
1

CAP 4630

Artificial Intelligence

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu



2

• http://www.ultimateaiclass.com/

• https://moodle.cis.fiu.edu/

• HW1 out 9/5 today, due 10/3 

– Remember that you have up to 4 late days to use throughout 

the semester.

• HW2 will go out next week, due 10/17

• Midterm on 10/19

– Review during half of class on 10/17

• TA office hours:

– Thursday 3:15-4:15PM, ECS 254

http://www.ultimateaiclass.com/


3

Adversarial search

• This 8×8 variant of draughts (checkers) was weakly solved on 

April 29, 2007 by the team of Jonathan Schaeffer, known for 

Chinook, the "World Man-Machine Checkers Champion." From 

the standard starting position, both players can guarantee a draw 

with perfect play. Checkers is the largest game that has been 

solved to date, with a search space of 5×1020. The number of 

calculations involved was 1014, which were done over a period 

of 18 years. The process involved from 200 desktop computers 

at its peak down to around 50.



4

Weakly vs. strongly solved

• Weak: Provide an algorithm that secures a win for one player, 

or a draw for either, against any possible moves by the 

opponent, from the beginning of the game. That is, produce at 

least one complete ideal game (all moves start to end) with proof 

that each move is optimal for the player making it. It does not 

necessarily mean a computer program using the solution will 

play optimally against an imperfect opponent. For example, the 

checkers program Chinook will never turn a drawn position into 

a losing position (since the weak solution of checkers proves 

that it is a draw), but it might possibly turn a winning position 

into a drawn position because Chinook does not expect the 

opponent to play a move that will not win but could possibly 

lose, and so it does not analyze such moves completely.



5

Weakly vs. strongly solved

• Strong: Provide an algorithm that can produce perfect 

moves from any position, even if mistakes have 

already been made on one or both sides.

• Ultra-weak: Prove whether the first player will win, 

lose or draw from the initial position, given perfect

play on both sides. This can be a non-constructive 

proof (possibly involving a strategy-stealing argument) 

that need not actually determine any moves of the 

perfect play.



6

Connect Four

• Solved first by James D. Allen (Oct 1, 1988), and 

independently by Victor Allis (Oct 16, 1988). First 

player can force a win. Strongly solved by John 

Tromp's 8-ply database (Feb 4, 1995). Weakly solved 

for all boardsizes where width+height is at most 15 (as 

well as 8×8 in late 2015) (Feb 18, 2006).

• The artificial intelligence algorithms able to strongly 

solve Connect Four are minimax or negamax, with 

optimizations that include alpha-beta pruning, move 

ordering, and transposition tables. 



7

Connect Four

• The solved conclusion for Connect Four is first player 

win. With perfect play, the first player can force a win, 

on or before the 41st move (ply) by starting in the 

middle column. The game is a theoretical draw when 

the first player starts in the columns adjacent to the 

center. For the edges of the game board, column 1 and 

2 on left (or column 7 and 6 on right), the exact move-

value score for first player start is loss on the 40th 

move, and loss on the 42nd move, respectively. In 

other words, by starting with the four outer columns, 

the first player allows the second player to force a win.



8

2-player limit Hold’em poker is 

solved (Science 2015)



9

Heads-up Limit Hold ‘em Poker is Solved

• Play against Cepheus here http://poker-

play.srv.ualberta.ca/

http://poker-play.srv.ualberta.ca/


10

Poker

• Abstract: Poker is a family of games that exhibit imperfect 

information, where players do not have full knowledge of past 

events. Whereas many perfect-information games have been 

solved (e.g., Connect Four and checkers), no nontrivial 

imperfect-information game played competitively by humans 

has previously been solved. Here, we announce that heads-up 

limit Texas hold’em is now essentially weakly solved. 

Furthermore, this computation formally proves the common 

wisdom that the dealer in the game holds a substantial 

advantage. This result was enabled by a new algorithm, CFR+, 

which is capable of solving extensive-form games orders of 

magnitude larger than previously possible.



