DEBUGGING BUSINESS RULES IN
SAP BUSINESSOBJECTS PLANNING AND CONSOLIDATION

Auric I'T Consulting Services

Applicable Releases: All versions of SAP BusinessObjects Planning and Consolidation for Netweaver

Version 1.0

© Copyright 2014 Auric IT Consulting Services LLC (“AITCS”). All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose without the
express permission of AITCS. The information contained herein may be changed without prior notice.

These materials are provided by AITCS for informational purposes only, without representation or warranty of
any kind, and AITCS shall not be liable for errors or omissions with respect to the materials, or be liable for
damages of any kind from the use of these materials. Nothing herein should be construed as constituting any
kind of warranty.

All product and service names mentioned herein as well as their respective logos are the trademarks or
registered trademarks of their respective companies. Data contained in this document serves informational
purposes only.

Table of Contents

Introductioncccenn....
Business Scenario

Debugging Business Rules

Conclusionccoveveveeinnn..

Introduction

SAP Business Objects Planning and Consolidation for Netweaver (“BPC”) has many ways to perform
calculations on transaction data used in reporting. One such feature used mainly in consolidation
scenarios is known as “Business Rules”. Business rules are parameter driven functions for calculating and
posting amounts in support of common accounting activities such as cutrency translations or
intercompany eliminations. They are sometimes thought of as table driven logic because the business
rules tables are enabled at the model level and provide an alternative to writing complex logic scripts for
calculating financial data. One merely fills in key parameters into a business rule table and a small logic
script calls a standard delivered ABAP program that takes the parameters, performs the appropriate
calculations, and then writes the financial data to the database just like a logic script. While business rules
are meant to be a simpler approach versus writing complex logic scripts, at times it is not clear how the
business rules process data. This causes issues when it is not understood either how the results are
produced or whether the particular business rule can use certain parameters to restrict the data. The
purpose of this paper is to document a simple example of how debugging a business rule can help.

Business Scenario

One of the business rules found in BPC is “US Eliminations”. This business rule addresses the posting of
intercompany eliminations at group levels in scenarios where a full legal consolidation design involving a
type “G” group dimension and ownership values are not required. This scenatio is more common to
financial models involving simple eliminations since a consolidation model would use “automatic
adjustments” and consider ownership data to produce a proper result. As intercompany elimination
entries should be posted only in groups in which both the entity and the partner entity are included, US
Eliminations uses a concept known as posting at the first common parent to record the eliminations.
Under this concept, the results of the eliminations are posted to an elimination entity found immediately
under the first common parent as defined in a hierarchy of the entity dimension. This is significantly
different from a true legal consolidation involving ownership and a group dimension.

Since dimension members can be used in multiple hierarchies, it is possible that someone may wish to
teport eliminations using several hierarchies (e.g., parent/child, geographical, etc.). Regardless of the
number of hierarchies found in the entity dimension, the default US Eliminations logic does its searches
only using the first hierarchy. According to the online help documentation, this can be adjusted to have
the elimination calculate on any hierarchy in the entity dimension. However, enabling this is not
documented anywhere. In this example scenario, a user wishes to perform this function and therefore will
need to debug the business rule to determine whether this is possible and if so how to parameterize the
business rule.

© Copyright 2014 Auric IT Consulting Services 1

Debugging Business Rules

Every business rule requires a small logic script to call the appropriate program and pass parameters from
the data manager package. According to the online help documents for US Eliminations, the logic script
for calling this business rule is as follows:.

*RUN_PROGRAM US_ELIM

CATEGORY = %C_CATEGORY_SET3
GROUF = %GROUFS_SET%

TID RA = ITIME SET%

CTHER = [ENTITY=3ENTITY SET%]

*ENDRUN_FROGRAM

Based only on this logic script, the parameters passed to application include category, group (or currency),
time, and “other” dimensions. There is no obvious parameter for the use of a particular entity hierarchy
in the logic script. Therefore, a further examination of the actual program will be needed to see if US
Eliminations can be adjusted to calculate using any entity dimension hierarchy.

