Sample Test 3 — Solutions

1. Sketch the following parametric curve and find the equation of the tangent at the point of self
intersection
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Solution
From the graph, it appears that they cross at the point (1,1).
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Two determine the times where they cross we choose vy (its easier) and set it to 1
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Substituting both t = —1 and + = 1 into x shows both are 1 so yes, (1,1) is the point the curve
crosses itself. Next we find derivatives
dx 442 -1 dy 4t
. (2+12 7 4t (2P+1)
and dividing gives
dy 4t
dx 442 -1
Att = —1, % = —landatt =1, % = 1. So the tangents are

y—1=-1(x-1), y—-1=1(x-1).
2. Graph the following polar equations
r=24+2sinf, r =2sin26.
Solutions

r=2+2sin6,



r = 2sin 20,
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3. Find the area inside one leaf of the rose described by
r = 2sin 30.

Solution
Here we use
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From the picture below, we find that we sweep out the area when 6§ = 0 — 7, so these are the
limits of integration. Thus,
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4. Find the area of the following:

(i) insider =2+ 2sin#,
(i)  inside the outer loop and outside the inner loop of r = 1 — 2sin 6,
(iii) outside r = cos 26 and inside r = sin26 on [0, 5].



Solutions
(1) r = 24 2sin 0 The picture is above

1 2= 5
:5/ (24 2sin6)2d0 = 67,
0

(i1) inside the outer loop and outside the inner loop of r = 1 — 2sin 6,
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OuterLoop %/ (1—2sin6)*do =27+ ﬂ_
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A=2m+ —f - (n f) 7 +3V/3.
(iii) outside r = cos 20 and inside r = sin26 on [0, F].

In the first quadrant, the curves intersect at 6 = 71/8 and sweeps out half the area between
6 = 7t/8 and 0 = 7t/4. The area is given by
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Graphs for 4 (ii) and 4 (iii)

5. Find the projection of the vector i onto ¥ where i =< 2,3 >, and ¥ =< 4,2 >. Sketch
both vectors, the projected vector and the orthogonal complement.

In the graph, the vectors i and ¥ are shown
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i-7=84+6=14, 7-7=16+4 =20,
. (u-T\ 7
proj z U = <m>v—10<4,2>

The orthogonal complement is given by

o — 7 B 4 8
i—projgzu=<23> E<4'2>_< 5,5>.

6. (i) Find the equation of the plane that contains the vector < 1,2,4 > and the points (1,1,1)
and (—2,3,7).
(ii) Find the equation of the plane that contains the points (1,3,5), (2,—1,2) and (0,4,6).

(1) We first construct a vector between the two points, this is < —3,2,6 >. Next, cross the two
vectors
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The equation of the plane is given by
2(x—1)—9(y—1)+4(z—1)=0.

=<4,-18,8 >.

NN —
o

(ii) Label the three points P(1,3,5), Q(2,—1,2) and R(0,4,6). find two vectors that connects

two pairs, i.e. PQ =< 1,—4,—3 > and PR =< —1,1,1 >. The cross product will give the
normal



The equation of the plane is given by

(x—1)—2(y—3)+3(z—5) =0.

7. (i) Find the equation of the line that passes through the points (1,2,4) and (—2,3,7).
(i1) Find the equation of the line perpendicular to the plane x + 2y — 3z = 6 passing through
the point (1, —1,3).

(i) The line will follow the vector < —3,1,3 > so the equation of the line is

x=1-3t y=2+t z=4+3t

(i1) The line will follow the normal vector < 1,2, —3 > so the equation of the line is

x=1+t, y=-1+2t, z=3-3t