11

Adversarial search

• We first consider games with two players, whom we 

call MAX and MIN. MAX moves first, and then they 

take turns moving until the game is over. At the end of 

the game, points are awarded to the winning player, 

and penalties given to the loser. A game can be 

formally defined as a kind of search problem with the 

following elements:



12

Search problem definition

• States

• Initial state

• Actions

• Transition model

• Goal test

• Path cost



13

Definition for 8-queens problem

• States: Any arrangement of 0 to 8 queens on the 

board is a state.

• Initial state: No queens on the board.

• Actions: Add a queen to any empty square.

• Transition model: Returns the board with a 

queen added to the specified square

• Goal test: 8 queens are on the board, none 

attacked

• Path cost: (Not applicable)



14

Game definition

• S0: the initial state, which specifies how the game starts

• PLAYER(s): defines which player has the move in a state

• ACTIONS(s): Returns the set of legal moves in a state

• RESULT(s,a): The transition model, which defines the result of 

a move.

• TERMINAL-TEST(s): A terminal test, which is true when the 

game is over and false otherwise. States where the game has 

ended are called terminal states.

• UTILITY(s,p): A utility function (also called an objective 

function or payoff function), defines the final numeric value for a 

game that ends in terminal state s for a player p. In chess, the 

outcome is a win, loss, or draw, with values +1, 0, or ½. Some 

games have a wider variety of possible outcomes; the payoffs in 

backgammon range from 0 to +192.



15

Zero-sum games

• A zero-sum game is (confusingly) defined as 

one where the total payoff to all players is the 

same for every instance of the game. 

• Is chess zero-sum?

• Checkers?

• Poker?



16

Zero-sum games

• Chess is zero-sum because every game has payoff of 

either 0 +1, 1+0, or ½ + ½ 

• “Constant-sum” would have been a better term, but 

zero-sum is traditional and makes sense if you imagine 

that each player is charged an entry fee of ½.



17

Game tree

• The initial state, ACTIONS function, and RESULT function 

define the game tree for the game—a tree where the nodes are 

game states and the edges are moves. The figure shows part of 

the game tree for tic-tac-toe. From the initial state, MAX has 

nine possible moves. Play alternates between MAX’s placing an 

X and MIN’s placing an O until we reach leaf nodes 

corresponding to terminal states such that one player has three in 

a row or all the squares are filled. The number on each leaf node 

indicates the utility value of the terminal state from the point of 

view of MAX; high values are assumed to be good for MAX 

and bad for MIN (which is how the players get their names).



18

Game trees



19

Game trees

• For tic-tac-toe the game tree is relatively small—fewer 

than 9! = 362,880 terminal nodes. But for chess there 

are over 10^40 nodes, so the game tree is best thought 

of as a theoretical construct that we cannot realize in 

the physical world. But regardless of the game tree, it 

is MAX’s job to search for a good move. We use the 

term search tree for a tree that is superimposed on the 

full game tree, and examines enough nodes to allow a 

player to determine what move to make.



20

Optimal decisions in games

• In a normal search problem, the optimal solution would 

be a sequence of actions leading to a goal state—a 

terminal state that is a win. In adversarial search, MIN 

has something to say about it. MAX therefore must 

find a contingent strategy, which specifies MAX’s 

move in the initial state, then MAX’s moves in the 

states resulting from every possible response by MIN, 

then MAX’s moves in the states resulting by every 

possible response by MIN to those moves, and so on. 

Roughly speaking, an optimal strategy leads to 

outcomes at least as good as any other strategy when 

one is playing an infallible opponent. 



21

Game tree



22

Optimal decisions in games

• Even a simple game like tic-tac-toe is too complex for 

us to draw the entire game tree on one page, so we will 

instead examine a “trivial” game. The possible moves 

for MAX at the root node are labeled a1, a2, and a3. 

The possible replies to a1 for MIN are b1, b2, b3, and 

so on. This particular game ends after one move each 

by MAX and MIN. (We say that this tree is one move 

deep, consisting of two half-moves, each of which is 

called a ply.) The utilities of the terminal states in this 

game range from 2 to 14.



23

Optimal decisions in games

• Given a game tree, the optimal strategy can be determined from 

the minimax value of each node, which we write as 

MINIMAX(n). The minimax value of a node is the utility (for 

MAX) of being in the corresponding state, assuming that both 

players play optimally from there to the end of the game. 

