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 Abstract: Smart and agile drones are quick getting 

omnipresent at the edge of the cloud. The utilization of these 

robots are obliged by their restricted power and figure 

capacity. In this paper, we present an Exchange Learning 

(TL) put together way to deal with decrease with respect to 

board calculation needed to prepare a profound neural 

organization for independent route through Profound Support 

Learning for an objective algorithmic exhibition. A library of 

3D sensible meta-conditions is physically planned utilizing 

Stunning Gaming Motor and the organization is prepared 

start to finish. These prepared meta-loads are then utilized as 

initializers to the organization in a test climate and adjusted 

for the last barely any completely associated layers. Variety 

in drone elements and ecological attributes is completed to 

show heartiness of the methodology. Utilizing NVIDIA GPU 

profiler it was shown that the energy utilization and preparing 

idleness is diminished by 3.7x and 1.8x separately without 

critical debasement in the exhibition as far as normal distance 

went before crash for example Mean Safe Flight (MSF). The 

methodology is likewise tried on a genuine climate utilizing 

DJI Tello drone and similar results were reported. 
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I. INTRODUCTION 

Ridiculous decade, Automated ethereal vehicle  are arising as 

another type of IoT gadgets being utilized in fluctuated 

applications like surveillance, studying, saving and planning. 

Independent of the application, exploring self-luringly is one 

of the key attractive highlights of UAVs both inside and 

outside. A few arrangements have been proposed to make 

drones self-ruling in an indoor climate. There has been 

critical work towards utilizing extra devoted detecting 

modalities, for example, RADAR [1] and LIDAR [2], which 

give high exactness in route and hindrance evasion, 

subsequently empowering self-sufficient flights conceivable. 

In any case, when the payload, cost and force is considered, 

such frameworks are weighty, costly and power hungry, 

making them practically difficult to be utilized in minimal 

effort Miniature Elevated Vehicles (MAV). Ultrasonic 

SONAR is a modest other option however experiences 

absence of precision and diminished field of view (FOV). 

They are additionally view sensors that need to work in an 

exhibit to give a profundity (left) DRL for autonomous 

navigation is carried out an a set of manually generated 3D 

realistic meta-environments. The learning is transferred to a 

new test environment and only last few layers are trained. 

(right) The approach is also tested in a real environment using 

DJI Tello. Then again, in the course of the most recent 

decade, there has been huge interest in the utilization of 

Neural Organization (NN) for different automated 

applications. Lately, support learning (RL) has been broadly 

investigated for empowering a wide exhibit of mechanical 

errands. The without model nature of RL makes it reasonable 

in the issues where little or nothing is thought about the 

climate. RL has been effectively executed in games and has 

appeared past human level execution [3], [4]. 

Notwithstanding, RL is an information hungry strategy and 

regularly requires more information contrasted with other AI 

methods to produce tantamount outcomes. The exhibition of 

AI calculations relies vigorously on the intricacy of the 

organization and the measure of significant information 

accessible for preparing. For a mind boggling task, the more 

profound the NN, the better the exhibition. Correspondingly, 

the measure of significant information scales too [5] until 

where the assignment isn't mind boggling sufficient given the 

organization design and execution begins corrupting [6]. 

Preparing a more profound neural organization accompanies 

the expense of expanded calculation. This makes it trying to 

be carried out on a restricted asset edge hub like a portable 

robot. Easier NNs with ongoing preparing can be carried out 

nervous hubs, however this is accomplished exclusively by 

trading off the exhibition of the hidden application. Thus, for 

a worthy presentation, the organization ought to be 

adequately profound, which accompanies:  

Additional compute requirement  

 Increased Power consumption  

 Increased latency  

For a resource constrained edge node (like a light-weight 

drone), additional compute resource means adding more 

hardware to the drone decreasing its thrust-to-weight ratio, 

increased amount of power consumption may drain the 

battery quicker rendering the drone useless and increased 

latency will affect its response time making it far from being 

real-time. Hence these additional requirements are in a direct 

contrast with drone’s inherent limitations. 
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Simpler NNs require reduced amount of computations and 

are possible to be implemented on edge nodes. But for a 

complex enough task, these simpler NNs do not perform well. 

