

Accessing .Net Assemblies in
Vijeo Citect 2015

11th March 2015

Graeme Davey

Program Manager

 © 2013 Schneider Electric All Rights Reserved

2

Table of contents

1. Introduction 4

1.1. Purpose 4

1.2. Terminology 4

1.3. Cicode functions used 5

2. Hello World (C#) 6

2.1. Creating a new class library 6

2.2. Constructor 7

2.3. Properties 8

2.4. Methods 8

3. Hello World (Cicode) 10

3.1. Creating an instance of the class 10

3.2. Getting a property 10

3.3. Setting a property 11

3.4. Calling a method 11

3.5. Limitations 11

4. Calling predefined functions in windows 12

4.1. Creating an object 13

4.2. Supported Data Types 15

5. Example: Creating an alarm paging system 16

5.1. Configuring the Paging and Paging Group fields 16

5.2. Alarm Event Queue 17

5.3. Sending an alarm notification via email 18

6. Logging 21

6.1. Unhandled Exceptions 21

6.2. Unsupported data types 22

 © 2013 Schneider Electric All Rights Reserved

3

7. Conclusion 23

8. Appendix A: “Hello World!” C# code 24

9. Appendix B: “Hello World!” cicode 25

10. Appendix C: ProcessEventQue() 27

11. References 28

 © 2013 Schneider Electric All Rights Reserved

4

1. Introduction

1.1. Purpose

The aim of this whitepaper is to give users an overview of how users can access dot net

assemblies within Vijeo Citect 2015. This feature allows users to either access Microsoft’s .Net ™

framework directly, or to write a .Net assembly and access that via a series of cicode functions.

This gives users a lot flexibility when engineering their system. Whether there is need to access

data from a web service, or push data to or from a 3rd party system, there are numerous examples

on how that can be done via the dot net framework on the internet.

For users that have no experience writing Dot Net code, this document will lead the user through

the process of creating a simple dot net assembly and calling that code from cicode. For more

advanced users, examples will be shown demonstrating how functions from the dot net

framework can be called directly, and how the dot net framework can be used to build more

complex solutions.

This document is designed to complement the contents of the Vijeo Citect help. For detailed

information regarding the cicode functions regarding the functions that are going to be discussed

in this document, please refer to the Vijeo Citect help.

1.2. Terminology

Term Meaning

Assembly An assembly is a file that is automatically created when a C# project is successfully compiled. This

can either by an executable or a dynamic linked library (dll)

Class A data type that describes an object. Classes contain both data, and the methods for acting on the

data

Method A named code block that provides behavior for a class or struct.

Property Properties are members that provide a flexible mechanism to read, write, or compute the values of

private fields.

Member A field, property, method, or event declared on a class or struct.

Struct A compound data type that is typically used to contain a few variables that have some logical

relationship. Structs can also contain methods and events. Structs do not support inheritance but

they do support interfaces

 © 2013 Schneider Electric All Rights Reserved

5

Static A class or method declared as static exists without first being instantiated using the keyword new.

The .Net Assembly functions do not support static classes or methods.

Object An instance of a class. An object exists in memory, and has data and methods that act on the data.

MSDN Microsoft developer network. This site contains the documentation and examples for the .Net

framework. This can be accessed at http://msdn.microsoft.com

Namespace The namespace keyword is used to declare a scope that contains a set of related objects. You can

use a namespace to organize code elements and to create globally unique types.

Constructor A special method on a class or struct that initializes the objects of that type.

1.3. Cicode functions used

This whitepaper will details the user of a series of cicode functions that will allow you to access

Dot Net Assemblies. Before reading this whitepaper, please refer to the help topics for these

functions.

• DllClassCreate

• DllClassCallMethod

• DllClassGetProperty

• DllClassDispose

 © 2013 Schneider Electric All Rights Reserved

6

2. Hello World (C#)

This example will lead you through creating a basic c# assembly that will be called from cicode. In

this example, I will be using visual studio 2010 express. Microsoft offers a free 90 day trail version

is this product. This can be downloaded from http://www.visualstudio.com/downloads/download-

visual-studio-vs#DownloadFamilies_4

The C# code for this example can be found in Appendix A: “Hello World!” C# code.