Obviously, the minimax value of a terminal state is just its 

utility. Furthermore, given a choice, MAX prefers to move to a 

state of maximum value, whereas MIN prefers a state of 

minimum value. So we have:



24

Optimal decisions in games

• Let us apply these definitions to the game tree 

considered above. The terminal nodes on the bottom 

level get their utility values from the game’s UTILITY 

function. The first MIN node, labeled B, has three 

successor states with values 3, 12, and 8, so its 

minimax value is 3. Similarly, the other two MIN 

nodes have minimax value 2. The root node is a MAX 

node; its successor states have minimax values 3, 2, 

and 2; so it has a minimax value of 3. We can also 

identify the minimax decision at the root: action a1 is 

the optimal choice for MAX because it leads to the 

state with the highest minimax value.



25

Optimal decisions in games

• This definition of optimal play for MAX assumes that 

MIN also plays optimally—it maximizes the worst-

case outcome for MAX. What if MIN does not play 

optimally? Then it is easy to show (homework 

exercise) that MAX will do even better. Other 

strategies against suboptimal opponents may do better 

than the minimax strategy, but these strategies 

necessarily do worse against optimal opponents.



26

The minimax algorithm

• The minimax algorithm computes the minimax decision from 

the current state. It uses a simple recursive computation of the 

minimax values of each successor state, directly implementing 

the defining equations. The recursion proceeds all the way down 

to the leaves of the tree, and then the minimax values are 

backed up through the tree as the recursion unwinds. For 

example, in the figure the algorithm first recurses down to the 

three bottom-left nodes and uses the UTILITY function on them 

to discover that their values are 3, 12, and 8, respectively. Then 

it takes the minimum of these values, 3, and returns it as the 

backed-up value of node B. A similar process gives the backed-

up values of 2 for C and 2 for D. Finally, we take the maximum 

of 3, 2, and 2 to get the backed-up value of 3 for the root node.



27

Minimax algorithm



28

Minimax algorithm

• Does the minimax algorithm resemble any 

algorithms we have seen previously?

• How does it rate on the “big 4”?

– Recall that game-tree search is still a form of search.



29

Minimax algorithm

• The minimax algorithm performs a complete depth-

first exploration of the game tree. If the maximum 

depth of the tree is m and there are b legal moves at 

each point, then the time complexity of the minimax 

algorithm is O(bm). The space complexity is O(bm) for 

an algorithm that generates all actions at once, or O(m) 

for an algorithm that generates actions one at a time. 

For real games, of course, the time cost is totally 

impractical, but this algorithm serves as the basis for 

the mathematical analysis of games and for more 

practical algorithms.



30

Optimal decisions in multiplayer games

• Many popular games allow more than two players. Let us 

examine how to extend the minimax idea to multiplayer games. 

This is straightforward from the technical viewpoint, but raises 

some interesting conceptual issues.

• First, we need to replace the single value for each node with a 

vector of values. For example, in a three-player game with 

players A, B, and C, a vector (vA,vB,vC) is associated with each 

node. For terminal states, this vector gives the utility of the state 

from each player’s viewpoint. (In two-player zero-sum games, 

the two-element vector can be reduced to a single value because 

the values are always opposite.) The simplest way to implement 

this is to have the UTILITY function return a vector of utilities.



31

Multiplayer minimax algorithm



32

Multiplayer minimax

• Now we have to consider nonterminal states. Consider 

the node marked X in the game tree. In that state, 

player C chooses what to do. The two choices lead to 

terminal states with utility vectors (vA=1,vB=2,vC=6) 

and (vA=4,vB=2,vC=3). Since 6 is bigger than 3, C 

should choose the first move. This means that if state X 

is reached, subsequent play will lead to a terminal state 

with utilities (vA=1,vB=2,vC=6). Hence, the backed-

up value of X is this vector. 



33

Multiplayer minimax

• The backed-up value of a node n is always the utility 

vector of the successor state with the highest value for 

the player choosing at n. Anyone who plays 

multiplayer games, such as Diplomacy, quickly 

becomes aware that much more is going on than in 

two-player games. Multiplayer games usually involve 

alliances, whether formal or informal, among the 

players. Alliances are made and broken as the game 

proceeds. How are we to understand such behavior? 

Are alliances a natural consequence of optimal 

strategies for each player in a multiplayer game? 