So the problem is, for RL related applications how can we 

implement a neural network training on resource- constrained 

edge nodes without losing too much performance and with 

reduced power and latency. One direct approach is to use 

Offline Training and Deployment i.e. training the NN on 

cloud, and carrying out inference on the edge nodes. For tasks 

involving supervised learning (say classification), this is an 

effective solution. But for Reinforcement Learning (RL) 

related problems, where there is no clear boundary between 

the training and inference phase, this can’t be implemented 

directly. [7] however uses an approach where the network is 

trained on simulated environments posing RL as supervised 

learning problem and then deployed on new unknown 

environments. This transfer of knowledge without further 

fine-tuning doesn’t always work well and is tightly tied to the 

co-relation or similarity between the train and test 

environments. The more the similarity between the training 

and testing environment the better the performance and vice- 

versa. [8] learns a CNN with regressors using supervised 

learning to follow a pre-determined path and fails to perform 

if the environment changes.  

For the rest of the paper, we will focus on solving 

autonomous  navigation problem using RL in simulated 

indoor environments.  

II. RELATED WORK 

Since the overall objective is to make Micro Aerial vehicles 

(MAV) capable enough of carrying out ML training 

algorithms, this problem can be approached in either of the 

two areas. The first and more direct approach is to make 

better hardware engines for DNN accelerators [9], [10]. 

Authors of [11] design and implement an energy-efficient 

accelerator for visual-inertial odometry (VIO) that enables 

autonomous navigation of miniaturized robots. [12] 

demonstrates a navigation engine for autonomous nano-

drones which is capable of closed-loop end-to-end DNN-

based visual navigation. The other approach is to devise 

better and improved algorithms that take lesser amount of 

computations (hence energy) for similar performance such as 

model compression [13], [14],[15] developed Network 

Pruning, which begins with a pre- trained model, then the 

network parameters which are below a certain threshold are 

replaced with zeros forming a sparse matrix, and finally 

performs a few iterations of training on the sparse CNN. The 

downside of this approach is that the network needs to be 

iteratively pruned and retrained until the desired compression 

is achieved. Moreover this approach might not be useful for 

online ML problems such as RL where re-training the 

network is not energy efficient at  all. This tiny network might 

be problem specific and is not guaranteed to be complex 

enough for convoluted task such as end-to-end autonomous 

navigation. This paper proposes an approach that falls in the 

latter category.  

Transfer learning is a well-established approach of 

transferring any prior domain knowledge to a new problem 

or domain. This is how human brain works, instead of 

learning any new problem from scratch, it uses pre-existing 

knowledge about prior problems and uses that along with 

learning new skill set to solve the problem. Transfer learning 

has been widely used in Machine Learning problems to 

address the issues of smaller or insufficient amount of data, 

mitigating convergence issues, reducing the time/steps 

required for convergence [16].These issues are addressed by 

learning a neural network for one task, and using the learned 

weights as initialization to another network for a different 

task. The network weights are then fine-tuned based on the 

new domain knowledge (data-set). The most common and 

simplest example of TL is using ImageNet learned weights as 

initializer for classification problems.  

To the best of our knowledge all the TL papers in the past 

discuss TL as tool/approach to address the above-mentioned 

issues without worrying much about the computational cost 

required to train a deep neural network. In this paper we show 

we can use Transfer learning, to segment a deep network into 

trainable and non-trainable part reducing the training 

computations, for underlying task without compromising too 

much on its performance.  

III. BACKGROUND ON REINFORCEMENT LEARNING 

(RL) 

In Support Learning (RL), the specialist communicates with 

the given climate learning a control strategy to accomplish 

the underline objective. Rather than Administered Learning 

(SL) where the objective marks are static, the RL preparing 

names are dynamic until the planning unites. The powerful 

idea of the names (or Q esteems) requires consistent 

cooperation with the climate and isn't possible disconnected. 

In this paper, the RL objective is to accomplish self-sufficient 

flight, making moves that lead to a crash free trip of the robot. 

There is no predefined start or end position and the objective 

is to continue getting across the climate. Think about the 

previously mentioned undertaking of hindrance evasion. The 

specialist collaborates with the climate E in an arrangement 

of activities, perceptions and award figuring’s. It makes a 

move at from a predefined activity space An and executes it. 

Executing the activity moves the robot to another position 

where it notices another camera outline st+1. This new 

camera outline alongside the activity taken will evaluate an 

award rt. This prize ought to be high if the robot moved the 

correct way dodging the impediment and low if the activity 

took it nearer to the hindrance, expanding the opportunity of 

crash. Thus every cycle in RL produces an information tuple 

(st,at,rt,st+1).  
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In Profound Support learning (DRL), this planning from 

states to Q-values s −→ Q(s, a) is finished by learning a 

Neural Organization and henceforth requires a great deal of 

preparing emphases before it can combine. Figuring out how 

to maintain a strategic distance from obstructions from 

monocular RGB pictures is an unpredictable errand and 

requires further neural organizations. Preparing these 

profound neural organizations generally adds to the inactivity 

and energy prerequisites. 

