
1

CAP 4630

Artificial Intelligence

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu



2

• http://www.ultimateaiclass.com/

• https://moodle.cis.fiu.edu/

• HW1 out Tuesday

– Programming problem in Python and theory problems

http://www.ultimateaiclass.com/


3

General tree and graph search algorithm



4

Real-world search

• Driving directions (e.g., Google maps)

• Airline travel problems: Find “optimal” flight subject to 

conditions entered by user (e.g., for kayak.com)

• Tourism problems: E.g., “Visit every city in Romania map at 

least once, starting and ending in Bucharest.”

• Traveling salesman problem: Find shortest tour in which each 

city visited exactly once

• VLSI layout: Positioning millions of components and 

connections on a chip to minimize area, circuit delays, stray 

capacitances, and maximize manufacturing yield

• Robot navigation: generalization of route-finding problem to 

continuous space with potentially infinite set of actions and states.

• Automatic assembly sequencing of complex objects by a robot, 

e.g., electric motors and protein design



5

Evaluating performance

• Completeness: Is the algorithm guaranteed to find a 

solution when there is one?

• Optimality: Does the strategy find the optimal 

solution, as defined on page 68 (i.e., lowest path cost 

among all solutions)

• Time complexity: How long does it take to find a 

solution?

• Space complexity: How much memory is needed to 

perform the search?



6

Breadth-first search (BFS)



7

Breadth-first search (BFS)



8

BFS

• Shallowest unexpanded node is chosen next for expansion

• Uses first-in-first-out (FIFO) queue

– Queue: “pops” oldest element (first in)

– Stack: pops newest element (LIFO queue)

– Priority queue: pops element with highest “priority”

• One slight tweak on the general graph-search algorithm is 

that the goal test is applied to each node when it is 

generated rather than when it is selected for expansion



9

BFS



10

BFS

• Is BFS “complete”?

– Is BFS guaranteed to find a solution when one exists?



11

BFS 

• Yes we can easily see that it is complete – if the shallowest goal 

node is at some finite depth d, BFS will eventually find it after 

generating all shallower nodes (provided the branching factor b 

is finite). Note that as soon as a goal node is generated, we know 

it is the shallowest goal node because all shallower nodes must 

have been generated already and failed the goal test. Now the 

shallowest goal node is not necessarily the optimal one; 

technically BFS is optimal if the path cost is a nondecreasing

function of the depth of the node. The most common such 

scenario is that all actions have the same cost.



12

BFS running time

• b nodes at first level each of which generates b more 

nodes at second level, for a total of b^2 at the second 

level, b^3 at third level, etc. If we suppose that the 

solution is at depth d, then in the worst case it is the 

last node generated at that level. Then the total number 

of nodes generated is b + b^2 + b^3 + … + b^d = 

O(b^d)

• If the algorithm were to apply the goal test to nodes 

when selected for expansion, rather than when 

generated, the whole layer at depth d would be 

expanded before the goal was detected and the time 

complexity would be O(b^(d+1))



13

BFS memory

• For any kind of graph search, which stores every 

expanded node in the explored set, the space 

complexity is always within a factor of b of the time 

complexity. For breadth-first graph search, every node 

generated remains in memory. There will be O(b^(d-

1)) nodes in the explored set and O(b^d) nodes in the 

frontier, so the space complexity is O(b^d), i.e., it is 

dominated by the size of the frontier. 

• Switching to a tree search would not save much space, 

and in a state space with many redundant paths 

switching could cost a great deal of time.



14

BFS



15

BFS lessons

• The memory requirements are a bigger problem for 

BFS than is the execution time. One might wait 13 days 

for the solution to an important problem with search 

depth 12, but no personal computer has the petabyte of 

memory it would take. Fortunately, other strategies 

require less memory.

• The second lesson is that time is still a major factor. If 

your problem has a solution at depth 16, then (given 

our assumptions) it will take about 350 years for BFS 

(or indeed any uninformed search) to find it. In 

general, exponential-complexity search problems 

cannot be solved by uninformed methods for any but 

the smallest instances.



16

Uniform-cost search (UCS)

• When all step costs are equal, BFS is optimal because 

it always expands the shallowest unexpanded node. By 

simple extension, we can find an algorithm that is 

optimal with any step-cost function. Instead of 

expanding the shallowest node, uniform-cost search

expands the node n with the lowest path cost g(n). This 

is done by storing the frontier as a priority queue 

ordered by g.



17

Uniform-cost search

• In addition to the ordering of the queue by path cost, 

there are two other significant differences from BFS. 

The first is that the goal test is applied to a node when 

it is selected for expansion (as in the generic graph-

search algorithm) rather than when it is first generated. 

The reason is that the first goal node that is generated

may be on a suboptimal path. 

• The second difference is that a test is added in case a 

better path is found to a node currently on the frontier.



