Calculus 3 - Line Integrals

Consider the following. Suppose we had a straight wire with a constant density, ρ and length l, what would be the mass of the wire? This is a basic physics problem were we have

$$
\begin{equation*}
m=\rho \times l . \tag{1}
\end{equation*}
$$

Now suppose that the density of the wire changes with respect to its length, say $\rho=f(x)$, what would the mass now be? If we assume that over a very small interval, the density is approximately constant, then over this small length (we'll call this $d x$) the mass would be

$$
\begin{equation*}
d m=f(x) d x \tag{2}
\end{equation*}
$$

and adding all the small masses would give, in the limit

$$
\begin{equation*}
m=\int_{a}^{b} f(x) d x \tag{3}
\end{equation*}
$$

These are 1D problems. Suppose now the wire is two-dimensional and has as its the density $\rho=f(x, y)$ and bent in the shape of the function $f(x, y)$. What would be the mass of the wire now?

If we consider a small part of this curve, say $d s$, and assuming over this small part the density is constant, we would have the mass

$$
d m=f(x, y) d s
$$

and adding all the little masses up gives, in the limit

$$
\begin{equation*}
m=\int_{C} f(x, y) d s \tag{4}
\end{equation*}
$$

This is called a line integral.
Recall from arc length, that

$$
\begin{equation*}
d s=\sqrt{1+y^{\prime 2}} d x \tag{5}
\end{equation*}
$$

and so we have

$$
\begin{equation*}
\int_{C} f(x, y) d s=\int_{a}^{b} f(x, y(x)) \sqrt{1+y^{\prime 2}} d x \tag{6}
\end{equation*}
$$

Example 1. Evaluate

$$
\begin{equation*}
\int_{C}\left(x^{2}+y^{2}\right) d s \tag{7}
\end{equation*}
$$

where C is the straight line from $(0,0)$ to $(2,4)$.

Soln.
We first need the curve. As we have a straight line, we easily obtain

$$
\begin{equation*}
y-4=\frac{4}{2}(x-2) \quad \Rightarrow \quad y=2 x \tag{8}
\end{equation*}
$$

Next, since $y^{\prime}=2$, then $d s=\sqrt{1+2^{2}} d x=\sqrt{5} d x$. The limits of integration are $x=0 \rightarrow 2$. Thus, (7) becomes

$$
\begin{equation*}
\int_{0}^{2}\left(x^{2}+(2 x)^{2}\right) \sqrt{5} d x=\sqrt{5} \int_{0}^{2} 5 x^{2} d x=\frac{40 \sqrt{5}}{3} \tag{9}
\end{equation*}
$$

Example 2. Evaluate

$$
\begin{equation*}
\int_{C} 2 x d s \tag{10}
\end{equation*}
$$

where C is the parabola $y=x^{2}$ from $(0,0)$ to $(2,4)$ followed by the straight line from $(2,4)$ to $(0,4)$.

Soln.
We now have two curves and so we'll need two integrals, one for each curve.
$C_{1}:$ Here $y=x^{2}$ so $y^{\prime}=2 x$ and we have

$$
\begin{equation*}
\int_{0}^{0} 2 x \sqrt{1+4 x^{2}} d x=\left.\frac{1}{6}\left(1+4 x^{2}\right)^{3 / 2}\right|_{0} ^{1}=\frac{17 \sqrt{17}-1}{6} \tag{11}
\end{equation*}
$$

C_{2} : Here $y=4$ so $y^{\prime}=0$ and $d s=1 d x$ and we have

$$
\begin{equation*}
\int_{2}^{0} 2 x d x=-\int_{0}^{2} 2 x d x=-\left.x^{2}\right|_{0} ^{2}=-4 \tag{12}
\end{equation*}
$$

and so

$$
\begin{equation*}
\int_{C} 2 x d s=\frac{17 \sqrt{17}-1}{6}-4=\frac{17 \sqrt{17}-25}{6} \tag{13}
\end{equation*}
$$

Example 3. Evaluate

$$
\begin{equation*}
\int_{C}\left(2+x^{2} y\right) d s \tag{14}
\end{equation*}
$$

where C is the upper half circle $x^{2}+y^{2}=1$ from $(1,0)$ to $(-1,0)$.

Soln.
We certainly could solve for y giving $y=\sqrt{1-x^{2}}$ but things get a little complicated. However, we can parameterize the circle by

$$
\begin{equation*}
x=\cos t, \quad y=\sin t, \quad 0 \leq t \leq \pi \tag{15}
\end{equation*}
$$

so we need to modify the line integral formula (6). If x and y are given parametrically $x=x(t)$ and $y=y(t)$ then we have

$$
\begin{equation*}
\int_{C} f(x, y) d s=\int_{t_{1}}^{t_{2}} f(x(t), y(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \tag{16}
\end{equation*}
$$

For example 3 we have

$$
\begin{equation*}
\frac{d x}{d t}=-\sin t, \quad \frac{d y}{d t}=\cos t \tag{17}
\end{equation*}
$$

and so

$$
\begin{equation*}
\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d x}{d t}\right)^{2}}=\sqrt{\sin ^{2} t+\cos ^{2} t}=1 \tag{18}
\end{equation*}
$$

and (16) becomes

$$
\begin{equation*}
\int_{0}^{\pi}\left(2+\cos ^{2} t \sin t\right) d t=2 t-\left.\frac{1}{3} \cos ^{3} t\right|_{0} ^{\pi}=2 \pi+\frac{2}{3} \tag{19}
\end{equation*}
$$

Line Integrals in Space

We now consider line integrals when

$$
\begin{equation*}
x=x(t), \quad y=y(t), \quad z=z(t) \tag{20}
\end{equation*}
$$

The line integral in this case is

$$
\begin{equation*}
\int_{c} f(x, y, z) d s \tag{21}
\end{equation*}
$$

In 2D

$$
\begin{equation*}
d s=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \tag{22}
\end{equation*}
$$

in 3D

$$
\begin{equation*}
d s=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t \tag{23}
\end{equation*}
$$

and so (21) becomes

$$
\begin{align*}
& \int_{c} f(x, y, z) d s \\
& \quad=\int_{t_{1}}^{t_{1}} f(x(t), y(t), z(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t \tag{24}
\end{align*}
$$

Example 4. Evaluate

$$
\begin{equation*}
\int_{C} x e^{y z} d s \tag{25}
\end{equation*}
$$

where C is the line from $(0,0,0)$ to $(1,2,3)$.

Soln.
We first need the equation of the line. It follows the vector

$$
\begin{equation*}
\overrightarrow{P Q}=\langle 1,2,3\rangle \tag{26}
\end{equation*}
$$

The equation of the line is

$$
\begin{equation*}
x=t, \quad y=2 t, \quad z=3 t, \quad 0 \leq t \leq 1 \tag{27}
\end{equation*}
$$

SO

$$
\begin{gather*}
d s=\sqrt{1^{2}+2^{2}+3^{2}} d t=\sqrt{14} d t \tag{28}\\
\int_{0}^{1} t e^{6 t^{2}} \sqrt{14} d t=\left.\frac{\sqrt{14}}{12} e^{6 t^{2}}\right|_{0} ^{1}=\frac{\sqrt{14}}{12}\left(e^{6}-1\right) \tag{29}
\end{gather*}
$$

