
The Accotink Creek Watershed

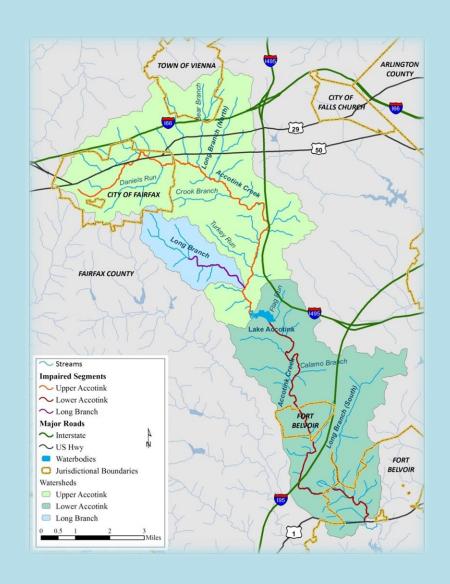
Water Quality Process

Accotink Creek Benthic TMDL Development

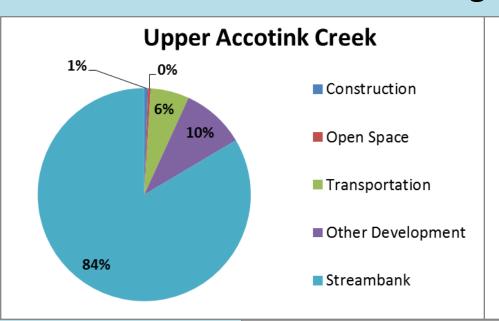
	Upper Accotink (2005-2007)	Long Branch (2007)	Lower Accotink (1994-2008)
Minimum VSCI	21	25	23
Maximum VSCI	32	30	42
Average VSCI	26	27	32
Number of Samples	14	2	17

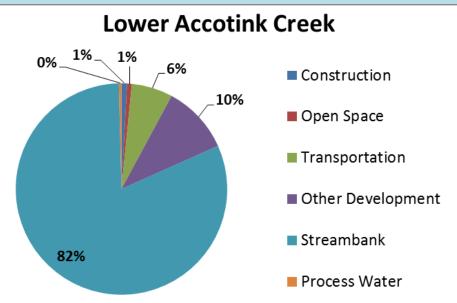
Accotink Creek Benthic TMDL Development:

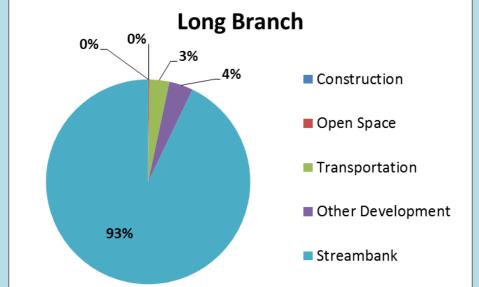
Accotink Creek Benthic Stressor Identification Analysis Results


Category	Stressor		
Least Probable Stressors	Temperature	рН	
	Dissolved Oxygen	Metals	
Possible Stressors	Nutrients	Toxics	
Most Probable Stressors	Chloride	Hydromodification*	
	Sediment	Habitat Modification*	

^{*}Not pollutants – not suitable for TMDL development


Sediment TMDL Development


- Watershed split into 3 TMDL watersheds
 - Upper Accotink Creek
 - Lower Accotink Creek
 - Long Branch (central)
- TMDLs developed for each watershed
- No sediment water quality standard
 - Needed to identify an acceptable load
 - This requires simulating sediment loads



Sediment TMDLs:

Existing Loads

Sediment TMDL Development:

Watershed	TMDL (tons/yr)	Percent Reduction on Sources in TMDL Watershed
Upper Accotink Creek	2,969	73%
Lower Accotink Creek	4,113	39%
Long Branch	1,148	70%

Upper Accotink Creek TMDL

Source	Load (tons/yr)	Percent of TMDL
Total WLA	2,339	79%
City of Fairfax Aggregate MS4 WLA	633	21%
Fairfax County Aggregate MS4 WLA	1,281	43%
Town of Vienna Aggregate MS4 WLA	174	6%
Total Process Water WLA	<1	<1%
Total Industrial Stormwater WLA	16	1%
Construction	85	3%
Future Growth	148	5%
LA	333	11%
MOS	297	10%
TMDL	2,969	100%

Lower Accotink Creek TMDL

Source	Load (tons/yr)	Percent of TMDL
Total WLA	3,072	75%
Fairfax County Aggregate MS4 WLA	2,458	60%
Fort Belvoir Aggregate MS4 WLA	235	6%
Total Process Water WLA	1	<1%
Total Industrial Stormwater WLA	94	3%
Construction	79	2%
Future Growth	206	5%
LA	629	15%
MOS	411	10%
TMDL	4,113	100%

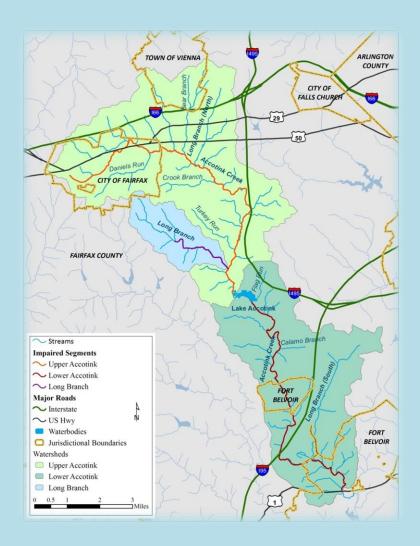
Long Branch TMDL

Source	Load (tons/yr)	Percent of TMDL
Total WLA	936	82%
City of Fairfax Aggregate MS4 WLA	42	4%
Fairfax County Aggregate MS4 WLA	880	77%
Total Industrial Stormwater WLA	Not Applicable	Not Applicable
Total Process Water WLA	<1	<1%
Construction	2	<1%
Future Growth	11	1%
LA	97	8%
MOS	115	10%
TMDL	1,148	100%