2.1. Creating a new class library

The first thing that we need to is to start visual studio and create a new project.

In the new project dialog, select “Class Library” and enter the name “HelloWorld”, and then press

‘OK’.

 © 2013 Schneider Electric All Rights Reserved

7

Rename the class “Class1” to “HelloWorld”. This will leave you with the following code.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace HelloWorld
{
 public class HelloWorld
 {
 }
}

Save your code by clicking on the “Save all” button.

2.2. Constructor

To be able to create an instance of our class, our class must contain a constructor. Each non-

static class can contain one or more constructors. As described in section 2.1, each constructor

must contain a different set of parameters. In this case, the constructor for our class will contain

no parameters.

We will also contain a private field of the data type string that will contain the message that we

are going to return. In the constructor, we will set the value of this field to “Hello World!”

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace HelloWorld
{
 public class HelloWorld
 {

 private string _helloWorldString;

 © 2013 Schneider Electric All Rights Reserved

8

 public HelloWorld()
 {
 _helloWorldString = "Hello World!";
 }
 }
}

2.3. Properties

Properties allow you to read or write values from private fields. Properties can be read by defining

a get method and can be written to using a set method. In this case, we want to add a public

property to our class that will return the contents of the string _helloWorldString, and we will

define both a get and set methods, so that we can read from and write to this property.

 public string Message
 {
 get
 {
 return _helloWorldString;
 }
 set
 {
 _helloWorldString = value;
 }

 }

2.4. Methods

A method is a group of statements that perform a task. Similar to a cicode function, a method has

a series of parameters that are passed into it and can optionally return value.

In this example, we will create a method that will display a message box that contains the

contents of the property “Message”. To display the message box, we will call a method from the

Dot Net framework. To use this functionality, we will need to add a reference to our project. To do

this, right click on “References” in solution explorer and select “Add Reference…”

 © 2013 Schneider Electric All Rights Reserved

9

In the “Add Reference” windows, click on the “.Net” tab, and scroll down until you find

“System.Windows.Forms”, then press “OK”.

Now that we have added a reference to System.Windows.Forms, we will use the “using”

statement to allow our code to access all the members of that namespace.

 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;
 using System.Windows.Forms;

Finally, we can use create our method.

 public void DisplayMessage()
 {

 MessageBox.Show(Message);

 }

We can now build our assembly by right clicking on your solution in solution explorer, and

selecting “Build Solution”. This will output the file HelloWorld.dll into the directory \bin\Release\

 © 2013 Schneider Electric All Rights Reserved

10

3. Hello World (Cicode)

Now that we have built a C# assembly, we can now write some cicode to access it. I’ll show two

examples of how this can be done. The first example will create an instance of our HelloWorld

class, get the “Message” property and then use the cicode function “Message” to display a

message box displaying “Hello World!” The second example will also create an instance of the

class, HelloWorld, will set the value of the Message property to “Hello World!!!!!” and will call the

DisplayMessage method to display the message box. Both of these functions have some similar

code.

The full cicode for both of these examples can be found in Appendix C: “Hello World!” cicode.

3.1. Creating an instance of the class

Both functions need to create an instance of the class “HelloWorld” using DllClassCreate. This

function requires the full path to the assembly being called, and the name of the class. As the

class’s constructor contains no input parameters, we don’t need to pass any additional

parameters into DllClassCreate. Once this has been done, we need to check if the class has

been created successfully using DllClassIsValid.

FUNCTION HelloWorld1()

 //Handle to the instance of our class, hello world.

 OBJECT hHelloWorld;

 …

 //Create an instance of our class

 hHelloWorld = DllClassCreate(PathToStr("[RUN]:HelloWorld.dll"),"HelloWorld");

 //If this class is valid

 IF DllClassIsValid(hHelloWorld) = 1 THEN

 …

3.2. Getting a property

Property values can be retrieved from this class by calling DllClassGetProperty. As this property

returns as string, the value can be returned into a cicode string (sMessage).

