
AAAI-17 Tutorial on Computer Poker
Part 3: Local Search and Reinforcement Learning

Johannes Heinrich

Computer Science

University College London

February 4th 2017



Topics

Scope

I Local Tree Search
– IS-MCTS
– Online Outcome Sampling
– Continuous Resolving

I Reinforcement Learning from
Self-Play

– Extensive-Form Fictitious Play
– (Neural) Fictitious Self-Play

2



Local Tree Search

Problems with full-game equilibria

I Memory (Space requirements)
– How do we obtain an equilibrium if we cannot fit the whole

game tree in memory?

I Computation (Time requirements)
– How do we compute an equilibrium in a reasonable amount of

time?

I Locality
– How do we map a real information state (sequence) to our

full-game abstraction?

3



Local Tree Search

Approach

Compute or refine an approximate
equilibrium locally for the situation at
hand.

I Standard approach in large-scale
perfect-information games

– e.g. MCTS in Go

4



Local Tree Search

IS-MCTS

Refs: Cowling et al. 2012, Heinrich&Silver 2015
I Extension of common MCTS to

imperfect-information games:
– One information-state subtree

per player
– Sampling from local belief state
– Information-state policy regret

minimizing or fictitious play

I Achieved practical successes
– E.g. Imperfect-information

board&card games, including
LHE

I Lacking equilibrium guarantees
– Exploitable in local search
– May plateau in full-game search

5



Local Tree Search

Equilibrium recovery

Figure: Bluff catching game

6



Local Tree Search

Online Outcome Sampling

Refs: Lisy et al. 2015

I Focus Outcome Sampling
(MCCFR) on relevant
information states

I Achieves equilibrium guarantees

I Does not fully address memory,
computation and
abstraction-mapping problems

7



Local Tree Search

Continuous resolving

Refs: Burch et al. 2014, Moravcik et al. 2017

I Solve gadget game that hashes
essential information of the
global equilibrium in
counterfactual values

– Recovers global equilibrium with
strictly local search

– Continuous resolving carries
forward the counterfactual
values

I Resolving may be intractable
except at the end of the game

– DeepStack bootstraps a
limited-depth search from
learned counterfactual values

8



Topics

Scope

I Local Tree Search
I Reinforcement Learning from

Self-Play
– Extensive-Form Fictitious Play
– (Neural) Fictitious Self-Play

9



Reinforcement Learning from Self-Play

Problems

I Handcrafted abstractions
– Do you have the domain expertise and time to handcraft an

abstraction?
I Different variants may require different kinds of

abstraction, e.g. limit, no-limit, stud, draw poker
variants

– How do we abstract action sequences for multi-player
variants?

I Static abstractions
– Did your abstracton lose essential information for achieving a

desired equilibrium quality?
– Does it have any deficiencies or result in pathologies?

I Scalability
– Does your approach scale well with the number of players?

10



Reinforcement Learning from Self-Play

Approach

info state

u1
t

info state

u2
t

action

a1
t

action

a2
t

reward

r1
t

reward

r2
t

Learn strategies, π, that optimize action-values

Qπ(u, a) = Eπ

[
T∑

k=t

Rk+1

∣∣∣∣∣Ut = u,At = a

]
11



Reinforcement Learning from Self-Play

Generalised weakened fictitious play

Refs: (Brown, 1951; Leslie & Collins, 2006)

At each iteration each player

1. Computes a best response to fellow players’ average
strategies

2. Updates own average strategy with computed best
response

Πk+1 ∈ Πk + αk+1

(
BRεk+1

[Πk ]− Πk + Mk+1

)
Original fictitious play: αk = 1

k
, εk = 0,Mk = 0

12



Reinforcement Learning from Self-Play

Fictitious play & reinforcement learning

I Fictitious players choose best (payoff-maximizing)
strategies in hindsight.

I Reinforcement learners learn optimal (reward-maximizing)
policies from their experience.

