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Summa ry 3) Weighted Wavelet Z transform (WW2Z) vs least-squares wavelet analysis (LSWA) 5) GOCE gradiometer measurements and Poynting energy flux
We propose a hew method of analyzing a time series as well as a method to compute the coherency between two (or more) time Simulation of un_equally spaced time series for 1 mpnth, c_onsisting of trend, non-stationary signal, random noise and hyperbolic chirp signal. The LSCWA is used effectively to study _the distur_bances in the gravita';ional c)
series. These methods, namely, the least-squares wavelet analysis (LSWA) and the least-squares cross wavelet analysis known frequencies are suppressed to reveal the hidden signals (see Fig. 5). N | | | gradients observed by GOCE satellite that arise from plasma flow in the 100- —g 45
(LSCWA), respectively, can analyze any time series that exhibit non-stationarity, while they may be unequally spaced, and WWZ is a poor measure of amplitude; however, the constituents of known forms are explicitly considered in the LSWA (see the difference lonosphere. (GGT-Gravitational gradient tensor) 90- , 40
unequally weighted, exhibiting gaps and offsets without the need of editing them. between the right and left hand sides of Fig. 5. a) 80- i
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