In the Netweaver version of BPC, debugging business rules requires a little bit of ABAP knowledge (or
access to a friendly colleague that understands ABAP and will debug it with you). ABAP is a high-level
programming language used by SAP in building business applications. A BPC configuration expert does
not necessarily have to understand ABAP code to propetly configure the system, but it certainly helps to
have a basic understanding if you intend to debug any business rules on your own (Note: If you wish to
learn more about ABAP programming, please check your local bookstore. This paper will not cover
ABAP coding in much detail.).

Once you are ready to start, you must first access the ABAP workbench on the SAP application server.
This is not something you will find using any of the various BPC user interfaces. From the SAP easy
access menu, follow the menu path Tools 2 ABAP Workbench = Overview = Object Navigator.
Alternatively, you can enter transaction code SE80 in the t-code field to go directly to the Object
Navigator without having to use the menu paths.

SAP Fasy Access
[& ™ & | guother menu 5 P | v a

+ [Favorites
~ 4 SAP Meru
v [office
v [Cross-Application Components
v [Accounting
» [Information Systems
- 2 Toals
~ 2 ABAP Workbench
~ 2 Overview
v [spplication Hierarchy
» It SEa0 - Object Navigator|
- B

© Copyright 2014 Auric IT Consulting Services 2

You should then be taken to the object navigator.

[= workbench Edit Goto Utiities Envionment System Help -
@]l liBle@e SHR BDLoO om
| Object Navigator

== |2 3 Edit Object

J
| Repasitory Browser

[z Repository Information Systam

2] g Browser

2 Trensport Organizer
I Test Repository

Package -
I Eara|
[+ L= L[])] &)

Object Name 1]

[Zr MimE Repasttory

3

“

On the left side menu bar, double click on the icon for “Repository Information System”. Next, under
the folders that appear below the left side menu bar, open up the folder “Class Library”” and double click
on “Classes/Interfaces”. This brings up the selection screen for searching vatious classes or interfaces
which will help find the correct business rule program.

Ohjects
e |@ Repositary Information System
v [Developrnent Coordination

. . v [Business Engineering
€ 9 | & B Hedt object v [ABAP Dictionary

MIME Repositary v T Program Library

~ 24 Class Librar
[E Repositary Browser .

: Classes/Interfaces
[@ERepusitDry Information System . Methods

|
|
2] Tag Browser | . Attributes
|
|

‘ Object Navigator

[%Transpl:urt Crganizer . Events
* Types

[@ Test Repositary

v [| Fnhanremeants

© Copyright 2014 Auric IT Consulting Services 3

In the selection window, enter CL._UJK_RUN_PROGRAMS in the selection box for Class/Interface. A
class is a collection of ABAP objects and this is the class that covers all of the business rule programs
used in BPC. Click on the execute icon (or press F'8) to begin the search.

Repository Info System: Find Class/Inferface
D & & i
@MIME Repasitory

Standard Selections

|
|ﬁ Repositary Browser | ClassfInterface rtL_UJK_RUN_PRDGRM{EI?|
I@BRestitDw Informnation System] Short Description T |?|
| Tag Browser | -
s Transport Crganizer | Package |?|
|

|@ Test Repository

[SList Archive |||I |E|

Objects
- Repositary Information System
v [Development Coordination
v [Business Engingeting
v [4BAP Dictionary
v [Program Library
= = (lass Library
= Classes(Interfaces
3 Methods

* rEbI Nbtrilma ke

Application Component

[¢]

Settings
Maxirmnurn Mo, of Hits Z00

When the results screen appears, double click on the object name. This will take you to the class.

Repository Info System: Class/Interface Find (1 Hits)
& P iR B 2 F 9 F | [@ ®choose [fsave Completa List Mew Selection

L@’MIME Repasitory |

EﬁgaRestitDry Browrser Object Type Name Short description
[@ERepositDry Information System :_jCL_UJK_RU'N_PRDGRAMS

Tag Browser

ETransport Organizer |
@ Test Repository |

[SList Archive |||| |E|

Ohjects

- Repository Information Systern
v O Developrnent Coordination
v [Business Engineering
» [ABAP Dictionary

v [Program Library
v & rlace Likrar:

© Copyright 2014 Auric IT Consulting Services 4

The class screen has many tabs and options. However, these will not be discussed in the context of this
paper. Under the “Methods” tab, you will see various methods some of which correspond to the
*RUN_PROGRAM calls found in logic scripts for running a business rule (note: the complete listing
may differ based on your BPC release and patch level). These are the ABAP programs called by the logic
scripts. In this case, we are interested in the method titled “US_ELIM” as that is what calculates US
Eliminations. Double click on the method to see the ABAP code.

