Calculus 3 - Vector Review

A vector is a directed line segment. For example, consider the points $P(1,1)$ and $Q(2,3)$. The line connecting $P \rightarrow Q$ is the vector (see figure 1). Note we have an arrow to denote it has direction.

Figure 1: A vector

Symbolically

The vector in this case is $\vec{u}=\overrightarrow{P Q}=<2-1,3-1>=<1,2>$. Notice the arrow over the vector and also notice we use angle brackets $<1,2>$ instead of $(1,2)$ which would be a point.

Figure 2: Same vector

Magnitude

Consider the vector $\vec{u}=<4,3>$ (see figure 3). The length of this vector

Figure 3: Magnitude
is the length of the hypotenuse of the triangle with sides of length 3 and 4. So using the pythagorean theorem we have

$$
\|\vec{u}\|=\sqrt{3^{2}+4^{2}}
$$

noting the we are using the symbol $\|\cdot\|$ for magnitude. With general vectors, say $\vec{u}=<u_{1}, u_{2}>$ or $\vec{u}=<u_{1}, u_{2}, u_{3}>$ then

$$
\begin{align*}
\|\vec{u}\| & =\sqrt{u_{1}^{2}+u_{2}^{2}}(2 D) \tag{1}\\
& =\sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}}
\end{align*}
$$

Scalar Multiplication
If $\vec{u}=<u_{1}, u_{2}>$ and c is some number (not zero) then

$$
\begin{equation*}
c \vec{u}=c<u_{1}, u_{2}>=<c u_{1}, c u_{2}>. \tag{2}
\end{equation*}
$$

If $c>1$ the vector stretches, if $0<c<1$ the vector shortens, and if $c<0$ the vector is sent in the opposite direction.

Vector Addition and Subtraction
Consider the two vector $\vec{u}=<u_{1}, u_{2}>$ and $\vec{v}=<v_{1}, v_{2}>$ then

$$
\begin{align*}
& \vec{u}+\vec{v}=<u_{1}+v_{1}, u_{2}+v_{2}> \tag{3}\\
& \vec{u}-\vec{v}=<u_{1}-v_{1}, u_{2}-v_{2}>
\end{align*}
$$

Base Vectors

We identify two special vectors in 2D. These are

$$
\vec{i}=<1,0>\quad \text { and } \quad \vec{j}=<0,1>
$$

They are special because they are unit vectors, they are perpendicular to each other and all 2D vectors can be written as a combination of these two.

We also have an analogous result for 3D. So

$$
\vec{i}=<1,0,0>\quad \vec{j}=<0,1,0>\quad \vec{k}=<0,0,1>
$$

Dot Product

The dot product of two vectors $\vec{u}=<u_{1}, u_{2}>$ and $\vec{v}=<v_{1}, v_{2}>$ is

$$
\begin{aligned}
\vec{u} \cdot \vec{v} & =u_{1} v_{1}+u_{2} v_{2} \\
& =\|\vec{u}\|\|\vec{v}\| \cos \theta
\end{aligned}
$$

where θ is the angle between the vectors. In 3D where $\vec{u}=<u_{1}, u_{2}, u_{3}>$
and $\vec{v}=<v_{1}, v_{2}, v_{3}>$ is

$$
\vec{u} \cdot \vec{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}
$$

One important feature of this alternate definition is that if

$$
\vec{u} \perp \vec{v} \quad \Rightarrow \quad \vec{u} \cdot \vec{v}=0
$$

Cross Product

Given vectors $\vec{u}=<u_{1}, u_{2}, u_{3}>$ and $\vec{v}=<v_{1}, v_{2}, v_{3}>$ we define the cross product between then two vector as

$$
\vec{u} \times \vec{v}=<u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}>
$$

However, this definition is a little hard to use so we'll come up with a better way to calculate cross products.

First we define a determinant (you will see this in Linear Algebra).

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

so for example

$$
\left|\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right|=(1)(4)-(2)(3)=4-6=-2
$$

Now we define the cross product

$$
\begin{aligned}
\vec{u} \times \vec{v} & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| \\
& =\left|\begin{array}{cc}
u_{2} & u_{3} \\
v_{2} & v_{3}
\end{array}\right| \vec{i}-\left|\begin{array}{cc}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right| \vec{j}+\left|\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right| \vec{k}
\end{aligned}
$$

We also have the following which will be important in Calc 3 .

$$
\|\vec{u} \times \vec{v}\|=\|\vec{u}\|\|\vec{v}\| \sin \theta
$$

which is the area of the parallelogram with \vec{u} and \vec{v} as the sides.

From the figure we see the height h and base of the parallelogram is

$$
h=\|\vec{v}\| \sin \theta, \quad\|\vec{u}\|
$$

and multiplying these two together gives the formula.
Projections

Given vectors \vec{u} and \vec{v}, we created a formula to project \vec{v} onto \vec{u}. This was given by

$$
\begin{equation*}
\operatorname{proj}_{\vec{v}} \vec{u}=\frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v} \tag{4}
\end{equation*}
$$

Lines

Given a point $P\left(x_{0}, y_{0}, z_{0}\right)$ and direction $\vec{u}=\langle a, b, c>$ the line through P in the direction of \vec{u} is given by

$$
\begin{align*}
& x=x_{0}+a t \\
& y=y_{0}+b t \tag{5}\\
& z=z_{0}+c t
\end{align*}
$$

Planes

A plane is simply a flat surface in 3D (like a piece of paper). We characterize this surface by a single vector that is perpendicular to every vector lying on the place. This special vector is called the "normal" denoted by

$$
\begin{equation*}
\vec{n}=<a, b, c> \tag{6}
\end{equation*}
$$

If $P\left(x_{0}, y_{0}, z_{0}\right)$ is a given point on the plane and $Q(x, y, z)$ which is a point that moves around on the plane, then

$$
\begin{equation*}
\overrightarrow{P Q}=<x-x_{0}, y-y_{0}, z-z_{0}> \tag{7}
\end{equation*}
$$

is a vector lying on the plane and if we dot this with the normal, we get

$$
\begin{equation*}
\vec{n} \cdot \overrightarrow{P Q}=<a, b, c>\cdot<x-x_{0}, y-y_{0}, z-z_{0}>=0 \tag{8}
\end{equation*}
$$

or

$$
\begin{equation*}
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0 \tag{9}
\end{equation*}
$$

This is called the "normal-point" form. If we expand and moved all the
numbers to the right side $a x_{0}+b y_{0}+c z_{0}=d$ then we have the form

$$
\begin{equation*}
a x+b y+c z=d \tag{10}
\end{equation*}
$$

called the general form.