IF DllClassIsValid(hHelloWorld) = 1 THEN

 //retrieve the contents of the Message property

 sMessage = DllClassGetProperty(hHelloWorld,"Message");

 Message("Property from .Net class",sMessage,0);

 © 2013 Schneider Electric All Rights Reserved

11

3.3. Setting a property

Property values can be set in this object by calling DllClassSetProperty. In this case, we will set

the value of the Message property to be equal to the value of the string sMessage.

 IF DllClassIsValid(hHelloWorld) = 1 THEN

 //Set the value of the message property

 DllClassSetProperty(hHelloWorld,"Message",sMessage);

3.4. Calling a method

Methods can be called from our class by calling DllClassCallMethod, and passing the name of the

method into it. In this example, we can display the message box using the method

“DisplayMessage”.

 //If this class is valid

 IF DllClassIsValid(hHelloWorld) = 1 THEN

 //Set the value of the message property

 DllClassSetProperty(hHelloWorld,"Message",sMessage);

 //and display the message by calling the method DisplayMessage

 DllClassCallMethod(hHelloWorld,"DisplayMessage");

Note that in this case, cicode will block on the DllClassCallMethod call until the message box has

been closed.

3.5. Limitations

The .Net functions do not support static methods and classes, and do not support events. For this

reason, it is not recommended that you do not use the .Net Functions to create user interfaces

from within cicode.

 © 2013 Schneider Electric All Rights Reserved

12

4. Calling predefined functions in windows

Not all cases will require you to create a c# assembly to use the Dot Net cicode functions. For simple

operations, you can directly call the methods from the dot net framework. In this section, I will use functionality

that is built into the .Net Framework to measure the CPU Usage on my machine. I will use the

“PerformanceCounter” class from the namespace System.Diagnostics to measure the PC’s CPU usage using the

performance counter “Processor / % Processor Time”. This class can be used to measure the same set of data as

windows performance monitor.

OBJECT oPerformanceCounter;

REAL FUNCTION GetPercentProcessorTime()

 STRING sDllPath;

 STRING sCategoryName = "Processor";

 STRING sCounter = "% Processor Time";

 STRING sInstance = "_Total";

 REAL rProcessorTime = -1;

 STRING sCounterHelp;

 INT iError;

 //Enable error checking

 ErrSet(1);

 sDllPath = "C:\Windows\Microsoft.NET\Framework64\v4.0.30319\system.dll";

 //Create an instance of the PerformanceCounter class from the namespace System.Diagnostics

 //You do not need to include the class's namespace

 oPerformanceCounter=DllClassCreate(sDllPath,"PerformanceCounter",sCategoryName,sCounter,sInstance);

 //If the class is valid

 IF DllClassIsValid(oPerformanceCounter) THEN

 //Call the required method

 rProcessorTime = DllClassCallMethod(oPerformanceCounter,"NextValue");

 //Get the value of a property

 sCounterHelp = DllClassGetProperty(oPerformanceCounter,"CounterHelp");

 ErrLog(sCategoryName+"\"+sCounter+"\"+sInstance+": "+RealToStr(rProcessorTime,4,1));

 ErrLog(sCounterHelp);

 ELSE

 ErrLog("GetPercentProcessorTime: Class is not valid");

 END

 //check for error codes;

 iError = IsError();

 IF iError <> 0 THEN

 ErrLog("GetPercentProcessorTime: Error code "+iError:#+" was returned.");

 END

 DllClassDispose(oPerformanceCounter);

 RETURN rProcessorTime;

END

 © 2013 Schneider Electric All Rights Reserved

13

4.1. Creating an object

In the above example, DllClassCreate is called to create an instance of the “PerformanceCounter” class

from the namespace System.Diagnostics. This is done using the cicode:

//Create an instance of the PerformanceCounter class from the namespace System.Diagnostics

//You do not need to include the class's namespace

oPerformanceCounter=DllClassCreate(sDllPath,"PerformanceCounter",sCategoryName,sCounter,sInstance);

Refering to the MSDN, the PerformanceCounter class has six possible constructors:

• PerformanceCounter()

• PerformanceCounter(string categoryName, string counterName)

• PerformanceCounter(string categoryName, string counterName, bool readOnly)

• PerformanceCounter(string categoryName, string counterName, string instanceName)

• PerformanceCounter(string categoryName, string counterName, string instanceName, bool

readOnly)

• PerformanceCounter(string categoryName, string counterName, string instanceName, string

machineName).

