AAAI-17 Tutorial on Computer Poker Part 3: Local Search and Reinforcement Learning

Johannes Heinrich

Computer Science University College London

February 4th 2017

Topics

Scope

Local Tree Search

- IS-MCTS
- Online Outcome Sampling
- Continuous Resolving
- Reinforcement Learning from Self-Play
 - Extensive-Form Fictitious Play
 - (Neural) Fictitious Self-Play

Problems with full-game equilibria

Memory (Space requirements)

 How do we obtain an equilibrium if we cannot fit the whole game tree in memory?

Computation (Time requirements)

How do we compute an equilibrium in a reasonable amount of time?

Locality

 How do we map a real information state (sequence) to our full-game abstraction?

Approach

Compute or refine an approximate equilibrium locally for the situation at hand.

- Standard approach in large-scale perfect-information games
 - e.g. MCTS in $\ensuremath{\mathsf{Go}}$

IS-MCTS

Refs: Cowling et al. 2012, Heinrich&Silver 2015

- Extension of common MCTS to imperfect-information games:
 - One information-state subtree per player
 - Sampling from local belief state
 - Information-state policy regret minimizing or fictitious play

Achieved practical successes

 E.g. Imperfect-information board&card games, including LHE

Lacking equilibrium guarantees

- Exploitable in local search
- May plateau in full-game search

Equilibrium recovery

Figure: Bluff catching game

Online Outcome Sampling Refs: Lisy et al. 2015

- Focus Outcome Sampling (MCCFR) on relevant information states
- Achieves equilibrium guarantees
- Does not fully address memory, computation and abstraction-mapping problems

Continuous resolving

Refs: Burch et al. 2014, Moravcik et al. 2017

- Solve gadget game that hashes essential information of the global equilibrium in counterfactual values
 - Recovers global equilibrium with strictly local search
 - Continuous resolving carries forward the counterfactual values
- Resolving may be intractable except at the end of the game
 - DeepStack bootstraps a limited-depth search from learned counterfactual values

Topics

Scope

- Local Tree Search
- Reinforcement Learning from Self-Play
 - Extensive-Form Fictitious Play
 - (Neural) Fictitious Self-Play

Problems

► Handcrafted abstractions

- Do you have the domain expertise and time to handcraft an abstraction?
 - Different variants may require different kinds of abstraction, e.g. limit, no-limit, stud, draw poker variants
- How do we abstract action sequences for multi-player variants?

Static abstractions

- Did your abstracton lose essential information for achieving a desired equilibrium quality?
- Does it have any deficiencies or result in pathologies?

Scalability

- Does your approach scale well with the number of players?

Approach

Generalised weakened fictitious play Refs: (Brown, 1951; Leslie & Collins, 2006)

At each iteration each player

- 1. Computes a best response to fellow players' average strategies
- 2. Updates own average strategy with computed best response

 $\Pi_{k+1} \in \Pi_k + \alpha_{k+1} \left(\mathsf{BR}_{\epsilon_{k+1}} \left[\Pi_k \right] - \Pi_k + M_{k+1} \right)$

Original fictitious play: $\alpha_k = \frac{1}{k}, \epsilon_k = 0, M_k = 0$

Fictitious play & reinforcement learning

- Fictitious players choose best (payoff-maximizing) strategies in hindsight.
- Reinforcement learners learn optimal (reward-maximizing) policies from their experience.

Extensive-Form Fictitious Play (XFP) Refs: Koller et al. 1994; Von Stengel 1996; Heinrich et al. 2015

Compute best responses with dynamic programming

 $\beta_{t+1} \in \mathsf{BR}(\pi_t),$

Update average strategies

$$\pi^i_{t+1}(u) = \pi^i_t(u) + w_{t+1}(u) \left(eta^i_{t+1}(u) - \pi^i_t(u)
ight)$$

weighted by conditional probability (of playing best response at respective information state)

$$w_{t+1}^{i}(u) = \frac{\alpha_{t+1} x_{\beta_{t+1}^{i}}(\sigma_{u})}{(1 - \alpha_{t+1}) x_{\pi_{t}^{i}}(\sigma_{u}) + \alpha_{t+1} x_{\beta_{t+1}^{i}}(\sigma_{u})}$$

Fictitious Self-Play Refs: Heinrich et al. 2015

	XFP	FSP
Best response	Dynamic pro- gramming in whole tree	Reinforcement learning from sampled trajecto- ries
Average strategy	Explicit update in whole tree	Imitation learning from sampled tra- jectories of past best responses

