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We propose a new method of analyzing a time series as well as a method to compute the coherency between two (or more) time

series. These methods, namely, the least-squares wavelet analysis (LSWA) and the least-squares cross wavelet analysis

(LSCWA), respectively, can analyze any time series that exhibit non-stationarity, while they may be unequally spaced, and

unequally weighted, exhibiting gaps and offsets without the need of editing them.

4)Least-squares cross wavelet spectrogram (LSCWS)

3) Weighted Wavelet Z transform (WWZ) vs least-squares wavelet analysis (LSWA) 5) GOCE gradiometer measurements and Poynting energy flux

References
Ghaderpour, E., Ince, E.S., & Pagiatakis, S. D. (2018). Least-squares cross wavelet analysis and its applications in geophysical time series, Journal of Geodesy, revised 

version is submitted.

Ghaderpour, E., & Pagiatakis, S. D. (2017). Least-Squares Wavelet Analysis of Unequally Spaced and Non-stationary Time Series and Its Applications. Mathematical 

Geosciences, 49(7), 819-844.

Ince, E. S., & Pagiatakis, S. D. (2016). Effects of space weather on GOCE electrostatic gravity gradiometer measurements. Journal of Geodesy, 90(12), 1389-1403.

Pagiatakis, S. D. (1999). Stochastic significance of peaks in the least-squares spectrum. Journal of Geodesy, 73(2), 67-78.

Fig. 1) (a) Unequally spaced and (b) Equally spaced time series along with

sinusoids (cosine - red and sine - green) and some windows

Fig. 2) Window translation of an equally spaced time series (blue) for (a)

sin(x) and cos(x) and (b) sin(2x) and cos(2x).

1) Least-squares wavelet analysis (LSWA)

Summary

Fig. 6) (a) Two unequally spaced series (b) Least-squares cross

spectrum (LSCS) of the two time series (c) LSCS of the two

residual time series after suppressing the peak at 5 c/d

Fig. 7) (a) LSCWS of the time series (b) LSCWS of the residual time

series after removing (suppressing) the peaks at 5c/d. The arrows on

the spectrogram show the phase differences.

6) VLBI (Very Long Baseline Interferometry) baseline length and atmospheric temperatures

Fig. 4) The unequally spaced time series and its constituents. (a)-(f) different

constituents and (g) the time series (the sum of the constituents).

Fig. 5) De-trended time series (a) Least-squares spectrum (LSS) (b) Least-squares wavelet

spectrum (LSWS) (c) WWZ (note 60 c/m has variable amplitude); (d) LSS (does not show the

variation of sine wave of 5 c/m) (e) LSWS (after simultaneously removing the trend and sine wave

of 60 c/m); (f) WWZ (after manually removing the trend and sine wave of 60 c/m). (g) LSWS with

modified window parameters (h) WWZ with modified c=0.1

Fig. 8) (a) The cross-track Poynting vector component (W/m^2) and decimated GGT trace

series (miliEotvos) for a satellite track (b) The LSCS of original GGT trace and cross-track

Poynting vector component series with 99% confidence level (c) LSCWS of the Poynting vector

and the original GGT trace series with the stochastic surface at 99% confidence level (gray

colour bar) and phase differences (arrows) (d) The cross wavelet transform (XWT) of the

Poynting vector and the decimated GGT trace series (MATLAB).

Synthetic time series:

2)Continuous wavelet transform (CWT) vs least-squares wavelet spectrogram (LSWS) 

Fig. 3)  Two hyperbolic chirp signals and their analyses.

CWT peaks lose power toward higher frequencies, it is

misleading since the amplitudes of the chirp signals are

not decreasing over time.

Using the window parameters set, the true signal peaks

are very well resolved and their percentage variance

does not significantly change across the time-frequency

domain.

Weighted LSWS using power spectral density 

representation in terms of decibel (dB). 

Simulation of unequally spaced time series for 1 month, consisting of trend, non-stationary signal, random noise and hyperbolic chirp signal. The 

known frequencies are suppressed to reveal the hidden signals (see Fig. 5). 

WWZ is a poor measure of amplitude; however, the constituents of known forms are explicitly considered in the LSWA (see the difference 

between the right and left hand sides of Fig. 5.

For a fixed frequency, the window length varies in translation while its size remains constant for unequally spaced time series

(Fig. 1a), but the window length and size are both constant in translation for equally spaced time series (Figs. 1b and 2).

LSCWA is used effectively to study the disturbances in the gravitational 

gradients observed by GOCE satellite that arise from plasma flow in the 

ionosphere. (GGT-Gravitational gradient tensor)

Weighted LSWS using the Gaussian values as weights

tunes the spikes in Fig. 3c (white arrows). The spikes are

mitigated, but the bandwidth of the spectra increases (see

inside the circles)

Fig. 9) (a) The unequally spaced VLBI baseline length evolution since January 1984 with error

bars (red) (b) Unequally spaced and equally weighted temperature series at stations Westford

(red) and Wettzell (blue) since January 1984. (c) and (d) The LSCWS of the residual VLBI

series (baseline length and temperature) in Westford and Wettzell, respectively with their

stochastic surfaces at 99% confidence level (gray) and phase differences (white arrows).

LSCWA is also used to study the coherency between the Westford-

Wettzell VLBI baseline length and the temperature series at both 

stations, showing significant thermal effects on the baseline length.
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The % variance of the 5c/day (c/d) 

corresponding peak decreases as 

time increases. Since the 

frequency of the hyperbolic chirp 

in 𝑓1 increases rapidly over time, it 

shows less coherency with the 

cosine wave of 5c/d of 𝑓2.

The coherency increases after the 

5c/d is removed and 90 degrees 

phase difference between the time 

series is observed.

Definition: Decomposition of a time series into time-frequency domain by an appropriate segmentation of the series and

calculation of spectral peaks based on the least-squares fit of sinusoids to each segment.

• Segmentation is achieved by a translating window whose size is characterized by the number of data points included.

• The size of the window 𝐿 𝜔𝑘 =
𝐿1𝑀

𝜔𝑘
+𝐿0 must include a number of data points to achieve a reasonable redundancy for the

least-squares fit where 𝑀: sampling interval, 𝐿1: number of cycles of the base function, 𝜔𝑘: frequency of the base function

(dilation), 𝐿0: additional number of data points considered to achieve the desired time and frequency resolution.

Note: LSCWA does not require the two time series to be equally 

spaced or have the same sampling rate.

Note: LSWA clearly shows the hidden signals after simultaneously 

removing the constituents of known forms (red circles in Fig. 5).
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