Calculus 3 - Line Integrals Over Conservative Vector Fields

Consider the line integral

$$
\begin{equation*}
\int_{C} 2 x y d x+x^{2} d y \tag{1}
\end{equation*}
$$

where C is the following:

1. $y=x^{2}$ from $(0,0)$ to $(1,1)$.
2. $y=x$ from $(0,0)$ to $(1,1)$.
3. $y=0$ from $(0,0)$ to $(1,0)$ then along $x=1$ from $(1,0)$ to $(1,1)$.

Soln.
As there are three sets of curves, we do each problem separately.
C_{1} : Since $y=x^{2}$, then $d y=2 x d x$ and our line integral becomes

$$
\begin{equation*}
\int_{0}^{1} 2 x \cdot x^{2} d x+2 x^{2} \cdot 2 x d x=\int_{0}^{1} 4 x^{3} d x=\left.x^{4}\right|_{0} ^{1}=1 \tag{2}
\end{equation*}
$$

C_{2} : Since $y=x$, then $d y=d x$ and our line integral becomes

$$
\begin{equation*}
\int_{0}^{1} 2 x \cdot x d x+x^{2} \cdot d x=\int_{0}^{1} 3 x^{2} d x=\left.x^{3}\right|_{0} ^{1}=1 \tag{3}
\end{equation*}
$$

C_{3} : Along $y=0$, then $d y=0$ so the line integral is zero. Along $x=1$, $d x=0$ and our line integral becomes

$$
\begin{equation*}
\int_{0}^{1} d y=\left.y\right|_{0} ^{1}=1 \tag{4}
\end{equation*}
$$

Interesting! Along three different paths, we get the same answer. Suppose we change the line integral slightly, say

$$
\begin{equation*}
\int_{C} x y d x+x^{2} d y \tag{5}
\end{equation*}
$$

we obtain

1. $\int_{C_{1}} x y d x+x^{2} d y=\int_{0}^{1} 3 x^{3} d x=\frac{3}{4}$.
2. $\int_{C_{2}} x y d x+x^{2} d y=\int_{0}^{1} 2 x^{2} d x=\frac{2}{3}$.
3. $\int_{C_{3}} x y d x+x^{2} d y=\int_{0}^{1} d y=1$.
three different answers. So what's special about the first line integral and, in particular, the vector field

$$
\begin{equation*}
\vec{F}=\left\langle 2 x y, x^{2}\right\rangle ? \tag{6}
\end{equation*}
$$

Answer - It's conservative. It is an easy matter to show that

$$
\begin{equation*}
f=x^{2} y+c \tag{7}
\end{equation*}
$$

and we recall from differentials that

$$
\begin{equation*}
d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y \quad \Rightarrow \quad d\left(x^{2} y\right)=2 x y d x+x^{2} d y \tag{8}
\end{equation*}
$$

Now consider the (1) again so

$$
\begin{equation*}
\int_{C} 2 x y d x+x^{2} d y=\int_{C} d\left(x^{2} y\right)=\left.x^{2} y\right|_{(0,0)} ^{(1,1)}=1 \tag{9}
\end{equation*}
$$

Fundemental Theorem of Line Integrals

Let C be a smooth curve defined by the vector function $\vec{r}(t)$. Let \vec{F} be a continuous vector field with scalar potential f then

$$
\begin{equation*}
\int_{C} \vec{F} \cdot d \vec{r}=\left.f\right|_{A} ^{B}=f(B)-f(A) \tag{10}
\end{equation*}
$$

where A and B are the initial and terminal points along the curve C.
Example 1. Evaluate the following using the fundamental thm of line integrals.

$$
\begin{equation*}
\int_{C} 2(x+y) d x+2(x+y) d y \tag{11}
\end{equation*}
$$

where C is a smooth curve from $(-1,0)$ to $(3,2)$.
Soln. First we show the vector field is conservative. Here

$$
\begin{equation*}
P=2(x+y), \quad Q=2(x, y) \text { and } \quad Q_{x}=2=P_{y} \tag{12}
\end{equation*}
$$

so yes, it is. Next we find f.

$$
\begin{equation*}
f_{x}=P=2 x+2 y, \quad f_{y}=Q=2 x+2 y \tag{13}
\end{equation*}
$$

so

$$
\begin{equation*}
f=x^{2}+2 x y+y^{2}+c \tag{14}
\end{equation*}
$$

(although we neglect the c) so

$$
\begin{equation*}
\int_{C} 2(x+y) d x+2(x+y) d y=x^{2}+2 x y+\left.y^{2}\right|_{(-1,0)} ^{(3,2)}=24 \tag{15}
\end{equation*}
$$

Example 2. Evaluate the following line integral.

$$
\begin{equation*}
\int_{C} y z d x+x z d y+(x y+1) d z \tag{16}
\end{equation*}
$$

where C is a smooth curve

$$
\begin{equation*}
x=\cos t, \quad y=\sin t, \quad z=t, \quad 0 \leq t \leq 2 \pi . \tag{17}
\end{equation*}
$$

Soln. We will evaluate this first directly and then using the fundamental theorem.