Fictitious Self-Play

Learning a best response

- \blacktriangleright Each agent plays its average strategy, π
- Each agent learns a best response strategy by maximizing and evaluating its Q values with off-policy reinforcement learning

$$Q^{i}(u,a) pprox \mathbb{E}_{\beta^{i},\pi^{-i}}\left[\sum_{k=t}^{T} R_{k+1} \middle| U_{t} = u, A_{t} = a
ight]$$

e.g. $\beta^{i} = \operatorname{greedy}(Q^{i})$

Fictitious Self-Play

Learning the average strategy To learn

$$\Pi_k^i = \sum_{j=1}^k w_j B_j^i$$

- 1. Sample a proportion of w_j episodes from each β_j^i respectively
- 2. Store experienced state-action pairs, (u_t, a_t) , in a memory
- 3. Train the average strategy with imitation learning from the behaviour data in memory

Fictitious Self-Play

Memorizing the Average Strategy

Infinite stream of state-action pairs (u_t, a_t) can be memorized in an online fashion and with finite memory capacity:

• Counting model, $N_k(u, a)$

$$\pi_k(\mathsf{a} \,|\, u) = rac{N_k(u, \mathsf{a})}{N_k(u)}$$

- Reservoir sampling
 - Tracks a finite random sample of a possibly large or infinite stream of items (here, best responses)

Neural Fictitious Self-Play Refs: Heinrich&Silver 2016

1. Train an action-value network, $Q(s, a | \theta^Q)$, that approximates best response with neural fitted Q-learning (DQN)

 $- \beta = \epsilon \text{-greedy}(Q)$

2. Train an average-policy network, $\Pi(s, a | \theta^{\Pi})$, that approximates own average behaviour with imitation learning

- $\pi = \Pi$

Sampling Experience Each agent

- Uses policy $\sigma = \begin{cases} \epsilon \text{-greedy}(Q), & \text{with probability } \eta \\ \Pi, & \text{with probability } 1 \eta \end{cases}$
- ► Stores its transitions (u_t, a_t, r_{t+1}, u_{t+1}) in reinforcement learning memory M_{RL}
- ► Stores its behaviour tuples (s_t, a_t) in supervised learning memory M_{SL}, when following its best response strategy (e-greedy (Q))

Reinforcement learning of best response Refs: Mnih et al. 2015

Train $Q(s, a | \theta^Q)$ with SGD on

$$\mathcal{L}\left(heta^{Q}
ight) = \mathbb{E}_{(s,a,r,s')\sim\mathcal{M}_{RL}}\left[\left(r + \max_{a'} Q(s',a'\,|\, heta^{Q'}) - Q(s,a\,|\, heta^{Q})
ight)^{2}
ight]$$

Imitation learning of average strategy

Train $\Pi(s, a | \theta^{\Pi})$ with SGD on

$$\mathcal{L}(heta^{\mathsf{\Pi}}) = \mathbb{E}_{(s,a) \sim \mathcal{M}_{SL}} \left[-\log \mathsf{\Pi}(s, a \,|\, heta^{\mathsf{\Pi}})
ight]$$

Experiments in Limit Texas Hold'em

Figure: Win rates of NFSP against SmooCT in Limit Texas Hold'em. The estimated standard error of each evaluation is less than 10 mbb/h.

Experiments in Limit Texas Hold'em

Match-up	Win rate (mbb/h)
escabeche	-52.1 ± 8.5
SmooCT	-17.4 \pm 9.0
Hyperborean	-13.6 ± 9.2

Table: Win rates of NFSP's greedy-average strategy against the top 3 agents of the ACPC 2014.

Visualization of a poker-playing neural network

Figure: t-SNE embedding of first player's last hidden layer activations, coloured by A) action probabilities; B) round of the game; C) initiative feature; D) pot size in big bets (logarithmic scale).

Visualization of a poker-playing neural network

- ► A: Preflop
- B: Pairs on river, after check-calling down
- C: Pairs on flop, facing continuation bet after big-blind defense
- D: Straight draws on the turn
- E: Busted straight draws on the river, after bluffing on the turn

Self-play RL can be applied to a variety of poker games, including multi-player, without having to design abstractions. E.g. full ring stud poker or pot limit Omaha

Thanks!