Today

- Introduce debt and default.
- Previously:
 - Erick had showed how introducing borrowing constraints affects consumption
 - Induces a precautionary motive, generates saving

Borrowing Constraints

- · Ad-hoc borrowing constraints:
 - Total amount

$$a' > -b$$

Share of income

$$a'(\epsilon) \geq -\varphi w \epsilon$$

Borrowing Constraints

- Natural borrowing constraints:
 - Inada conditions

$$\lim_{c\to 0}u(c)=-\infty$$

ensure households never borrow and amount that could lead to negative consumption in any possible state.

Gives rise to natural, endogenous constraint:

$$a'(\epsilon) \geq \frac{w\epsilon_{min}}{r}$$

where ϵ_{min} is the lowest possible realization of individual productivity.

Borrowing Constraints

- All borrowing constraints considered above have similar unstated assumption:
 - Enforcement technology that forces individuals to repay. e.g., infinite pain

$$v(a, \epsilon) = -\infty$$
 if $a < -b$

- Means that no scope for default.
- In contrast, default is common/important feature in US.

No-default Borrowing Constraints

- Suppose households can default.
- How can we ensure that debts are settled?
- Zhang 1997 proposed mechanism and characterized equilibrium with endogenous borrowing constraints:

No-default Borrowing Constraints

- Suppose households can default.
- How can we ensure that debts are settled?
- Zhang 1997 proposed mechanism and characterized equilibrium with incomplete markets and endogenous borrowing constraints

No-default Borrowing Constraints

- How do we know that $b^*(\epsilon)$ exists?
 - $b^*(\epsilon)$ is constant if $\pi(\epsilon', \epsilon) > 0 \forall \epsilon, \epsilon'$
 - $v(-b,\epsilon)$ is decreasing in b since it is decreasing in a. Also continuous.
 - $v(0,\epsilon) \geq v^{aut}(\epsilon)$.
 - Need to find a point b such that $v(-b, \epsilon) \leq v^{aut}(\epsilon)$.
 - Natural borrowing constraint, b^{nat}
 - b^{nat} $\{c^{aut}(\epsilon)\}_{t=0}^{\infty} \geq \{c(-b_{nat},\epsilon)\}_{t=0}^{\infty} \forall t$
 - Then $b^*(\epsilon)$ exists by the Mean Value Theorem

No-default Solution

- 1 Assume R.
- 2 Calculate $v^{aut}(\epsilon)$ Simple
- **3** Guess b^* ∈ (0, b^{nat}).
- Solve household problem for given borrowing constraint (EGM)
- **5** Using solved policy functions, simulate long history of households starting at states $(-b^*(\epsilon), \epsilon) \forall \epsilon$. Use simulations to compute $v(-b^*(\epsilon), \epsilon)$.
- 6 Compare $v(-b^{\star}(\epsilon), \epsilon)$ with $v^{aut}(\epsilon)$. If $v(-b^{\star}(\epsilon), \epsilon) > v^{aut}(\epsilon)$, increase b, etc. Iterate until $v(-b^{\star}(\epsilon), \epsilon) = v^{aut}(\epsilon)$ within desired tolerance.
- Check market clearing and update guess of R.

Default in Equilibrium

- Above solution does not permit equilibrium default.
- Arbitrage opportunities:
 - Suppose that financial intermediary (no productive technology) entered market and offered to lend more than no-default limit at a higher interest rate. Some households might find such a contract profitable.
- Present Livshits McGee Tertilt (2007)

Consumers

- Unit continuum of infinitely-lived ex-ante identical agents
- Preferences: u' > 0, u'' < 0, in DARA class (e.g., CRRA)
- Discount rate β

Labor Supply and Idiosyncratic Risk

- Unit mass of agents inelastically supply unit endowment of labor effort:
- Receive income y that follows a Markov chain π .

Default

- Agents can always default on their debt. If the do:
 - 1 Debts (a < 0) are set to zero next period.
 - 2 They are excluded from borrowing from financial markets for one period.
 - 3 A fraction of income γ is seized by the intermediary as partial repayment.
- Default, as a function of assets a and income y, is denoted by indicator D(a, y).
 - D(a, y) = 1 if defaulted last period

Production

- Production not stated in this economy
- However, could be. There exists firm with production technology F that gives rise to labor demand with price w such that $y = \epsilon w$.