34

Multiplayer minimax

• It turns out that they can be. For example, suppose A and B are 

in weak positions and C is in a stronger position. Then it is often 

optimal for both A and B to attach C rather than each other, lest 

C destroy each of them individually. In this way, collaboration 

emerges from purely selfish behavior. Of course, as soon as C 

weakens under the joint onslaught, the alliance loses its value, 

and either A or B could violate the agreement. In some cases, a 

social stigma attaches to breaking an alliance, so players must 

balance the immediate advantage of breaking an alliance against 

the long-term disadvantage of being perceived as untrustworthy.



35

Multiplayer minimax

• If the game is not zero-sum, then collaboration can also occur 

with just two players. Suppose, for example, that there is a 

terminal state with utilities (vA=1000,vB=1000) and that 1000 is 

the highest possible utility for each player. Then the optimal 

strategy is for both players to do everything possible to reach 

this state—that is, the players will automatically cooperate to 

achieve a mutually desirable goal.



36

Game-tree search pruning

• The problem with minimax search is that the number of game 

states it has to examine is exponential in the depth of the tree. 

Unfortunately, we can’t eliminate the exponent, but it turns out 

that we can effectively cut it in half. The trick is that it is 

possible to compute the correct minimax decision without 

looking at every node in the game tree. That is, we can borrow 

the idea of pruning from the search section (recall that A* 

pruned the subtree following below Timisoara) to eliminate 

large parts of the tree from consideration. The particular 

technique we consider is alpha-beta pruning. When applied to 

a standard minimax tree, it returns the same move as minimax 

would, but prunes away branches that cannot possibly influence 

the final decision.



37

Game tree



38

Alpha-beta pruning

• Consider again the two-play game tree. Let’s go 

through the calculation of the optimal decision once 

more, this time paying careful attention to what we 

know at each point in the process. The steps are 

explained in the figure on the next page. The outcome 

is that we can identify the minimax decision without 

ever evaluating two of the leaf nodes.



39

Alpha-beta pruning



40

Alpha-beta pruning

• Another way to look at this is as a simplification of the formula 

for MINIMAX. Let the two unevaluated successors of node C in 

the figure have values x and y. Then the value of the root node is 

given by:

MIMIMAX(root) 

= max(min(3,12,8),min(2,x,y),min(14,5,2)

= max(3,min(2,x,y),2)

= max(3,z,2) where z = min(2,x,y) <= 2

= 3.

• In other words, the value of the root and hence the minimax 

decision are independent of the values of the pruned leaves x 

and y. 



41

Alpha-beta pruning

• Alpha-beta pruning can be applied to trees of any depth, 

and it is often possible to prune entire subtrees rather 

than just leaves. The general principle is this: consider a 

node n somewhere in the tree (see next figure) such that 

Player has a choice of moving to that node. If Player 

has a better choice m either at the parent node of n or at 

any choice point further up, then n will never be 

reached in actual play. So once we have found out 

enough about n (by examining some of its descendants) 

to reach this conclusion, we can prune it.



42

General alpha-beta pruning



43

Alpha-beta search

• Remember that minimax search is depth-first, so at any 

one time we just have to consider the nodes along a 

single path in the tree. Alpha-beta pruning gets its 

name from the following two parameters that describe 

bounds on the backed-up values that appear anywhere 

along the path:

– α = the value of the best (i.e., highest-value) choice we have 

found so far at any choice point along the path for MAX.

– β = the value of the best (i.e., lowest-value) choice we have 

found so far at any choice point along the path for MIN.



44

Alpha-beta search algorithm

• Alpha-beta search updates the values of α and β as it 

goes along and prunes the remaining branches at a 

node (i.e., terminates the recursive call) as soon as the 

values of the current node is known to be worse than 

the current α or β value for MAX or MIN, respectively. 

The complete algorithm is given on the next slide. We 

can trace its behavior when applied to the example.



45

Alpha-beta search algorithm



46

Move ordering

• The effectiveness of alpha-beta pruning is highly 

dependent on the order in which the states are examined. 

For example, in the figure we could not prune any 

successors of D at all because the worst successors 

(from the point of view of MIN) were generated first. If 

the third successor of D had been generated first, we 

would have been able to prune the other two. This 

suggests that it might be worthwhile to try to examine 

first the successors that are likely to be best.



