Math 2471 Calculus III – Sample Test 2 Solutions

1. Classify the critical points for the following

(i)
$$z = x^3 + y^3 - 3x - 12y + 20$$

(ii) $z = 3xy - x^2y - xy^2$

Soln

(i) Calculating the partial derivatives gives

$$z_x = 3x^2 - 3 = 3(x - 1)(x + 1), \quad z_y = 3y^2 - 12 = 3(y - 2)(y + 2)$$

and the critical points are when $z_x = 0$, $z_y = 0$ giving $x = \pm 1$ and $y = \pm 2$ leading to the critical points (-1, -2), (-1, 2), (1, -2), and (1, 2). To determine the nature of the critical points we use the second derivative test. So

$$z_{xx} = 6x, \quad z_{xy} = 0, \quad z_{yy} = 6y$$

giving

$$\Delta = z_{xx} z_{yy} - z_{xy}^2 = 36xy$$

Now, we consider each critical point separately.

$$\begin{array}{ll} (-1,-2) & \Delta = 72 > 0, \ z_{xx} < 0 & \max \\ (-1,2) & \Delta = -72 < 0 & \text{saddle} \\ (1,-2) & \Delta = -72 < 0 & \text{saddle} \\ (1,2) & \Delta = 72 > 0, \ z_{xx} > 0 & \min \end{array}$$

(ii) Calculating the partial derivatives gives

$$z_x = 3y - 2xy - y^2 = y(3 - 2x - y), \quad z_y = 3x - x^2 - 2xy = x(3 - x - 2y)$$

and the critical points are when $z_x = 0$, $z_y = 0$ giving the critical points (0,0), (0,3), (3,0), and (1,1). To determine the nature of the critical points we use the second derivative test. So

$$z_{xx} = -2y, \quad z_{xy} = 3 - 2x - 2y, \quad z_{yy} = -2x$$

giving

$$\Delta = z_{xx} z_{yy} - z_{xy}^2 = 4xy - (3 - 2x - 2y)^2$$

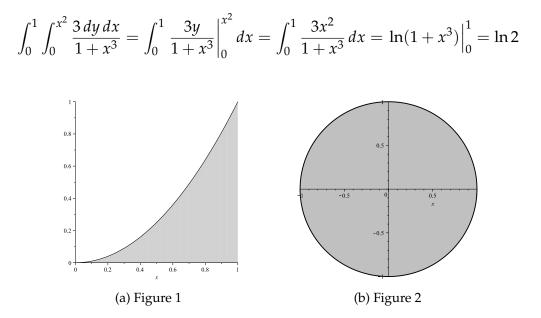
Now, we consider each critical point separately.

(0, 0)	$\Delta = -9 < 0$	saddle
(0, 3)	$\Delta = -9 < 0$	saddle
(3,0)	$\Delta = -9 > 0$	saddle
(1, 1)	$\Delta = 3 > 0, \ z_{xx} < 0$	max

2. Reverse the order of integration and integrate showing your steps.

$$\int_{0}^{1} \int_{\sqrt{y}}^{1} \frac{3\,dx\,dy}{1+x^{3}}$$

Soln. From the region of integration (see figure 1 below) we have



3. Find the volume bound by the paraboloid $z = 2 - x^2 - y^2$ and the cone $z = \sqrt{x^2 + y^2}$

Soln. From the two surfaces we see they intersect when $z = 2 - z^2$ or (z + 2)(z - 1) = 0 giving z = 1 as z = -2 is inadmissible. The volume is then obtained from the integral

$$\iint\limits_R \left(2 - x^2 - y^2 - \sqrt{x^2 + y^2}\right) dA$$

As the region of integration is a circle of radius 1 (see figure 2 above), we switch to polar coordinates giving

$$\int_{0}^{2\pi} \int_{0}^{1} \left(2 - r^{2} - r\right) r dr d\theta = \frac{5\pi}{6}$$

4. Find the limits of integration of the triple integral

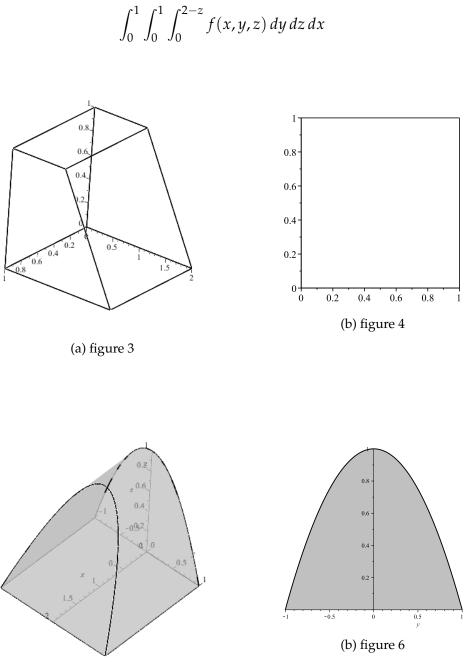
$$\iiint_V f(x,y,z)\,dV$$

where the volume is bound by

(i) x = 0, x = 1, y = 0, z = 0, z = 1, and z = 2 - y.

(ii)
$$x = 0, z = 0, z = 1 - y^2$$
, and $z = 2 - x$.

Soln. (i) The integral is best set up with the surface to surface going in the *y* direction. The outer two integrals is then over the region of the square (see figure 4).



(a) figure 5

Soln. (ii) The integral is best set up with the surface to surface going in the *x* direction. The outer two integrals is then over the region of the parabola (see figure 6).

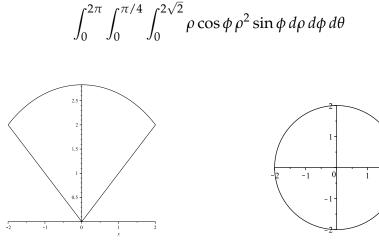
$$\int_{-1}^{1} \int_{0}^{1-y^2} \int_{0}^{2-z} f(x, y, z) \, dx \, dz \, dy$$

5. Set of the triple integral $\iiint_V z \, dV$ in both cylindrical and spherical coordinates for the volume inside both the hemisphere $x^2 + y^2 + z^2 = 8$ and the cone $z^2 = x^2 + y^2$

Soln - *Cylindrical* Eliminating *z* between the equations gives $x^2 + y^2 = 4$. This is the region of integration (see figure (b))

$$\int_0^{2\pi} \int_0^2 \int_r^{\sqrt{8-r^2}} z \, r \, dz \, dr \, d\theta$$

Soln - *Spherical* From the picture (figure (a)) we see that $\phi = 0 \rightarrow \pi/4$. Further, $\rho = 0 \rightarrow 2\sqrt{2}$ and $\theta = 0 \rightarrow 2\pi$ so



(a) side view.