Unlike other similar functions, such as DllOpen or TaskNew, DllClassCreate (and DllClassCallMethod) supports a

variable number of function arguments. This means that you no longer need to concatenate all of a functions

arguments together into one string, and use the carat character (^) to delimit any string arguments.

When using DllClassCreate simply pass the same number of arguments as the class’s constructor i.e. to

instantiate the PerformanceCounter class using each of the above constructors, call the following cicode:

• oPerformanceCounter=DllClassCreate(sDllPath,"PerformanceCounter");

• oPerformanceCounter=DllClassCreate(sDllPath,"PerformanceCounter",sCategoryName,sCounter);

• oPerformanceCounter=DllClassCreate(sDllPath,"PerformanceCounter",sCategoryName,sCounter,

1);

• oPerformanceCounter=DllClassCreate(sDllPath,"PerformanceCounter",sCategoryName,sCounter,

sInstance);

• oPerformanceCounter=DllClassCreate(sDllPath,"PerformanceCounter",sCategoryName,sCounter,sI

nstance, 1);

• oPerformanceCounter=DllClassCreate(sDllPath,"PerformanceCounter",sCategoryName,sCounter,

sInstance, sMachineName);

DllClassCreate’s path parameter needs to refer to the actual assembly containing the class that you want to

instantiate. If you are planning on calling .Net assemblies directly, then this needs to refer to the .Net assembly

containing this class. For more information on where this is located, please refer to the MSDN.

 © 2013 Schneider Electric All Rights Reserved

14

Remember, that for each instance of a class that you create, you must call DllClassDispose to dispose of that

object. Failure to do this may result in memory leaks or other undefined behavior.

 © 2013 Schneider Electric All Rights Reserved

15

4.2. Supported Data Types

The .Net framework supports a large number of numeric data types, much more than are supported by

cicode. The following table shows how .Net data types can be cast into cicode data types. These

conversions apply to DllClassCallMethod, DllClassGetProperty and DllClassSetProperty.

 Int Real

Bool True False

Byte True False

Decimal False False

Double False False

Float False True

Int True False

Long True False

SByte True False

UINT True False

Ulong True False

Ushort True False

Int16 True False

Int32 True False

Uint16 True False

Uint32 True False

Uint64 False False

short True False

The .Net assembly functions do not support casting a .Net numeric type into a string data type in cicode.

To convert numeric types into strings, use the cicode functions IntToStr() or RealToStr().

 © 2013 Schneider Electric All Rights Reserved

16

5. Example: Creating an alarm paging system

This section will explain how the .Net assembly functions can be used to create an alarm paging system.

This section will detail:

• Configuring the paging and paging group fields

• Setting up the alarm event queue.

• Sending alarm notifications by email.

5.1. Configuring the Paging and Paging Group fields

Every type of alarm in Vijeo Citect contains two fields, which can be configured to track how each alarm is

paged.

• Paging – A true/false value that indicates whether the alarm will be pages.

• Paging Group – a string field that is used to indicate which paging group the alarm belongs. You

could use this field to control what set of users to page.

Both of these fields appear on the extended form of all alarms types. In this example, the paging group

will be not be used.

 © 2013 Schneider Electric All Rights Reserved

17

5.2. Alarm Event Queue

The alarm event queue is an existing Vijeo Citect feature that allows to be read as they are triggered by

the alarm server. The alarm event queue can be enabled by setting the parameter:

• [Alarm] EventQue = 1

The format of the alarm event queue can be controlled by setting the parameter:

• [Alarm] EventFmt =

{Name,48},{Time,12},{Category,3},{STATE,16},{PAGING,4},{PAGINGGROUP,80}

For more details on these parameters, refer to the online help.

