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Abstract-The thermal convection of a second grade fluid is studied within the context of unidirec- 
tional flows. Stokes’ first problem in finite and infinite domains as well as pulsating Poiseuille flow in 
a pipe are analyzed. Due to the special nature of the flow, both the balance of linear momentum and 
the energy equation can be solved exactly. 

1. INTRODUCTION 

The determination of the temperature distribution within a layer of liquid when theinternal 
friction is not negligible is of utmost importance in lubrication problems and has relevance 
to applications that involve periodic motions of the boundaries, fluctuations of the pressure 
gradient or both (e.g., the motion of a piston inside the cylinder of an engine, the flow of 
a fluid in a pipeline operated by a volumetric pump, etc.). 

While there have been numerous studies of thermal convection in non-Newtonian fluids, 
they have primarily considered steady state problems, particularly of power-law fluids. 
Here, our interest lies in studying unsteady flows of non-Newtonian fluids in domains 
wherein the boundary is heated. Such problems have been addressed in the case of the 
classical linearly viscous fluid; Faggiani et al. [l] considered periodic Couette flow and 
Uchida [2] periodic Poiseuille flow in a pipe. Thermal problems for unsteady motions of 
viscoelastic fluids have not received much attention. Rajagopal and Na [3] and Szeri and 
Rajagopal [4] looked at the flow of a non-Newtonian fluid between parallel plates. 
Rajagopal [S] found exact solutions for a number of unidirectional flows involving a second 
grade fluid under isothermal conditions. Here we extend that analysis by allowing the 
boundary of the flow domain to be heated: we derive the energy equation for second grade 
fluids valid for some unidirectional motions and obtain exact solutions for some flows and 
geometric configurations of practical interest. 

2. GOVERNING EQUATIONS 

The incompressible fluid of second grade is characterized by the following constitutive 
equation [5] : 

T= -pZ+pA1 +alAZ+a2A:, (2.1) 

where p is the coefficient of viscosity, al and a2 are normal stress moduli, -pl denotes the 
indeterminate spherical stress and AI and A2 are the kinematic tensors defined through 

A 1 = (grad u) + (grad #‘, (2.2a) 

and 

A2 = $ Al + A,(grado) + (gradQTA,. (2.2b) 

Here u is the velocitjl, grad the gradient operator and (d/dt) the material time derivative. 
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If we substitute the stress Tin the balance of linear momentum 

divT+pb=pg, (2.3) 

we obtain, in the case of a conservative body force field b = - grad 4 

pAu + CQAU, + c~(Awxu) + (CQ + az){A,Au + 2div[(gradu)(grad~)~]} 

- p(w x u) - pu, = grad P, 

where 

(2.4) 

P = p - a,(u.Au) - (2a1 4’ a%l 12 + $lul2 + p+, (2.5) 

and A is the Laplacian, the subscript t indicates partial differentiation with respect to time, 
IAll the trace norm of A1 and 

w = curl u. (2.6) 

We have assumed that the fluid is incompressible which implies that it can undergo only 
isochoric motions, therefore 

div u = 0. (2.7) 

The energy equation for forced convection is 

d& 
p-=T.L-divq+pr, 

dt (2.8) 

where E is the specific internal energy, L the gradient of velocity, q the heat flux vector and 
I the radiant heating. It can be shown (cf. [3]) that, for a second grade fluid, 

Also, for the model (2.1) to be compatible with thermodynamics, the specific Helmholtz free 
energy which characterizes the fluid has to take the form 

* = tw,~l,~2,&) = at0) + fpll2, (2.10) 

and the specific entropy must be defined through 

?= -&?, (2.11) 

where the subscript denotes partial differentiation with respect to that variable. Since the 
specific internal energy is related to the Helmholtz free energy through 

E = I/ + 81, (2.12) 

it follows from (2.10H2.12) that 

where 

E = (iye) + $l,I" - @,, 

Thus, 

d(d) = @(RO). 

P$ = P $w) - e4v + ~$u2 . 
Next, note that (2.1 lH2.12) imply that 

(2.13) 

(2.14) 

(2.15) 

(2.16) 
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where c is called the specific heat. Thus 

(2.17) 

By virtue of Fourier’s law of heat conduction 

q= -kgradT, 

where k is the conductivity, which is assumed to be constant, and T the temperature. The 
energy equation becomes 

(2.18) 

which is formally identical to the energy equation for a Navier-Stokes fluid. Of course the 
solution of (2.18) yields a temperature field that is different from the Newtonian case 
because the velocity distribution resulting from the balance of linear momentum is different. 

We will consider unidirectional flows of the form 

v = v(y, t)i, 

(i denotes a unit vector along the x-coordinate direction and y the coordinate along 
a direction perpendicular to i) and a temperature field of the form 

T = T(y, c). 

3. FLOW DUE TO A HEATED RIGID PLATE OSCILLATING IN ITS OWN PLANE 

Suppose that a second grade fluid occupies the space above a plate oscillating with speed 
U cosot. Let T,, and T, denote respectively the temperatures of the plate and of the fluid at 
infinity. Rajagopal [S] showed that the velocity is 

v(y, t) = Uemmy cos (ot - ny), (3.1) 

where 

1 PcJ 
m2 = 2[$ + (LY#)2] 

{CP” + tv4211’2 + Qg, 

and 

1 
n2 = - 

2cp2 ~;lu)2,~cP2 + h4211'2 - v4. 