18

UCS



19

UCS

• Problem: get from Sibiu to Bucharest

• Successors of Sibiu are Rimnicu Vilcea and Fagaras, with costs 

80 and 99 respectively.

• The least-cost node, Rimnicu Vilcea, is expanded next, adding 

Pitesti with cost 80 + 97 = 177. The least-cost node is now 

Fagaras, so it is expanded, adding Bucharest with cost 99 + 211 

= 310. 

• Now a goal node has been generated, but UCS keeps going, 

choosing Pitesti for expansion and adding a second path to 

Bucharest with cost 80 + 97 + 101 = 278.

• Now the algorithm checks to see if this new path is better than 

the old one; it is, so the old one is discarded. Bucharest, now 

with g-cost 278, is selected for expansion and the solution is 

returned.



20

UCS

• How does UCS shape up on the “Big 4”?

– Optimality, completeness, time, space



21

UCS

• It is easy to see that UCS is optimal in general. First, 

we observe that whenever UCS selects a node n for 

expansion, the optimal path to that node has been 

found. (Were this not the case, there would have to be 

another frontier node n’ on the optimal path from the 

start node to b; by definition, n’ would have lower g-

cost than n and would have been selected first.) Then, 

because step costs are nonnegative, paths never get 

shorter as nodes are added. These two facts together 

imply that UCS expands nodes in order of their 

optimal path cost. Hence, the first goal node selected 

for expansion must be the optimal solution.



22

UCS

• UCS does not care about the number of steps a path 

has, but only about their total cost. Therefore, it will 

get stuck in an infinite loop if there is a path with an 

infinite sequence of zero-cost actions—for example, a 

sequence of NoOp actions. Completeness is guaranteed 

provided the cost of every step exceeds some small 

positive constant ε.



23

UCS

• UCS is guided by path costs rather than depths, so its 

complexity is not easily characterized in terms of b and d. 

Instead, let C* be the cost of the optimal solution, and assume 

that every action costs at least ε. Then the algorithm’s worst-

case time and space complexity is O(b^(1+floor(C*/ ε)), which 

can be much greater than b^d. This is because UCS can explore 

large trees of small steps before exploring paths involving large 

and perhaps useful steps. When all step costs are equal, it is 

O(b^(d+1)). When all step costs are the same, UCS is similar to 

BFS, except that the latter stops as soon as it generates a goal, 

whereas UCS examines all the nodes at the goal’s depth to see if 

one has lower cost; thus, UCS does strictly more work by 

expanding nodes at depth d unnecessarily.



24

Depth-first search (DFS)



25

DFS

• BFS: FIFO queue, DFS: LIFO queue

• Commonly implemented recursively



26

Big 4 for DFS

• Completeness

• Optimality

• Time

• Space



27

DFS completeness

• The graph-search version, which avoids repeated states 

and redundant paths, is complete in finite spaces 

because it will eventually expand every node.

• The tree-search version, on the other hand, is not

complete—for example, it will follow the Arad-Sibiu-

Arad-Sibiu loop forever.



28

Searching Romania



29



30

DFS optimality

• For similar reasons, both versions are nonoptimal. 



31

DFS time complexity

• For graph search the time complexity is bounded by 

the size of the state space (which may be infinite).

• For tree search, on the other hand, we may generate all 

of the O(b^m) nodes in the search tree, where m is the 

maximum depth of any node; this can be much greater 

than the size of the state space. Note that m can be 

much larger than d (the depth of the shallowest 

solution) and is infinite if the tree is unbounded.



32

DFS space complexity

• So far, DFS has no clear advantage over BFS!

• What about space complexity? Recall it was O(b^d) for BFS.

• For DFS graph search there is no advantage. But DFS tree 

search only needs to store a single path from the root to a leaf 

node, along with the remaining unexpanded sibling nodes for 

each node on the path. Once a node has been expanded, it can be 

removed from memory as soon as all its descendants have been 

fully explored. For a state space with branching factor b and 

maximum depth m, DFS requires storage of only O(bm) nodes.

• Eg for d = 10 it requires only 156 kilobytes instead of 10 

exabytes, which is a factor of 7 trillion times less space.

• This has led to adoption of DFS as basic workhorse in many 

areas of AI: e.g., constraint satisfaction, propositional 

satisfiability, and logic programming.



33

Depth-limited search (DLS)

• Imposes a depth limit L on DFS to prevent it from getting 

“stuck” along hopeless path. This solves the “infinite path 

problem.”

• Problem: if we choose L < d, then DLS is incomplete, because 

the shallowest goal is beyond the depth limit.

• Like DFS, DLS will also be nonoptimal if L > d.

• Time complexity is O(b^L) and space is O(bL).

• DFS can be viewed as special case of DLS with L = ∞.

• In Romania there are 20 cities. What might be value for L?



34

DLS

• If there is a solution, it must be of length 19 at the 

longest, so L = 19 is a possible choice.