13



Reinforcement Learning from Self-Play

Extensive-Form Fictitious Play (XFP)

Refs: Koller et al. 1994; Von Stengel 1996; Heinrich et al.
2015

I Compute best responses with dynamic programming

βt+1 ∈ BR(πt),

I Update average strategies

πi
t+1(u) = πi

t(u) + wt+1(u)
(
β i
t+1(u)− πi

t(u)
)

weighted by conditional probability (of playing best
response at respective information state)

w i
t+1(u) =

αt+1xβi
t+1

(σu)

(1− αt+1)xπi
t
(σu) + αt+1xβi

t+1
(σu)

14



Reinforcement Learning from Self-Play

Fictitious Self-Play

Refs: Heinrich et al. 2015

XFP FSP
Best response Dynamic pro-

gramming in
whole tree

Reinforcement
learning from
sampled trajecto-
ries

Average strategy Explicit update in
whole tree

Imitation learning
from sampled tra-
jectories of past
best responses

15



Fictitious Self-Play

Learning a best response

I Each agent plays its average strategy, π

I Each agent learns a best response strategy by maximizing
and evaluating its Q values with off-policy reinforcement
learning

Q i(u, a) ≈ Eβi ,π−i

[
T∑

k=t

Rk+1

∣∣∣∣∣Ut = u,At = a

]
e.g. β i = greedy(Q i)

16



Fictitious Self-Play

Learning the average strategy

To learn

Πi
k =

k∑
j=1

wjB
i
j

1. Sample a proportion of wj episodes from each β i
j

respectively

2. Store experienced state-action pairs, (ut , at), in a memory

3. Train the average strategy with imitation learning from
the behaviour data in memory

17



Fictitious Self-Play

Memorizing the Average Strategy

Infinite stream of state-action pairs (ut , at) can be memorized
in an online fashion and with finite memory capacity:

I Counting model, Nk(u, a)

πk(a | u) =
Nk(u, a)

Nk(u)

I Reservoir sampling
– Tracks a finite random sample of a possibly large or infinite

stream of items (here, best responses)

18



Reinforcement Learning from Self-Play

Neural Fictitious Self-Play

Refs: Heinrich&Silver 2016

1. Train an action-value network, Q(s, a | θQ) , that
approximates best response with neural fitted Q-learning
(DQN)

– β = ε-greedy (Q)

2. Train an average-policy network, Π(s, a | θΠ), that
approximates own average behaviour with imitation
learning

– π = Π

19



Neural Fictitious Self-Play

Sampling Experience

Each agent

I Uses policy σ =

{
ε-greedy (Q) , with probability η

Π, with probability 1− η
I Stores its transitions (ut , at , rt+1, ut+1) in reinforcement

learning memory MRL

I Stores its behaviour tuples (st , at) in supervised learning
memory MSL, when following its best response strategy
(ε-greedy (Q))

20



Neural Fictitious Self-Play

Reinforcement learning of best response

Refs: Mnih et al. 2015

Train Q(s, a | θQ) with SGD on

L
(
θQ
)

= E(s,a,r ,s′)∼MRL

[(
r + max

a′
Q(s ′, a′ | θQ′)− Q(s, a | θQ)

)2
]

21



Neural Fictitious Self-Play

Imitation learning of average strategy

Train Π(s, a | θΠ) with SGD on

L(θΠ) = E(s,a)∼MSL

[
− log Π(s, a | θΠ)

]

22



Neural Fictitious Self-Play

Experiments in Limit Texas Hold’em

Figure: Win rates of NFSP against SmooCT in Limit Texas
Hold’em. The estimated standard error of each evaluation is less
than 10 mbb/h.

23



Neural Fictitious Self-Play

Experiments in Limit Texas Hold’em

Match-up Win rate (mbb/h)
escabeche -52.1 ± 8.5
SmooCT -17.4 ± 9.0
Hyperborean -13.6 ± 9.2

Table: Win rates of NFSP’s greedy-average strategy against the
top 3 agents of the ACPC 2014.

24



Neural Fictitious Self-Play

Visualization of a poker-playing neural network

Figure: t-SNE embedding of first player’s last hidden layer
activations, coloured by A) action probabilities; B) round of the
game; C) initiative feature; D) pot size in big bets (logarithmic
scale).

25



Neural Fictitious Self-Play

Visualization of a poker-playing neural network

I A: Preflop

I B: Pairs on river, after
check-calling down

I C: Pairs on flop, facing
continuation bet after
big-blind defense

I D: Straight draws on the
turn

I E: Busted straight draws
on the river, after
bluffing on the turn

26



Reinforcement Learning from Self-Play

Why?

Self-play RL can be applied to a variety of poker games,
including multi-player, without having to design abstractions.
E.g. full ring stud poker or pot limit Omaha

27



Thanks!