To process the alarm event queue, we write a cicode function that will run on the alarm server. This will

read the contents of the alarm event queue, parse the contents of the queue, and then either send an

email or an SMS based on certain criteria:

• Paging = 1, State = ON, PagingGroup = Email

• Paging = 1, State = ON, PagingGroup = SMS

The alarm event queue can be processed using the following functions:

• QueOpen

• QueRead

• QueLength

For details on these functions please refer to the online help. The full contents of the cicode that is used to

read and parse the alarm event queue can be found in Appendix A: ProcessEventQue cicode function.

WHILE 1 DO

//Use QueOpen to open the Alarm Event Que

 hQueue= QueOpen("EventQue",0)

 Sleep(1);

 IF hQueue<> -1 THEN

//If the queue is not empty

 iQueLength = QueLength(hQueue);

 IF iQueLength > 0 THEN

 iQueStatus = 0;

 WHILE iQueStatus = 0 DO

//Read each entry from the queue

 iQueStatus = QueRead(hQueue,iRecord, sAlarmFmt,1)

In this example the variable sAlarmFmt will return a string in the format that is specified in the parameter

[Alarm] EventQueFmt. You will now need to parse this string using the string functions to retrieve the

various field information.

Once the relevant information has been read from the queue, and the appropriate checks have been

made, the alarm information be send via either email or SMS.

 © 2013 Schneider Electric All Rights Reserved

18

IF ((sPaging = "TRUE") AND (iCategory = 2) AND (sState = "ON")) THEN

 SendEmail("graeme.davey@schneider-electric.com",sAlarmName,"TIME: "+sTime+" STATE: "+sState);

END

5.3. Sending an alarm notification via email

This example will explain how to the use the Dot Net assembly functions to send an email from a web

based email account, such as gmail, yahoo or outlook.com. This will be done by directly calling

assemblies from the Dot Net Framework.

INT

FUNCTION SendEmail(STRING sTo, STRING sSubject, STRING sMessage, STRING sFrom, STRING sPassword, STRING

sSMTPServer)

 STRING sPath = "C:\Program Files (x86)\Reference

Assemblies\Microsoft\Framework\.NETFramework\v4.0\Profile\Client\System.dll";

 OBJECT hCredentialsProxy;

 OBJECT hSmtpClientProxy;

 INT result;

 INT iError = 0;

 hSmtpClientProxy = DllClassCreate(sPath, "SmtpClient", sSMTPServer);

 IF DllClassIsValid(hSmtpClientProxy) = 1 THEN

 DllClassSetProperty(hSmtpClientProxy,"Port",587)

 DllClassSetProperty(hSmtpClientProxy,"UseDefaultCredentials",0)

 DllClassSetProperty(hSmtpClientProxy,"EnableSsl",1);

 hCredentialsProxy = DllClassCreate(sPath,"NetworkCredential",sFrom,sPassword);

 IF DllClassIsValid(hCredentialsProxy) THEN

 DllClassSetProperty(hSmtpClientProxy,"Credentials",hCredentialsProxy);

 result= DllClassCallMethod(hSmtpClientProxy, "Send", sFrom, sTo, sSubject, sMessage);

 iError = IsError();

 END

 END

 DllClassDispose(hSmtpClientProxy);

 DllClassDispose(hCredentialsProxy);

 RETURN iError;

END

This function sends an email be creating an instance of the class, SMTPClient from the namespace

System.Net.Mail and a NetworkCredentials object from System.Net to handle the user name and password. Help

for these class can be found at:

NetworkCredentials: http://msdn.microsoft.com/en-us/library/system.net.networkcredential(v=vs.110).aspx

SMTPClient: http://msdn.microsoft.com/en-us/library/system.net.mail.smtpclient(v=vs.110).aspx

In this example, I’ve first created an SMTPClient using DllClassCreate, and passed SMTP server address to it.

This creates an instance of this class, that I can then set the relevant properties, so that I can establish

communications to the SMTP server.

 hSmtpClientProxy = DllClassCreate(sPath, "SmtpClient", sSMTPServer);

 © 2013 Schneider Electric All Rights Reserved

19

Once the class has been created, then next step is check if the class has been created successfully or not. This

can be done using the function DllClassIsValid. This function will return 1, if the instance of the class has been

created.