• But in fact if we studied the map carefully, we could 

discover that any city can be reached from any other 

city in at most 9 steps. This number, known as the 

diameter of the state space, gives us a better depth 

limit, which leads to a more efficient depth-limited 

search. 



35

Iterated deepening depth-first search

• Runs DLS with depth limit 0, 1, 2, etc. to find the best 

depth limit. Ends when depth limit reaches d, depth of 

the shallowest goal node.

• IDS combines the benefits of DFS and BFS. 

– Like DFS, its memory requirements are modest: O(bd)

– Like BFS, it is complete when the branching factor is finite 

and optimal when the path cost is a nondecreasing function 

of the depth of the node.

• Figure on next page shows 4 iterations of IDS. Black 

circles indicate nodes that have been removed from 

memory.



36

IDS



37

IDS

• IDS may seem wasteful because states are generated 

multiple times. It turns out this is not too costly; most 

of the nodes are in the bottom level, so it does not 

matter much that the upper levels are generated 

multiple times.

• N(IDS) = (d)b + (d-1)b^2 + … + (1)b^d

• Same asymptotic time complexity O(b^d) as BFS

• If b = 10 and d = 5: 

– N(IDS) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450

– N(BFS) = 10 + 100 + 1,000 + 10,000 + 100,000 = 111,000



38

IDS

• In general, iterative deepening is the preferred 

uninformed search method when the search 

space is large and the depth of the solution is 

not known.



39

Bidirectional search

• Run two simultaneous searches—one forward from the 

initial state and the other backward from the goal—

hoping that the two searches meet in the middle. The 

idea is that b^(d/2) + b^(d/2) is much less than b^d (the 

area of the two small circles is less than the area of one 

big circle centered on the start and reaching the goal).



40

Bidirectional search

• BDS is implemented by replacing the goal test with a 

check to see whether the frontiers of the two searches 

intersect; if they do, a solution has been found.

– The check can be done when search node is generated or 

selected for expansion and, with a hash table, will take 

constant time.

• For example, if a problem has solution depth d=6, and 

each direction runs BFS one node at a time, then in the 

worst case the two searches meet when they have 

generated all of the nodes at depth 3. For b = 10, this 

means a total of 2,220 node generations, compared to 

1,111,110 for standard BFS. Thus time complexity is 

O(d^(b/2)). But space complexity is also O(d^(b/2)).



41

BDS

• Not always that easy to “search backwards.” Let the 

predecessors of a state x be all those states that have x 

as a successor. BDS requires a method for computing 

predecessors. When all actions in the state space are 

reversible, the predecessors of x are just its successors. 

Other cases may require substantial ingenuity.



42

Comparing uninformed search strategies

• Comparison is for tree-search versions. For 

graph searches, the main differences are that 

DFS is complete for finite state spaces and that 

the space and time complexities are bounded by 

the size of the state space.



43

Comparing uninformed search strategies



44

Informed (heuristic) search strategies

• General approach we consider is called best-first 

search. 

• For the uninformed graph and tree search, the order in 

which a node is selected for evaluation was based on 

being first or last in.

• For informed best-first search, we assume we have an 

evaluation function f(n). This can be construed as a 

cost estimate, so the node with the lowest evaluation is 

expanded first. The implementation of best-first search 

is the same as for UCS, except for the use of f instead 

of g to order the priority queue.



45

Best-first search

• The choice of f determines the search strategy. 

– Exercise 3.21 shows that best-first tree search includes DFS 

as a special case.

• Most best-first search algorithms include as a 

component of f a heuristic function denoted h(n):

– h(n) = estimated cost of the cheapest path from the state at 

node n to a goal state.



46



47

Best-first search

• What are some possible heuristic functions for 

the Romania map problem?



48



49

Best-first search

• Heuristic functions are the most common form 

in which additional knowledge of the problem is 

imparted to the search algorithm. We consider 

them to be arbitrary, nonnegative, problem-

specific functions, with one constraint: if n is a 

goal node, then h(n) = 0. 



50

Greedy best-first search

• Greedy best-first search tries to expand the node that is 

closest to the goal, on the grounds that this is likely to 

lead to a solution quickly. Thus, it evaluates nodes by 

using just the heuristic function; that is, f(n) = h(n).

• Romania using SLD with goal Bucharest. 

• E.g., H_SLD(In(Arad)) = 366.

• Search cost is minimal, but it is not optimal; the path 

via Sibiu and Faragas to Bucharest is 32 km longer 

than the path through RV and Pitesti. This shows why 

the algorithm is “greedy” – at each step it tries to get as 

close to the goal as it can.



51

Greedy best-first search



52

Informed search algorithms

• Greedy best-first search

• A* search

• Memory-bounded heuristic search

• These algorithms have a heuristic function to 

help guide the search.



53

Local search



54

Homework for next class

• Chapter 5 from Russell-Norvig textbook.

• HW1: out on Tuesday