47

Alpha-beta move ordering

• If this can be done, then it turns out that alpha-beta needs to 

examine only O(b^(m/2)) nodes to pick the best move, instead 

of O(b^m) for minimax. This means that the effective branching 

factor becomes sqrt(b) instead of b – for chess, about 6 instead 

of 35. Put another way, alpha-beta can solve a tree roughly twice 

as deep as minimax in the same amount of time. If successors 

are examined in random order rather than best-first, the total 

number of nodes examined will be roughly O(b^(3m/4)) for 

moderate b. For chess, a fairly simple ordering function (such as 

trying captures first, then threats, then forward moves, and then 

backward moves) gets to within about a factor of 2 of the best-

case O(b^(m/2)) result. 



48

Alpha-beta move ordering

• Adding dynamic move-ordering schemes, such as trying the 

moves that were found to be best in the past, brings us quite 

close to the theoretical limit. The past could be the previous 

move—often the same threats remain– or it could come from 

previous exploration of the current move. One way to gain 

information from the current move is with iterative deepening 

search. First, search 1 ply deep and record the best path of 

moves. Then search 1 ply deeper, but use the recorded path to 

inform move ordering. As we saw in the search module, 

iterative deepening on an exponential game three adds only a 

constant fraction to the total search time, which can be more 

than made up from better move ordering. The best moves are 

often called killer moves and to try them first is called the killer 

move heuristic.



49

Alpha-beta move ordering

• In the search module, we noted that repeated states in the search 

tree can cause an exponential increase in search cost. In many 

games, repeated states occur frequently because of 

transpositions—different permutations of the move sequence 

that end up in the same position. For example, if White has one 

move, a1, that can be answered by Black with b1 and an 

unrelated move a2 on the other side of the board that can be 

answered by b2, then the sequences [a1,b1,a2,b2] and 

[a2,b2,a1,b1] both end up in the same position. It is worthwhile 

to store the evaluation of the resulting position in a hash table 

the first time it is encountered so that we don’t have to 

recompute it on subsequent occurrences. The hash table of 

previously seen positions is called a transposition table; it is 

analogous to the explored list in GRAPH-SEARCH. 



50

Transposition table

• Using a transposition table can have a dramatic effect, 

sometimes as much as doubling the reachable search 

depth in chess. On the other hand, if we are evaluating 

a million nodes per second, at some point it is not 

practical to keep all of them in the transposition table. 

Various strategies have been used to choose which 

nodes to keep and which to discard.



51

Evaluation function

• The minimax algorithm generates the entire game search space, 

whereas the alpha-beta algorithm allows us to prune large parts 

of it. However, alpha-beta still has to search all the way to 

terminal states for at least a portion of the search space. This 

depth is usually not practical, because moves must be made in a 

reasonable amount of time—typically a few minutes at most. 

Claude Shannon’s paper Programming a Computer for Playing 

Chess (1950) proposed instead that programs should cut off the 

search earlier and apply a heuristic evaluation function to states 

in the search, effectively turning nonterminal nodes into 

terminal leaves. 



52

Evaluation function

• In other words, the suggestion is to alter minimax or 

alpha-beta in two ways: 

– Replace the utility function by a heuristic evaluation function 

EVAL, which estimates the position’s utility

– Replace the terminal test by a cutoff test that decides when 

to apply EVAL.

• This gives the following for heuristic minimax for state 

s and maximum depth d:



53

Adversarial search summary

• A game can be defined by the initial state, legal actions at each 

state, the result of each action, a terminal test, and a utility 

function that applies to terminal states.

• In two-player zero-sum games with perfect information, the 

minimax algorithm can select optimal moves by a depth-first 

enumeration of the game tree.

• The alpha-beta search algorithm computes the same optimal 

move as minimax, but achieves much greater efficiency by 

eliminating subtrees that are provably irrelevant.

• Usually it is not feasible to consider the whole game tree (even 

with alpha-beta), so we need to cut the search off at some point 

and apply a heuristic evaluation function that estimates the 

utility of a state.



54

Adversarial search extensions
• Many game programs precompute tables of best opening and 

endgame moves so they can look up a move rather than search.