IV. TL BASED PROPOSED APPROACH 

A. Objective  

Transfer the learning from Cloud to edge nodes for Deep 

Reinforcement Learning (RL) applications. In this paper we 

discuss transfer learning based algorithmic improvement 

targeting  

 Real-time Learning: Improved training latency  

 Energy efficient: Reduced energy consumption 

 Similar performance: No significant degradation in 

algorithmic performance 

 B. Overview:  

We propose a two-phase approach to the problems related to 

DRL which combines offline and online learning using 

Transfer Learning and fine-tuning. The idea is that if we train 

a NN for an RL application (say autonomous navigation) in a 

variety of indoor environments collectively, we can use this 

knowledge using Transfer Learning while training a smaller 

part NN for similar application in a similar (but 

different/unseen) test environment. The top-level block 

diagram of the approach can be seen below. In the Offline 

phase, one single network is trained on a set of training 

environments (called meta-environments) using DRL. These 

environments serve as a library of environment for the 

underlying problem. This offline training phase is carried out 

on server (and not on edge-nodes) where we assume no strict 

restriction on the compute engine. Once we have effectively 

trained a network on the meta environments collectively, we 

use these meta-weights as initialization during the online 

training phase. In the online training phase, a different test 

environment is used for training (fine-tuning). The training 

computations need to be carried out in the edge nodes (we 

don’t implement anything on hardware, rather we provide the 

compute statistics and compare them with training the 

network end-to-end). In this phase, the training is only carried 

out on a part of the network. The network is divided into non-

trainable and trainable part and only the weights of the 

trainable part are updated.  

 

C. Perception based probabilistic action space As  

Perception based discrete action space As of size N × N is 

used. In this action space the agent navigates by controlling 

the yaw and pitch expanding over all three coordinates. These 

angles are calculated by making use of the horizontal and 

vertical field-of-view (FOVs) of the front facing camera. The 

camera image at time t , st is divided into N × N grid. Each 

window in the grid corresponds to an action in the action 

space. The action selection is simply the choice of the bin 

which is then transformed into velocity commands vt for the 

drone. This velocity command results in moving along the 

line connecting the current position to the position where the 

window becomes the entire camera frame by r meters 

 

Fig. 1: 3D floor plan and screen-shots of the 2 test 

environments used for online training phase. (from left to 

right)  

Algorithm 1 OFFLINE TRAINING PHASE 

ALGORITHM 

Input: Set of N meta environments: Emeta = {E0,E1,...,EN,} 

Output: Weights of neural network θmeta 

Initialization: Behaviour network: Qθ(s)=N (s; θ), Tar- get 

network: Qθ′(s) = N(s; θ′), ntarget: Target network update 

interval, nbatch: mini-batch size for training, ntrain: Train 

Interval, Dreplay, env = 0, m : Environment switch interval 
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for t ∈ {1,2,3,...,max steps} do if mod (t, m) = 0 then 

saved state[env]←(st,pt) env←mod((env+1),N) 

(st,pt)←saved state[env] Ecurrent ← Eenv 

position agent(Ecurrent,pt) else 

st ←get state(Ecurrent,pt) 

Sample an action at from current policy using ε-greedy pt+1 

←move agent(Ecurrent,pt,at) 

st+1←get state(Ecurrent,pt+1) 

rt ←get reward(st,at,st+1,pt+1) 

Store the tuple (st,at,st+1,rt) in Dreplay if mod(t, ntrain) = 0 

then 

Sample a mini-batch of size nbatch from Dreplay Train the 

Behaviour network: Qθ (s) = N(s; θ ) 

if mod(t, ntarget) = 0 then θ′ ← θ, θ  meta ← θ 

is robust to variation in environment and agent’s control 

dynamics. 

VII. CONCLUSION 

This paper carries out an Exchange learning way to deal with 

diminish the measure of assets needed to prepare a profound 

neural organization for RL issue via preparing the 

organization on a bunch of rich and assorted meta conditions, 

moving the space information to test conditions and 

preparing the last not many completely associated layers as it 

were. The algorithmic exhibition of this organization 

estimated regarding Mean Safe Flight was like preparing the 

organization start to finish while decreasing the dormancy 

and energy utilization by 1.8 and 3.7 occasions individually. 

The decrease in these boundaries can make it workable for 

DRL preparing to carried out asset compelled edge hubs. 

Also, the methodology was tried on a genuine climate 

utilizing an ease drone and showed comparative execution. 
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