The energy equation as resulting from (2.18) is, in dimensionless form, 

(3.2) 

(3.3) 

(3.4) 

where 

(_)= T-Tw 
To - T; 

(3.5) 

Now relationship (3.1) can be rewritten as 

v(~,t) = Re{Ue’“‘exp[-y(m + in)]), (3.6) 

where Re denotes the real part of the expression in parentheses. Equation (3.4) will be solved 
following the complex temperature method (cf. [6]): assuming a temperature field of the 
form 

0(y, t) = fI(y)eziO’, (3.7) 
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and substituting it into the energy equation, we find that 8(y) needs to satisfy the linear 
ordinary differential equation 

2iopc0 - ktl” = Af(y), (3.8) 

subject to the boundary conditions 

e(0) = 1, e(a) = 0, (3.9) 

where 

and 

A = clCW + in)]* 
To - T, ’ 

f(y) = exp [ - 2y(m + in)]. 

Prime denotes derivative with respect to y. It is easy to show that 

Qy,t)=exp -qY (l-D)cos 2wt-4Y +Esin 20t- 
( Ji)F ( J ( 

f exp( -2my) [D cos 2(w - n)t - E sin 2(0 - n)t] 

where 

4= 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

4. FLOW BETWEEN TWO INFINITE PARALLEL PLATES 

ONE OF WHICH IS OSCILLATING 

Suppose that a second grade fluid occupies the slot between two parallel plates at 
temperature Tl and T2. If d denotes the distance between the plates and the plate at y = 0 
oscillates with velocity U cos ot, Rajagopal [S] showed that the following solution exists: 

sinh YV - Y) eiot 

sinh yd ’ 

where 

PQ4vJ + 44 
y2 = [p2 + (alo)*]. 

Upon substitution of this expression into the energy 
temperature field as in (3.7), this is determined as 

(4.1) 

equation and assuming the same 

@,t)=Re Dcoshpy+Esinhpy-L P2 
2P2 

-----rcosh2y(d - y)] + $)e2im’}, 
P2 -4Y 

(4.2) 

where 
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5. TIME PERIODIC POISEUILLE FLOW IN AN ANNULUS AND A PIPE 

Suppose that a second grade fluid fills an annulus of internal radius r. and external radius 
rl and that the pressure gradient along the x-direction is given by 

ap 
ax= - pQo cos cot. 

It can be shown (cf. [7]) that the momentum equation is 

~~~+~~)+~~~~~+~~)-p~=~, 

with the boundary conditions 

w(ro, t) = w(rl, c) = 0. 

In complex form expression (5.1) can be written as 

ap 
ax’ - pQo Re {eio}. 

If we seek a solution of the form 

w = f(r) e’“‘, 

the functionf(r) has to satisfy the ordinary differential equation 

p+;- piy;;J + ~ +p4);1w = 0, 

subject to boundary conditions 

f(r0) =f(rl) = 0. 

We find that 

fW=7$--[~ - Uo(rr0) - Z0(vd) K0(v) - (K0W0) - W0(vl))Z0(v) 

KO(vl)ZO(vO) - K0W0)z0(Yrd 1 
3 

where 

J ipal 
Y= 

p + ia,w’ 

If r. = 0, then 

f(r) = &[l -if%]* 
The energy equation leads to 

pc~=P~;~+k(!!+;$. 

Under the boundary conditions 

T(rr) = T1, T(0) = finite, 

equation (5.9) yields 

T = Re{C1 Zo(qr)ezio’}, 

where 

1 + G(yr) 
-- 

2 I0W 
- 

CXyrJ Z0bl) 
KO(qrW + ~1, 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

c1 is a constant to be determined from the boundary conditions and q has been defined in 
the previous section. 
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6. TIME PERIODIC POISEUILLE FLOW IN A SLOT 

The product of three modified Bessel functions makes the analytical computation of the 
temperature field through (5.10)-(5.12) a daunting task. When the gap between the two 
cylinders is small in comparison to the average radius the problem may be regarded as 
plane and the analysis considerably simplified. 

If the pressure gradient along the x-direction @/ax is given by 

ap 
ax’ 

-MO + QocosW, (6-l) 

the velocity field is (cf. [S]) 

U(Y, 0 = 
ph*Po 
F[ 1 - (y/h)*] + z Re 

cash /I( 1 + i) - cash /I( 1 + i)y/h 

2i cash /I( 1 + i) 
, (6.2) 

where 

(6.3) 

By taking the derivative of the complex form of (6.2) and substituting it into the energy 
equation (2.18), we have 

PC: = kfi + Ay* + B sinh* byexp(2iot) + Cy sinh by exp(iot), 
ay* 

where 

B=fi(ico%bh)i’ 

C=2,/AB, 

and 

b = BU + 4 
-9 

h 

T(0) = TI, T(h) = T2. 

We will invoke the boundary conditions 

e(0, t) = 0, fI(h, t) = 1, 

and, by use of the complex temperature method, seek a solution of the form 

8 = 8,(y) + 82(y)exp(2iwt) + es(y) exp(iot). 

Relationships (6.9) and (6.10) imply that 

0,(O) = 0,(O) = e,(O) = 8,(h) = 8,(h) = 0, 8,(h) = 1. 

Straightforward calculation yields 

e,(y) = Y ; + &(_Y’ - h3) > , 

> 
+ k1 cash py + k2 sinh py, 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

(6.13) 
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where 

k2 = 2p’s;hph[(1 -&&w-(1 -;:$!i)]. (6.15) 

Also 

MY)= -p&g ysinhby+& cash by + C1 sinhpy + C2 coshpy, 
> 

(6.16) 

1. 

2. 

3. 

4. 

5. 

6. 
7. 

(6.17) 

c 
C, = (p2 _ b2J sinh ph 

2b 
p2 _ bZ (cash bh - cash ph) + h sinh bh 1 . (6.18) 
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