Calculus 3 - Vector Review

A vector is a directed line segment. For example, consider the points P(1,1) and Q(2,3). The line connecting $P \rightarrow Q$ is the vector (see figure 1). Note we have an arrow to denote it has direction.

Figure 1: A vector

Symbolically

The vector in this case is $\vec{u} = \vec{PQ} = < 2 - 1, 3 - 1 > = < 1, 2 >$. Notice the arrow over the vector and also notice we use angle brackets < 1, 2 > instead of (1, 2) which would be a point.

Figure 2: Same vector

Magnitude

Consider the vector $\vec{u} = <4,3>$ (see figure 3). The length of this vector

Figure 3: Magnitude

is the length of the hypotenuse of the triangle with sides of length 3 and 4. So using the pythagorean theorem we have

$$\|\vec{u}\| = \sqrt{3^2 + 4^2}$$

noting the we are using the symbol $\|\cdot\|$ for magnitude. With general vectors, say $\vec{u} = \langle u_1, u_2 \rangle$ or $\vec{u} = \langle u_1, u_2, u_3 \rangle$ then

$$\|\vec{u}\| = \sqrt{u_1^2 + u_2^2} (2D)$$

= $\sqrt{u_1^2 + u_2^2 + u_3^2} (3D)$ (1)

Scalar Multiplication

If $\vec{u} = \langle u_1, u_2 \rangle$ and *c* is some number (not zero) then

$$c \vec{u} = c < u_1, u_2 > = < c u_1, c u_2 > .$$
 (2)

If c > 1 the vector stretches, if 0 < c < 1 the vector shortens, and if c < 0 the vector is sent in the opposite direction.

<u>Zero Vector</u> – A vector that has no length $\vec{0} = <0, 0>$.

<u>Vector Addition and Subtraction</u> Consider the two vector $\vec{u} = \langle u_1, u_2 \rangle$ and $\vec{v} = \langle v_1, v_2 \rangle$ then

$$\vec{u} + \vec{v} = \langle u_1 + v_1, u_2 + v_2 \rangle$$

$$\vec{u} - \vec{v} = \langle u_1 - v_1, u_2 - v_2 \rangle$$
(3)

Base Vectors

We identify two special vectors in 2D. These are

They are special because they are unit vectors, they are perpendicular to each other and all 2D vectors can be written as a combination of these two. We also have an analogous result for 3D. So

$$\vec{i} = <1, 0, 0 > \vec{j} = <0, 1, 0 > \vec{k} = <0, 0, 1 >$$

Dot Product

The dot product of two vectors $\vec{u} = \langle u_1, u_2 \rangle$ and $\vec{v} = \langle v_1, v_2 \rangle$ is

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2$$
$$= \|\vec{u}\| \|\vec{v}\| \cos \theta$$

where θ is the angle between the vectors. In 3D where $\vec{u} = \langle u_1, u_2, u_3 \rangle$

and $\vec{v} = \langle v_1, v_2, v_3 \rangle$ is

$$\vec{u}\cdot\vec{v}=u_1v_1+u_2v_2+u_3v_3$$

One important feature of this alternate definition is that if

$$\vec{u} \perp \vec{v} \Rightarrow \vec{u} \cdot \vec{v} = 0$$

Cross Product

Given vectors $\vec{u} = \langle u_1, u_2, u_3 \rangle$ and $\vec{v} = \langle v_1, v_2, v_3 \rangle$ we define the cross product between then two vector as

$$\vec{u} \times \vec{v} = \langle u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1 \rangle$$

However, this definition is a little hard to use so we'll come up with a better way to calculate cross products.

First we define a determinant (you will see this in Linear Algebra).

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

so for example

$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = (1)(4) - (2)(3) = 4 - 6 = -2$$

Now we define the cross product

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$
$$= \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} \vec{i} - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} \vec{j} + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \vec{k}$$

We also have the following which will be important in Calc 3.

$$\|\vec{u} \times \vec{v}\| = \|\vec{u}\| \|\vec{v}\| \sin \theta$$

which is the area of the parallelogram with \vec{u} and \vec{v} as the sides.

From the figure we see the height h and base of the parallelogram is

$$h = \|\vec{v}\|\sin\theta, \quad \|\vec{u}\|$$

and multiplying these two together gives the formula.

Projections

Given vectors \vec{u} and \vec{v} , we created a formula to project \vec{v} onto \vec{u} . This was given by

$$\operatorname{proj}_{\vec{v}} \vec{u} = \frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v}$$
(4)

<u>Lines</u>

Given a point $P(x_0, y_0, z_0)$ and direction $\vec{u} = \langle a, b, c \rangle$ the line through *P* in the direction of \vec{u} is given by

$$x = x_0 + at$$

$$y = y_0 + bt$$

$$z = z_0 + ct$$
(5)

<u>Planes</u>

A plane is simply a flat surface in 3D (like a piece of paper). We characterize this surface by a single vector that is perpendicular to every vector lying on the place. This special vector is called the "normal" denoted by

$$\vec{n} = \langle a, b, c \rangle \tag{6}$$

If $P(x_0, y_0, z_0)$ is a given point on the plane and Q(x, y, z) which is a point that moves around on the plane, then

$$\overrightarrow{PQ} = < x - x_0, y - y_0, z - z_0 >$$
(7)

is a vector lying on the plane and if we dot this with the normal, we get

$$\overrightarrow{n} \cdot \overrightarrow{PQ} = \langle a, b, c \rangle \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0$$
(8)

or

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$
(9)

This is called the "normal-point" form. If we expand and moved all the

numbers to the right side $ax_0 + by_0 + cz_0 = d$ then we have the form

$$ax + by + cz = d \tag{10}$$

called the general form.