 IF DllClassIsValid(hSmtpClientProxy) = 1 THEN

Now that I know that the class is valid. I can now set some property values, using DllClassSetProperty. In this

example, I will set four properties. The first three properties are simple data types, so they can be set directly

using DllClassSetProperty. i.e.

 DllClassSetProperty(hSmtpClientProxy,"Port",587)

 DllClassSetProperty(hSmtpClientProxy,"UseDefaultCredentials",0)

 DllClassSetProperty(hSmtpClientProxy,"EnableSsl",1);

Property Data Type Value

EnableSsl Boolean True

Port Int 587

UseDefaultCredentials Boolean False

Credentials System.Net.NetworkCredential *

The fourth property “Credentials” needs to be set to an instance of a class, in this case, a

System.Net.NetworkCredentials object. To set this property, I create an instance of this class using

DllClassCreate, passing the relevant user name and password into the function. After checking that this is valid,

the handle to this object can be used within DllClassSetProperty.

 hCredentialsProxy = DllClassCreate(sPath,"NetworkCredential",sFrom,sPassword);

 IF DllClassIsValid(hCredentialsProxy) THEN

 DllClassSetProperty(hSmtpClientProxy,"Credentials",hCredentialsProxy);

 …

The email can now be sent using the “Send” method, passing in the relevant information by using

DllClassCallMethod

 result= DllClassCallMethod(hSmtpClientProxy, "Send", sFrom, sTo, sSubject, sMessage)

Finally, we need to dispose of the SMTPClient and NetworkCredential objects, by calling DllClassDispose.

 DllClassDispose(hSmtpClientProxy);

 DllClassDispose(hCredentialsProxy);

Using the Dot Net Assembly functions is to directly call into assemblies from the Dot Net framework is only

recommended for simple operations. For most operations, it will be more efficient to write your own Dot Net class,

 © 2013 Schneider Electric All Rights Reserved

20

and call the relevant methods and properties from that class using the Dot Net Assembly functions. This will be

more efficient as:

• It will allow you to write less total code

• Easier Debugging.

• It will allow you to access a wider variety of classes and data types.

• It will allow you to access static classes and methods.

 © 2013 Schneider Electric All Rights Reserved

21

6. Logging

Often while configuring and debugging your C# code, issues will occur. Your properties may not

return the correct values, incorrect parameters may be passed into methods or exceptions may occur.

To troubleshoot these types of issues, logging can be enabled that will catch all calls to the Dot Net

Assembly functions. This logging can be enabled for setting the following parameters in your Citect.ini file.

It is recommended that you only set these parameters will configuring and testing your project, and not on

a running system.

• [Debug] CategoryFilter = ManagedUtil

• [Debug] CategoryFilterMode = 0

• [Debug] Critical, Error, Information, Verbose, Warning

• [Debug] Priority = 30

By configuring these settings, detailed information on every call that is made to your dot net assembly will

be logged to the tracelog.dat file, which is contained in your \Logs directory.

6.1. Unhandled Exceptions

When an exception is thrown by your assembly, the exception will be caught by Vijeo Citect 2015 and an

“Invalid Argument passed” hardware alarm should be raised.

The tracelog.dat file, will also contain some useful information regarding the exception.

... ManagedUtil DllProxyManager::CreateProxyTasks dllPath=C:\Program Files (x86)\Schneider Electric\Vijeo Citect

7.50\Bin\CrashTest.dll className=CrashTest hProxy=0

... ManagedUtil DllProxy::DLLProxy method=Crash ex=System.Reflection.TargetInvocationException: Exception has been

thrown by the target of an invocation. ---> System.Exception: This exception should not cause runtime to crash

 © 2013 Schneider Electric All Rights Reserved

22

... ManagedUtil at CrashTest.CrashTest.Crash()

... ManagedUtil --- End of inner exception stack trace ---

... ManagedUtil at System.RuntimeMethodHandle.InvokeMethod(Object target, Object[] arguments, Signature sig, Boolean

constructor)