• Games of chance can be handled by an extension to the minimax 

algorithm that evaluates a chance node by taking the average 

utility of all children, weighted by the probability of each child.

• Optimal play in games of imperfect information, such as 

Kriegspiel and bridge, requires reasoning about the current and 

future belief states of each player. A simple approximation can 

be obtained by averaging the value of an action over each 

possible configuration of missing information.

• Programs have bested even champion human players at games 

such as chess, checkers, and Othello. Humans retain the edge in 

several games of imperfect information, such as poker, bridge, 

and Kriegspiel, and in games with very large branching factors 

and little good heuristic knowledge, such as Go (outdated).



55

Constraint satisfaction

• In the first portion of the search module, we explored the idea 

that problems can be solved by searching in a space of states. 

These states can be evaluated by domain-specific heuristics and 

tested to see whether they are goal states. From the point of view 

of the search algorithm, however, each state is atomic, or 

divisible—a black box with no internal structure.

• We now describe a way to solve a wide variety of problems 

more efficiently. We use a factored representation for each 

state: a set of variables, each of which has a value. A problem is 

solved when each variable has a value that satisfies all the 

constraints on the variable. A problem describe this way is 

called a constraint satisfaction problem, or CSP.



56

Constraint satisfaction



57

Constraint satisfaction problems

• A constraint satisfaction problem consists of three 

components, X, D, and C:

– X is a set of variables, {X1,…,Xn}.

– D is a set of domains, {D1,…,Dn}, one for each variable.

– C is a set of constraints that specify allowable combinations 

of values.



58

Example problem: Map coloring

• Suppose that, having tired of Romania, we are looking at a map 

of Australia showing each of its states and territories. We are 

given the task of coloring each region either red, green, or blue 

in such a way that no neighboring regions have the same color. 

• To formulate this as a CSP, we define the variables to be the 

regions: X = {WA, NT, Q, NSW, V, SA, T}

• The domain of each variable is the set Di = {red, green, blue}.

• The constraints require neighboring regions to have distinct 

colors. Since there are nine places where regions border, there 

are nine constraints: C = {SA!=WA, SA!=NT,SA!=Q, etc.}

• SA!=WA is shortcut for ((SA,WA),SA!=WA), where SA!=WA 

can be fully enumerated in turn as {(red,green),(red,blue),…}



59

Example problem: Map coloring

• There are many possible solutions to this problem, 

such as …



60

Example problem: Map coloring

• There are many possible solutions to this problem, such as ...

{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=red}

• It can be helpful to visualize a CSP as a constraint graph. The 

nodes of the graph correspond to variables of the problem, and a 

link connects any two variables that participate in a constraint.



61

Constraint satisfaction problem

• Each domain Di consists of a set of allowable values, {v1,…,vn} 

for variable Xi. Each constraint consists of a pair (scope, rel), 

where scope is a tuple of variables that participate in the 

constraint and rel is a relation that defines the values that those 

variables can take on. A relation can be represented as an 

explicit list of all tuples of values that satisfy the constraint, or 

as an abstract relation that supports two operations: testing if a 

tuple is a member of the relation and enumerating the members 

of the relation. For example, if X1 and X2 both have the domain 

{A,B}, then the constraint saying the two variables must have 

different values can be written as ((X1,X2),[(A,B),(B,A)]) or as 

((X1,X2),X1 != X2).



62

CSP

• To solve a CSP, we need to define a state space and the 

notion of a solution. Each state in a CSP is defined by 

an assignment of values to some or all of the variables, 

{X1=v1,X2=v2,…} An assignment that does not 

violate any constraints is called a consistent or legal 

assignment. A complete assignment is one in which 

every variable is assigned, and a solution to a CSP is a 

consistent, complete assignment. A partial 

assignment is one that assigns values to only some of 

the variables. 



63

Why formulate a problem as a CSP?