Class Interface CL_UJE_RUN_PROGRAMS Irnplerner
Properties | Interfaces Friends Attrbutes < Methods |

(o parameter B Excention |12 [BE@[e] [EE [0FE (£

Method Lewel Wis... M., Description
EIU‘N_SP jInsta... Pub..

ADD _LINE Insta.. Pub..

CHECE_SP Stati. Pub..

RUN_CUSTOM_LOGIC Stati. Pub. Custamn Logic runner
RUN_FUNCTION MODULE Stati. Pub..

RUN_CLA3S METHOD Stati. Pub..

DEC Insta. Pri.. DBC

EQUITY_ PICKUP Inzta.. Pri..
VALIDATE_PARAMETERS Insta. Pri.. Walidate parameters
TALIDATION Insta.. Pri..

U5 _ELIN Insta.. Pri..

ICDATA Insta.. Pri..

ICEOOEING Insta.. Pri..

CURR_CONVERSION Insta.. Pri..

COPYOPENING Insta.. Pri..

COFYCATEGORY Insta.. Pri..

CALC_ACCOUNT Inzta.. Pri..

CONSOLIDATION Insta.. Pri.

CONSTRUCTOR Insta.. Pri.. @E

© Copyright 2014 Auric IT Consulting Services 5

The ABAP code represents the program instructions that the system follows to calculate and post US
Elimination amounts. Since we are interested in whether we can control parameters for an alternate
hierarchy selection, we need to scroll down to see what input this particular method accepts.

Method

US_ELIM Active

Wk

s

8

L

1 ot

£ METHOD us_elim.

DATR:
lo elim TYPE REF TC cl ujp us_elim,
lo_context TYPE REF TO if uj_ context,

1 cat TYPE uj_category,
1 group TIYPE string,

1 currency type string,
1 simu cat member TYPE string,

1 tid ras TYPE string,

1 error message TYPE string,

1 hierarchy TYPE string,

1 ref time TYPE uj_ fisc yp charsi,
1 log TYPE string,

1 string TYPE string,

1t string TYPE STANDARD TABLE CF string,
1t_tid ra TYPE ujo0_t_range,
1t message TYPE uj0_t message,

1s range TYPE uj0_s_range,
1s status records TYPE ujr s status_records,

1s entry TYPE ujk = _script logic hashentry.

FIELD-SYMBOLS:
<ls message> TYPE uj0 s message.

lo context = cl uj_ CONCEexXCL=>QgeL cur context().
1 cat = 1ls_entry-hashvalue.
CLEZR 1s_entry.

1 group = 1l=_entry-hashvalue.
CLEAR 1s_entry.

of
[s]
=]
[53]

READ TABLE me->dt sp parameter INTO 13 entry WITH EEY hashkey = ujk0 cs sp key-category
READ TABLE me->dt_ sp parameter INTO 13 entry WITH EKEY hashkey = ujk0 cs sp key-group.

READ TABLE me->dt_sp parameter INTO 1ls entry WITH KEY hashkey = ujk0_cs_sp key-hierarchy.

ABAP Ln 1Col 1

Scrolling down through the code can give you clues as to the behavior of the business rules. In this case,
we will scroll to the block where several READ TABLE statements begin (line 32 in this example).