... ManagedUtil at System.Reflection.RuntimeMethodInfo.UnsafeInvokeInternal(Object obj, Object[] parameters, Object[]

arguments)

... ManagedUtil at System.Reflection.RuntimeMethodInfo.Invoke(Object obj, BindingFlags invokeAttr, Binder binder, Object[]

parameters, CultureInfo culture)

... ManagedUtil at System.RuntimeType.InvokeMember(String name, BindingFlags bindingFlags, Binder binder, Object

target, Object[] providedArgs, ParameterModifier[] modifiers, CultureInfo culture, String[] namedParams)

... ManagedUtil at SE.SCADA.ManagedUtil.DllProxy.MethodCall(String method, List`1 argList, Int16& error)

... ManagedUtil DllProxyManager::MethodCallTasks hProxy=0 method=Crash result=

6.2. Unsupported data types

When calling a method or accessing a property that returns an unsupported data type, the results of the

call can be viewed in the tracelog.dat file. i.e. If I attempt to read the minimum value of a Long in C# by

calling Long.Min(), this will return -9223372036854775808. As a long in C# is 64 bit, but cicode INT’s are

only 32-bits, this data will not be able to be passed back into a cicode variable. The value can however be

seen in the tracelog.dat file:

… ManagedUtil DllProxyManager::CreateProxyTasks dllPath=D:\ProgramData\Schneider Electric\Vijeo

Citect 7.50\User\DotNetDataTypes\DotNetDataTypeTests.dll className=DotNetDataTypeTests hProxy=17

… ManagedUtil DllProxyManager::GetProxyPropertyTasks hProxy=17 propertyName=LongMin result=-

9223372036854775808

 © 2013 Schneider Electric All Rights Reserved

23

7. Conclusion

By giving Citect users the ability to access Microsoft’s dot net framework, Citect users now have

can easily pass data to and from external systems. The dot net framework is powerful and well

documented. Example code can easily be found to solve any number of problems, meaning that

solutions to complex problems can be engineered much more quickly.

For example, web services exist that provide information on everything from weather services,

energy prices, or that allow users to send SMS’s via web based SMS gateways. By doing a little

research, and writing a small amount of C# code, these services can quickly be prototyped and

integrated into Citect solutions.

 © 2013 Schneider Electric All Rights Reserved

24

8. Appendix A: “Hello World!” C# code

using System;
using System.Collections.Generic;

using System.Linq;

using System.Text;
using System.Windows.Forms;

namespace HelloWorld

{
 public class HelloWorld

 {

 private string _helloWorldString;
 public HelloWorld()

 {

 _helloWorldString = "Hello World!";
 }

 public string Message

 {
 get

 {

 return _helloWorldString;

 }
 set

 {

 _helloWorldString = value;
 }

 }
 public void DisplayMessage()

 {

 MessageBox.Show(Message);

 }
 }

}

 © 2013 Schneider Electric All Rights Reserved

25

9. Appendix B: “Hello World!” cicode

// ---

// File: HelloWorld.ci

// ---

//

// ---

// Hello World! examples for calling dot net code from cicode

//

//

// ---

// HelloWorld1

// -----------

//

// Description: Creates an instance of the HelloWorld class, retrieves

// Messaage property and displays that using cicode function

// Message to display the message in a message box.

// ---

FUNCTION HelloWorld1()

 //Handle to the instance of our class, hello world.

 OBJECT hHelloWorld;

 STRING sMessage;

 //Create an instance of our class

 hHelloWorld = DllClassCreate(PathToStr("[RUN]:HelloWorld.dll"),"HelloWorld");

 //If this class is valid

 IF DllClassIsValid(hHelloWorld) = 1 THEN

 //retrieve the contents of the Message property

 sMessage = DllClassGetProperty(hHelloWorld,"Message");

 Message("Property from .Net class",sMessage,0);

 END

 //dispose our instance of the class

 DllClassDispose(hHelloWorld)

END

// ---

// HelloWorld2

// -----------

//

// Description: Creates an instance of the HelloWorld class, sets the

// Message property and then calls the method DisplayMessage

// to display the message in a message box.