Directly. We calculate differentials so

$$
\begin{equation*}
d x=-\sin t d t, \quad d y=\cos t d t, \quad d z=d t \tag{18}
\end{equation*}
$$

Eqn. (16) becomes

$$
\begin{align*}
& \int_{0}^{2 \pi}-t \sin ^{2} t d t+t \cos ^{2} t d t+(\sin t \cos t+1) d t \\
& =-t \sin t \cos t-\cos ^{2} t+\left.t\right|_{0} ^{2 \pi}=2 \pi \tag{19}
\end{align*}
$$

Next, we show the vector field is conservative. Here

$$
\begin{equation*}
P=y z, \quad Q=x z, \quad R=x y+1 \tag{20}
\end{equation*}
$$

so $\vec{F}=\langle y z, x z, x y+1$,$\rangle and$

$$
\begin{align*}
\nabla \times \vec{F} & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y z & x z & x y+1
\end{array}\right| \tag{21}\\
& =\langle 0,0,0\rangle
\end{align*}
$$

so yes, it is. Next we find f. So

$$
\begin{equation*}
f_{x}=P=y z, \quad f_{y}=Q=x z, \quad f_{z}=R=x y+1 \tag{22}
\end{equation*}
$$

Integrating gives

$$
\begin{align*}
f_{x}=y z & \Rightarrow f=x y z+A(y, z) \\
f_{y}=x z & \Rightarrow f=x y z+B(x, z) \tag{23}\\
f_{z}=x y+1 & \Rightarrow f=x y z+z+C(x, y)
\end{align*}
$$

$$
\begin{equation*}
f=x y z+z \tag{24}
\end{equation*}
$$

(again we neglect the c). Therefore,

$$
\begin{equation*}
\int_{C} y z d x+x z d y+(x y+1) d z=x y z+\left.z\right|_{(1,0,0)} ^{(1,0,2 \pi)}=2 \pi \tag{25}
\end{equation*}
$$

Line Integrals around closed curves

Let C be a smooth closed curve and \vec{F} be a conservative vector field then

$$
\begin{equation*}
\oint_{C} \vec{F} \cdot d \vec{r}=0 \tag{26}
\end{equation*}
$$

Example 3. Evaluate the following using the fundamental thm of line integrals.

$$
\begin{equation*}
\int_{C} 2 x e^{x^{2}} \sin y d x+e^{x^{2}} \cos y d y \tag{27}
\end{equation*}
$$

where C is CCW direction along circle $x^{2}+y^{2}=1$.
Soln. First we show the vector field is conservative. Here

$$
\begin{equation*}
P=2 x e^{x^{2}} \sin y, \quad Q=e^{x^{2}} \cos y \text { and } \quad Q_{x}=2 x e^{x^{2}} \cos y=P_{y} \tag{28}
\end{equation*}
$$

so yes, it is. Next we find f.

$$
\begin{equation*}
f_{x}=P=2 x e^{x^{2}} \sin y, \quad f_{y}=Q=e^{x^{2}} \cos y \tag{29}
\end{equation*}
$$

so

$$
\begin{equation*}
f=e^{x^{2}} \sin y \tag{30}
\end{equation*}
$$

(we neglect the c). As for limits we pick a point on the circle, say $(1,0)$. We go around the circle CCW (although in this case direction doesn't matter) and arrive back at $(1,0)$ so

$$
\begin{equation*}
\int_{C} 2 x e^{x^{2}} \sin y d x+e^{x^{2}} \cos y d y=\left.e^{x^{2}} \sin y\right|_{(1,0)} ^{(1,0)}=0 \tag{31}
\end{equation*}
$$

Suppose we pick another point say $(0,1)$. We go around the circle CCW and arrive back at $(0,1)$ so

$$
\begin{align*}
\int_{C} 2 x e^{x^{2}} \sin y d x+e^{x^{2}} \cos y d y & =\left.e^{x^{2}} \sin y\right|_{(0,1)} ^{(0,1)} \tag{32}\\
& =e^{0} \sin (1)-e^{0} \sin (1)=0
\end{align*}
$$

Example 4. Evaluate

$$
\begin{equation*}
\oint_{c} 2 y d x+x d y \tag{33}
\end{equation*}
$$

where C is along circle $x^{2}+y^{2}=1$ in the CCW direction. Unfortunately, the vector field is not conservative since

$$
\begin{equation*}
P=2 y, \quad Q=x \text { and } \quad Q_{x}=1 \neq P_{y}=2 . \tag{34}
\end{equation*}
$$

However, there is a nice little theorem which relates the line integral over a vector field for closed curve to the region of the closed curve itself. It's called Green's Theorem and we'll cover this tomorrow.