Method UsS_ELIM Active
31
32 READ TABLE me—>dt sSp parasunster INTO 15 entry WITH EEY hashkey = ulklD o= sp key-catedgory
I3 1 cat = ls entry-hashvalue.
34 CLEAR ls_entry.
a5 READ TAELE me--dt_sp_parameter INTO ls_entry WITH KEY hashkey = ujk0_cs_sp_key-group.
36 1 _group = 1ls_entry -hashvalue.
37 CLEAR 1s5_entcry.
38 READ TAELE me-—>dr_sSp_ parsassneter INTO 1s entry WITH KEY hashkey = ujkl_cs_sp key- hierarchy.
39 1 hierarchy = 1ls_entry-—hashvalus.
40 CLEAR 15 entry.
41 READ TAELE me—>dt sSp parsmeter INTO 1s entry WITH EEY hashkey = ulk0 cos sp key-tid ra.
a2z 1 tid ras = ls entry-hashvalue.
43 CLEAR ls_entry.
44 READ TAELE me-->dt_sp_parameter INTO ls_entry WITH KEY hashkey = ujk0_cs_sp_key time.
45 1_time = 1s_entry hashvalue.
q6 CLEAR 1s5_entry.
37 READ TAELE me—>dr_sp_parawmeter INTO 1s entry WITH EKEEY hashkey = ujk0_cs_sp key-ref timeid.
L 1= 1 ref time = 1= entry-—hashvaluaes.
49
S0 *sa=2al1af90l 15037482 GROOP and CUREENCY kKeywords shoulad aprply &0 U5 Elimination begin
51 CLEAR ls_entry.
5z READ TAELE me--dt_sp_parameter INTO ls_entry WITH KEY hashkey = ujkO_cs_sp_key-currency.
53 1_currency = 1s_entry hashvalue.
54 *=3z20100901 1503752 GROULP and CURRENCY keyworbds should apply to US Eliminzstion end
cc

© Copyright 2014 Auric IT Consulting Services

Looking at this section of code, we notice that several parameters can be passed from the logic script to
the program; among these are category, group, hierarchy, time, and currency. This is important because
these are the only parameters that will be accepted barring a change from SAP Development. It is equally
important to notice what is not there as well. For example, the standard logic sctipt for US Eliminations
implies that “other” dimension restrictions can be used and the delivered data manager package has an
“entity” selection field. In looking at the code, we see that “other” dimensions cannot be restricted in
running US Eliminations as there is no program line for such input. So any entity restriction made in the
data manager package is ignored. Knowing what restrictions are possible helps to avoid potential issues
later on in the process. Do not assume that default documentation is completely accurate as things
change from release to release and patch to patch.

Reviewing the code answers the question as to whether US Eliminations could be restricted to run on any
entity hierarchy even though the logic script and data manager packages do not show this. In the various
hashkeys, the words on the right are the keywords from the logic script. By restricting on the keyword
“HIERARCHY” in the logic script, it will pass a parameter value for the entity hierarchy. However, we
do not know what value(s) to use. This is where we need to debug further than just looking at the code.
To determine what value the hierarchy parameter accepts, we will need to trace through an execution of
the program which can be done by setting a breakpoint in the code and running the script logic debugger.

First, set an external breakpoint in an appropriate part of the code. Scrolling further down in the method,
we notice the statement where the US Eliminations calculations are initialized.

IF me->d run mode NE ujk0 cs run mode-sxecute.
RETUFRII.

ENDIF.
lo elim->initialize|].<:;:

cl ujk logger=:>log('BEUN U3 ELIMINATICH' |.

CALL METHOD lo_elim->run_intco elimination

IMPORETING
e3_3status_records = 13 status_ records
et _error records = et error records

et _message 1t _message.

By double clicking on that line, we are taken to the section of the code where the system determines
various metadata used in calculating the eliminations. In this case since we wish to know what
organizational hierarchy is used, we will set the breakpoint there. Do this by selecting the appropriate line
of code and clicking on the set external breakpoint icon (stop sign with person icon) found in the menu
bar.

© Copyright 2014 Auric IT Consulting Services 7

ELIM Display
5 @ Pattern Pretty Printer

Method INITIALIZE

Signature | &F T Public Section & Protec

Active

Emethod INITILLIZE.
initialize enginei .

read rule table p(|.

calc group pio].
cale currency pio | .

W00 =] s L [0

calc organization pl | .

cale entity for elim p().

10 cale aggr for entity pl).
11

12 calc datasrc pl .

15 cale account pi | .

14 # galc entity for elim pf).
15 B - a

16 - endmethod.

4
d

Now that we have set the breakpoint, we need to run the program in order to step through the code.
Open up another SAP session and navigate to transaction code UJKT. This is the logic script tester
which allows you to test/debug logic scripts without having to use data manager packages. The screen
should look similar to the following as it can differ by release and patch level.