Chloride TMDLs and Public Safety

 Public safety is a top priority for winter weather management, and will not be compromised by the implementation of this TMDL

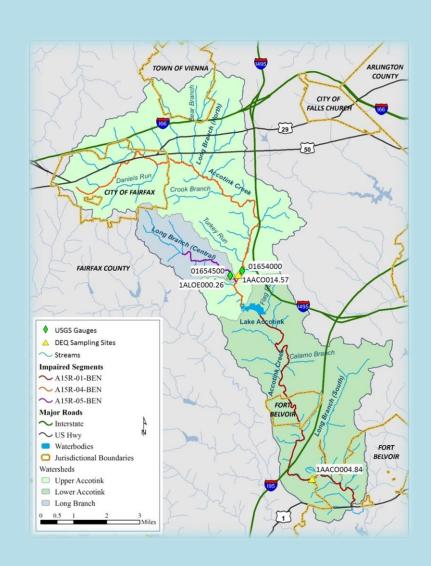
- The TMDL will be implemented through best management practices
 - Safe but more efficient and effective


 Opportunity to improve water quality while saving costs and maintaining public safety

Chloride TMDLs

- Watershed split into 3 TMDL watersheds
 - Upper Accotink Creek
 - Lower Accotink Creek
 - Long Branch (central)

TMDLs developed for each watershed


- Two chloride water quality criteria:
 - Chronic = 4 day average of 230 mg/L
 - Acute = 1 hour average of 860 mg/L

Chloride TMDLs:

The Load Duration Curve Approach

- Load Duration Approach:
 - Calculates loading capacity of a waterbody
 - Uses measured flows at USGS gauges and water quality criterion
- The four-day average chronic chloride criterion was used (230 mg/L)
 - Monitoring data showed it is exceeded the most
 - Therefore it is the most protective

Upper Accotink Creek Chloride TMDL

Source	Load (lbs/yr)	Percent of TMDL
Total WLA	5,444,279	66%
Aggregate MS4 WLA	4,972,399	61%
Aggregate Industrial Stormwater WLA	61,028	<1%
Future Growth	410,852	5%
LA	1,951,048	24%
MOS	821,703	10%
TMDL (not including Long Branch)	8,217,030	100%

Lower Accotink Creek Chloride TMDL

Source	Load (lbs/yr)	Percent of TMDL
Total WLA	3,723,479	60%
Aggregate MS4 WLA	3,294,323	53%
Aggregate Industrial Stormwater WLA	117,071	2%
Future Growth	312,084	5%
LA	1,894,040	30%
MOS	624,169	10%
TMDL (not including upper Accotink Creek)	6,241,688	100%

Long Branch Creek Chloride TMDL

Source	Load (lbs/yr)	Percent of TMDL
Total WLA	873,049	68%
Aggregate MS4 WLA	860,119	67%
Aggregate Industrial Stormwater WLA	NA^1	NA^1
Future Growth	12,930	1%
LA	290,648	22%
MOS	129,300	10%
TMDL	1,292,997	100%

Next Steps

Public

DEQ/ICPRB

- **Public Comment Process**
 - Public meeting: 6/28, 6:30 PM at Kings Park Library ✓
 - Comment period: 6/21 to 7/21
- **DEQ and ICPRB address Comments**
- State Water Control Board (SWCB) & EPA approval process

EPA EPA provisional review Present to SWCB (Dec. 2017/Mar. 2018 meeting) **SWCB** EPA final review after SWCB approval **EPA Final** Incorporate into permits, as appropriate with the next

- permit cycle
- Planned development of the Accotink Creek Salt Management Strategy (SaMS)

Stakeholder Involvement

- SaMS public participation will aim to achieve a "stakeholder driven" process
- Potential Advisory Committee membership:
 - Water quality permit holders with Chloride wasteload allocations in the Accotink Watershed
 - Local municipalities
 - Local environmental groups
 - Commercial Property Owners
 - Snow Plow operators
 - Water Authorities
 - Public Safety Entities
 - VDH and VDACS
 - Others TBD
- Planning a large/inclusive Stakeholder Advisory Committee, with smaller working groups.
 - Educ. & Outreach, Inter-Agency, Technical Actions, Monitoring, etc.

Salt Management Strategy (SaMS) Project Concept

- 1. Summarize salt impacts on water quality and infrastructure
- 2. Identify economic benefits of proper salt management
- 3. Convene diverse partners with shared interests and complementary skills/resources
- 4. Draw upon the best applicable work by other jurisdictions and industry associations
- 5. Offer regulated and non-regulated entities technical resources that identify BMPs and environmentally preferred products
- 6. Establish a suite of best practices applicable to water quality permits
- 7. Identify additional actions and measures to more fully address program goals, such as potential legislation, certification programs, and enhanced regional coordination
- 8. Organize a process for reporting and tracking salt usage
- 9. Frame monitoring recommendations to evaluate the effectiveness of the strategy over time

Contact

Will Isenberg Virginia DEQ

William.lsenberg@DEQ.Virginia.gov

804-698-4228