0.05 compared to WT, n=3 (Student's *t*-test). **E**: Similar gross morphology of

Mol Reprod Dev. Author manuscript; available in PMC 2016 June 03.

Yuan et al.

WT and *Ubqlnl*-KO testes. One unit on the ruler is 1mm. **F**: A representative image of Periodic acid-Schiff-stained *Ubqlnl* KO testes section. Scale bar, 50 μm. **G**: A representative phase-contrast micrograph showing normal morphology of *Ubqlnl*-KO sperm. Scale bar, 50μm.

Mol Reprod Dev. Author manuscript; available in PMC 2016 June 03.