SAP
Setting
I 5l

Environmment i ! Model 1D - Splitter H EQU =
PARAM

Action

Data Region:
WERE B EHE 55
) VALIDATE
3 EXECUTE

) EXECUTE(Simulate)

[IRun In Parallel

Script File Location:

HuEE PR

[it et lln1-1n 1 of 1 lines

WO B EE BE

© Copyright 2014 Auric IT Consulting Services 8

Enter all of the appropriate critetia to tun the logic sctipt. You must select an environment/model, enter
the appropriate logic script, and define any data parameters which are normally provided by variables in
the data manager package. In this example, the logic script for US Eliminations taken from the help
documentation has been entered (the “other” parameter was left out since it was determined earlier to
have no effect). Once you have entered all the information, click on “Validate” to make sure there are no
syntax issues with the parameters/logic script. If the validated script shows no issues, click “Execute”.

This will run the program.
Setting
Environment |CONSOLIDATION ~| Model ID Consolidation - Splitter | Equ =
PARAM
| Action
Data Region:
FOE)< M
€3 VALIDATE | [C.cateaoRv=ACTUAL
GROUPS=USD
TIME=2014.]4N

® EXECUTE |
& eewteGmuate) |

__IRun In Parallel

[*Liz co7 Ln'1-Ln 2 of Zlines
Script File Location:

*RUN_PROGRAM US_ELIM *RUN_PROGRAM US_ELIM

CATEGORY = %C_CATEGORY _SET% CATEGORY = %C_CATEGORY _SET%

GROUP = %GROUPS_SET% GROUP = %GROUPS_SET%

TID_Ré&= %TIME_SET% TID_R&= %TIME_SET%

*ENDRUN_PROGRAM *ENDRUN_PROGRAM

© Copyright 2014 Auric IT Consulting Services

Once the code executes to where the external breakpoint is located, a debugging session will start. The
program will pause at the breakpoint and you can now step through each line of code. If the program
completes instead of going to a debugging session, that means the breakpoint was not encountered and

you should determine why this happened or set another breakpoint.

ABAP Debugger(3) (Exclusive)(WINSVR2068R2_EFM_08)
%z (= ¢= 42 Pstepsze | @ Dlwatchpont flayout & Configure Debugger Layer

el 1_o9p_vs et srmene o

/ [e1_3p_us 3 G

% METHOD / INITIALIZE (CL_UIP_US_ELIM) | SY-TABIX |6
_ A(Desktop1 | Desktop2 | Desktop3 | Standard | Structres | Tables | Objects | DetaiDisplay | Data Explorer | Break./Watchpaints | DIff | Seript
T Dmethod INTTIALIZE. =
E o
3 initialize_engine(). o
4 read rule_table pi | . -2
5 =
@ - cale_orgenization pi). [E3]
7 cale_group p(). "daw for BPCYLO0 o
B cale_currency pl |- "daw310810 for mote 1503782 o
5 | cale_entity for elim p(. "dawi60420 for note 1409159 T
10 cale_aggr_for_entity pi .
1
1z calc_datasro pl).
13 cale_account_p().
19 | ¢ calc emtity_fox elim p¢). "Qawl60410 for note 1409150
15
16 | enametnoa.
Scope \METHOD INITIALIZE ABAP Ln 6Cal 1 M. @]
Variables 1 | variables 2 Locals - Globals - Auto - Memory Analysis [E5]
Ci
BEET & < & &
5. Variable V... val C... Hexadecimal Value Techrical Type | Absolte Type Read-Crly. =
] =
£

In the variable area of the debugging screen, select field parameters to see their values as you step through
the code. In this example, we have chosen some including I, VALUE and DT_ORGANIZATION (this
is the results table into which values in I._VALUER are placed). Step through the code by pressing F5 until
the system gets to where it will end the function. At that point, double click on DT_ORGANIZATION

in the variable area and the view will change to display its contents.