Financial markets

- Financial intermediaries act competitively as price takers.
- Take in savings and pay out next period at interest rate $1/\bar{q}$. Thus, if an agent deposits \bar{q} units of consumption good they get 1 unit back next period.
- Issue loans
 - Price of loan depends on amount of debt issued and income y, as both predict the default probability.
 - Let $\theta(a', y)$ denote the default probability.
 - Let q(a', y) denote the price of the loan.

Household Problem

Non-default Problem

$$\begin{aligned} v(a,y,D=0) &= \max_{c,a'} u(c) + \beta \sum_{y'} \pi(y',y) \max \left(v(a',y',D'=0), \omega(0,y',D'=1) \right) \\ s.t. \\ a+y-c &= \begin{cases} \bar{q}a' \text{ if } a' \geq 0 \\ q(a',y) \text{ if } a' < 0 \end{cases} \end{aligned}$$

Default Problem

$$\omega(0, y, D = 1) = \max_{c, a'} u(c) + \beta \sum_{y'} \pi(y', y) v(a', y', D' = 0)$$

$$s.t.$$

$$c + \bar{q}a' = (1 - \gamma)$$

$$a' > 0$$

Stationary Equilibrium

A recursive competitive equilibrium is

- **1** A set of value functions v, ω
- 2 Decision rules c, a', D'
- 3 Prices q
- 4 Default probabilities θ
- **5** Invariant distribution $\lambda(a, y, D)$

Stationary Equilibrium

Such that

- 1 Given prices, consumers optimize
- 2 Intermediaries make zero profits

$$\frac{1}{\bar{q}} = \frac{1}{q(a',y)} \{ [1 - \theta(a',y)] + \sum_{y' \in Y} D(a',y') \left(\frac{\gamma y'}{a'} \right) \pi(y',y) \} \forall (a',y)$$

3 Default probabilities are consistent with agent decisions:

$$\theta(a',y) = \sum_{v' \in Y} D(a',y') \pi(y',y)$$

Asset market clears

$$\int_{A\times Y\times D} ad\lambda = 0$$

5 The invariant distribution is consistent with agent decisions and solves the fixed point problem.

Solution

Two differences from standard Aiyagari:

- Use VFI because FOC involves comparison of v, ω
- Price is a function q and a number \bar{q} , not a number (or two numbers)

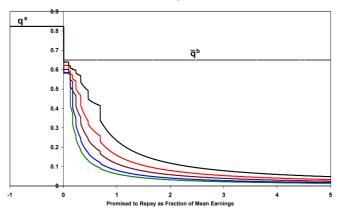
Algorithm:

- Guess q and q̄.
- Solve household problem
- Use zero-profit condition of intermediaries to update q until zero profit condition is satisfied.
- Check market clearing. If not satisfied, update guess of \bar{q} (use same q) and start over.

Results

Bond Prices

Figure 2. Private Bond Prices, Fresh Start Benchmark Economy, Generation 1



Results

Results

Table VI Results

	Results	Rule	Debt/Earnings	Defaults	Avg. r^b	better rule	Cons. Equiv.	
1	Benchmark	FS	8.33%	0.53%	11.66%	FS	0.39%	
	U.S.	NFS	17.04%	0.10%	9.64%	15	0.0370	
	U.S. Data	FS	8.8%	0.68%	12.0%	-	-	
2	No expense	FS	11.04%	0.00%	9.01%	NFS	0.68%	
	U.S.	NFS	31.69%	0.22%	13.01%	NES	0.0070	
3	$r^s \downarrow 1\%$	FS	12.02%	0.60%	10.01%	FS	0.03%	
	U.S.	NFS	25.93%	0.17%	9.97%	15	0.0070	
4	$g \uparrow 0.10$	FS	10.15%	0.35%	10.87%	NFS	0.00%	
	U.S.	NFS	19.35%	0.04%	9.23%	NFS	0.0076	
5	Benchmark	FS	6.11%	0.06%	9.44%	NFS	0.04%	
	Germany	NFS	9.36%	0.02%	9.20%	1415	0.0470	

Results

Results

Table VII

Age Profile of Bankrupts:
FS Benchmark Parameter Values and U.S. Data

Age	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	avg.
Model									
Data	1.25	1.53	1.44	1.57	1.45	0.84	0.91	0.17	1.00