// ---

FUNCTION HelloWorld2()

 //Handle to the instance of our class, hello world.

 OBJECT hHelloWorld;

 STRING sMessage = "Hello World !!!!!";

 //Create an instance of our class

 hHelloWorld = DllClassCreate(PathToStr("[RUN]:HelloWorld.dll"),"HelloWorld");

 //If this class is valid

 IF DllClassIsValid(hHelloWorld) = 1 THEN

 //Set the value of the message property

 DllClassSetProperty(hHelloWorld,"Message",sMessage);

 //and display the message by calling the method DisplayMessage

 DllClassCallMethod(hHelloWorld,"DisplayMessage");

 © 2013 Schneider Electric All Rights Reserved

26

 END

 //dispose our instance of the class

 DllClassDispose(hHelloWorld)

END

 © 2013 Schneider Electric All Rights Reserved

27

10. Appendix C: ProcessEventQue()

FUNCTION ProcessEventQueue()

 INT hQueue;

 INT iRecord,

 STRING sAlarmFmt;

 STRING sRemaining;

 STRING sAlarmName;

 STRING sTime;

 INT iCategory;

 STRING sState;

 INT iSendCategory = 2;

 INT iQueStatus;

 INT iQueLength;

 STRING sPaging;

 STRING sPagingGroup;

 WHILE 1 DO

 hQueue= QueOpen("EventQue",0)

 Sleep(1);

 IF hQueue<> -1 THEN

 iQueLength = QueLength(hQueue);

 IF iQueLength > 0 THEN

 iQueStatus = 0;

 WHILE iQueStatus = 0 DO

 iQueStatus = QueRead(hQueue,iRecord, sAlarmFmt,1)

 //sAlarmFmt will now return a string in the format that was specificed in

 //the parameter [Alarm]EventQueFmt

 //In this example, this will be

 // {fill this in later when your debugging}

 IF sAlarmFmt <> "" THEN

 sAlarmName = StrLeft(sAlarmFmt ,StrSearch(0, sAlarmFmt,","));

 sRemaining = StrRight(sAlarmFmt,StrLength(sAlarmFmt)-StrSearch(0,

sAlarmFmt,",")-1);

 sTime= StrLeft(sRemaining ,StrSearch(0, sRemaining ,","));

 sRemaining = StrRight(sRemaining ,StrLength(sRemaining)-StrSearch(0,

sRemaining ,",")-1);

 iCategory = StrToInt(StrLeft(sRemaining ,StrSearch(0, sRemaining ,",")));

 sRemaining = StrRight(sRemaining ,StrLength(sRemaining)-StrSearch(0,

sRemaining ,",")-1);

 sState = StrLeft(sRemaining ,StrSearch(0, sRemaining ,","));

 sRemaining = StrRight(sRemaining ,StrLength(sRemaining)-StrSearch(0,

sRemaining ,",")-1);

 sPaging = StrLeft(sRemaining ,StrSearch(0, sRemaining ,","));

 sPagingGroup = StrRight(sRemaining ,StrLength(sRemaining)-StrSearch(0,

sRemaining ,",")-1);

 IF ((sPaging = "TRUE") AND (iCategory = 2) AND (sState = "ON")) THEN

 SendEmail("me@myemail.com",sAlarmName,"TIME: "+sTime+" STATE:

"+sState);

 END

 END

 END

 END

 END

 END

END

 © 2013 Schneider Electric All Rights Reserved

28

11. References

C# Terminology https://msdn.microsoft.com/en-us/library/ms173231(v=vs.90).aspx

Visual Studio 2010 Express http://www.visualstudio.com/downloads/download-visual-studio-

vs#DownloadFamilies_4

NetworkCredential

SMTPClient

PerformanceCounter

Namespaces https://msdn.microsoft.com/en-us/library/z2kcy19k.aspx

Cicode references

DllclassCreate

DllClassCallMethod

DllClassSetProperty

dllclassGetProperty

DllClassDispose

AlarmEventQue

 © 2013 Schneider Electric All Rights Reserved

29