=l |cL_UTP_US_ELTM===============_| / [CL_UIP_U3_ELTM=-=====-=----== | /|35 SY-3UERC |0
£ METHOD /|CALC_ORGANIZATION_P (CL_UIP_US_ELIM) Ed SY-TAETX |4
" Desktop 1 } Desktop 2 - Desktop 3 - Standard ~ Structures -~ Tables - Objects -~ DetalDisplay - Data Explorer - Break.fwWatchpoints -~ Diff -~ Script
1 EIMETHOD calc_organization p. 5] Varlables 1 | Variables 2 Locals | Globals A =]
z DATA: Ei
3 ls_dim TVPE s_dimension,
4 1 pactern parenth TYPE string, & BEET & £ &
5 1_length TYPE 1, S... Variable V... al,
3 1_value TVPE uj_dim menber . = L_PATTERN_PARENTH PARENTH* N
7 4] L_VALUE H1 had
= FIELD-SYMBOLS:
g 21t dim field> TYPE AMY TABLE, @g DT ORGANIZATION [1x1(64])]5tandard Table
10 <ls dim field- TYPE ANY. <LT_DINM_FIELD> [9x1(40)]$tandard Table
11
1z 1 length = STRLEN(go_s field-dim aggr_prefix perenth) — 1. “get the length of "PARENT' .
13 CONCATENATE ge_s_field-dim aggr prefix parenth '®' INTO 1_pattern parenth.
14
15 8 IF dr_organization IS INITIAL.
16 READ TABLE dt_dimension INTO ls_dim WITH KEY newe = d_dim entity.
17
s B IF ls_dim I3 NOT INITIAL.
19 ASSIGN ls_dim-t_attr TO <lt_dim fields.
z0
21 & LOOP AT <lt_dim field- ASSIGNING <ls_dim field:.
2z o IF <ls_dim_field> CP 1_pattern parench.
23 SHIFT <ls dim field> BY 1_length PLACES.
z4 1 value = <ls_dim field>.
25 INSERT 1_walue INTO TAELE dt_organization.
Z6 ENDIF.
27 ENDLOCF .
28 ENDIF.
za
30l |+ "get rid of duplicated items.
31 - SORT dt_orgamization.
3z “ DELETE ADJACENT DUPLICATES FROM dt organization COMPARING ALL FIELDS.
33 ENDIF. B ~
34
= 35 | EWDMETHOD. hd
' >

© Copyright 2014 Auric IT Consulting Services

10

Now we know that the system defaulted the value “H1” for the hierarchy selection when no parameter
value for hierarchy is passed to the program. So PARENTH1 is used for the calculations.

Tables . Table Contents |
Table DT_ORGANIZATION '
Attributes Standard [1x1(64)] 7 &

® \EBcolumns ... |.

Row TABLE_LINE [C(32)]
=T =

Hl
R

By debugging, we have now determined both the parameter name and the format for the value to be
passed. Now we just need to make sure we can adjust the logic script and have it be recognized.

Going back to the logic script tester, we alter the logic script to include the line “HIERARCHY = H2”.
For proof of concept, this value is hardcoded in the logic script for testing. It can be altered later to a
package variable if you wish to make the selection more dynamic. Now if we walk through the same steps
to debug, we can see that the system does indeed recognize the “H2” value and that it would now use the
PARENTH2 entity hierarchy to determine the organization to use for posting to elimination entities.

T=l|CL_UJP US ELIM==========s====_| / CL_UJP_US_ELIM=====
& METHOD / CALC_ORGANIZATION_P (CL_UJP_US_ELIM
Desktop 1~ 'Desktop 2 'Desktop 3 K Standard < Stru

Script File Location:

¥ERE »le HE Tables . Table Contents |

*RUN_PROGRAM US_ELIM
CATEGORY = %C_CATEGORY_SET% Table DT_ORGANIZATION il
GROUP = %RPTCURRENCY_SET% .
TID_RA = %TIME_SET% Attributes Standard [1x1(64)] A
HIERARCHY = H2 a4 EHcolumns ... |.
“ENDRUN_PROGRAM _ Row | TABLE_LINE [C(32)]

'_1 H2

L -}

By using the debugging features of BPC for Netweaver, we were able to determine that the
documentation on US Eliminations was correct about being able to use any hierarchy in the entity
dimension and how to enable its use using standard BPC configuration.

© Copyright 2014 Auric IT Consulting Services 11

Conclusion

The above is a simple example of how a BPC consultant can work with the debugging features in BPC to
diagnose issues with business rules. Business rule issues can take on many forms (data problems, missing
configuration, patches, etc.) and sometimes this requires determining what a business rule program does.
While no BPC consultant necessarily needs to be expert in ABAP code, understanding how and when to
use the debugging tools can be very helpful. When used correctly, they are an excellent feature to assist in
resolving issues with business rules.

© Copyright 2014 Auric IT Consulting Services 12