• One reason is that the CSPs yield a natural representation for a 

wide variety of problems; if you already have a CSP-solving 

system, it is often easier to solve a problem using it than to 

design a custom solution using another search technique. In 

addition, CSP solvers can be faster than state-space searchers 

because the CSP solver can quickly eliminate large swatches of 

the search space. For example, once we have chosen {SA=blue} 

in the Australia problem, we can conclude that none of the five 

neighboring variables can take on the value blue. Without taking 

advantage of constraint propagation, a search procedure would 

have to consider 3^5=243 assignments for the five neighboring 

variables; with constraint propagation we never have to consider 

blue as a value, so we have only 2^5=32 assignments to look at, 

a reduction of 87%.



64

Why formulate a problem as a CSP?

• In regular state-space search we can only ask: is this specific 

state a goal? No? What about this one? With CSPs, once we find 

out that a partial assignment is not a solution, we can 

immediately discard further refinements of the partial 

assignment. Furthermore, we can see why the assignment is not 

a solution—we see which variables violate a constraint—so we 

can focus attention on the variables that matter. As a result, 

many problems that are intractable for regular state-space search 

can be solved quickly when formulated as a CSP.



65

Example problem: Job-shop scheduling

• Factories have the problem of scheduling a day’s worth of jobs, 

subject to various constraints. In practice, many of these 

problems are solved with CSP techniques. Consider the problem 

of scheduling the assembly of a car. The whole job is composed 

of tasks, and we can model each task as a variable, where the 

value of each variable is the time that the task starts, expressed 

as an integer number of minutes. Constraints can assert that one 

task must occur before another—for example, a wheel must be 

installed before the hubcap is put on—and that only so many 

tasks can go on at once. Constraints can also specify that a task 

takes a certain amount of time to complete.



66

• We consider a small part of the car assembly, 

consisting of 15 tasks: install axles (front and 

back), affix all four wheels (right and left, front 

and back), tighten nuts for each wheel, affix 

hubcaps, and inspect the final assembly. We can 

represent the tasks with 15 variables:



67

• X = {AxleF, AxleB, WheelRF,…,NutsRF,…, 

CapRF,…,Inspect}

• The value of each variable is the time that the task 

starts. Next we represent precedence constraints

between individual tasks. Whenever a task T1 must 

occur before task T2, and task T1 takes duration d1 to 

complete, we add an arithmetic constraint of the 

form…



68

• T1 + d1 <= T2

• In our example, the axles have to be in place 

before the wheels are put on, and it takes 10 

minutes to install an axle, so we write:

• AxleF + 10 <= WheelRF;

• AxleF + 10 <= WheelLF;

• AxleB + 10 <= WheelRB;

• AxleB + 10 <= WheelLB.



69

• Next we say that, for each wheel, we must affix 

the wheel (which takes 1 minute), then tighten 

the nuts (2 minutes), and finally attach the 

hubcab (1 minute, but not represented yet):



70

• WheelRF + 1 <= NutsRF;

• WheelLF + 1 <= NutsLF;

• WheelRB + 1 <= NutsRB;

• WheelLB + 1 <= NutsLB;

• NutsRF + 2 <= CapRF;

• NutsLF + 2 <= CapLF;

• NutsRB + 2 <= CapRB;

• NutsLB + 2 <= CapLB.



71

• Suppose we have four workers to install wheels, but 

they have to share one tool that helps put the axle in 

place. We need a disjunctive constraint to say that 

AxleF and AxleB must not overlap in time; either one 

comes first or the other does:

• (AxleF + 10 <= AxleB) OR (AxleB + 10 <= AxleF)

• This looks like amore complicated constraint, 

combining arithmetic and logic. But it still reduces to a 

set of pairs of values that AxleF and AxleB can take 

on.



72

• We also need to assert that the inspection comes 

last and takes 3 minutes. For every variable 

except Inspect we add a constraint of the form 

X + dX <= Inspect. 

• Finally, suppose there is a requirement to get 

the whole assembly done in 30 minutes. We can 

achieve that by limiting the domain of all 

variables: Di = {1,2,3,…,27}



73

• This particular problem is trivial to solve, but CSPs 

have been applied to job-shop scheduling problems 

like this with thousands of variables. In some cases, 

there are complicated constraints that are difficult to 

specify in the CSP formalism, and more advanced 

planning techniques are used, which will discuss in the 

Planning Module of the course.



74

Example problem: Sudoku



75

Homework for next class

• Chapters 7-8 from Jensen textbook.

• HW1: out 9/5 due 10/3


