CHEMISTRY I (HONORS)

K PRACTICE \#1

1. Consider the following reaction at $100^{\circ} \mathrm{C}$.

$$
\mathrm{N}_{2} \mathrm{O}_{4}(g) \Leftrightarrow 2 \mathrm{NO}_{2}(g)
$$

If the equilibrium concentrations of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} are 0.0400 M and 0.120 M , respectively, what is the value of K ?
2. In the reaction:

$$
\mathrm{NH}_{3}(g)+\mathrm{H}_{2} \mathrm{O}(l) \Leftrightarrow \mathrm{NH}_{4}^{1+}(a q)+\mathrm{OH}^{1-}(a q)
$$

The value of K is $1.80 \times 10^{-5} \mathrm{M}$ at $25^{\circ} \mathrm{C}$. What are the equilibrium concentrations of all species if the initial concentration of ammonia is 0.0238 M ?
3. At $1000^{\circ} \mathrm{C}$ hydrogen iodide gas is prepared from the following reaction:

$$
\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \Leftrightarrow 2 \mathrm{HI}(g) \quad \mathrm{K}=710 \mathrm{M}
$$

What is the equilibrium concentration of HI if the initial H_{2} and I_{2} are 0.0890 M and 0.247 M , respectively?
4. K is 0.720 for the following reaction at $25^{\circ} \mathrm{C}$:

$$
\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g) \Leftrightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g)
$$

What are the equilibrium concentrations of all four species if the initial concentrations of CO and $\mathrm{H}_{2} \mathrm{O}$ are 0.500 M and 1.15 M , respectively?
5. The value of K for the following reaction at $2027^{\circ} \mathrm{C}$ is 1.70×10^{6} :

$$
\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{NO}(g)
$$

What are the equilibrium concentrations of all three species if 10.0 g of each reactant are initially present in a 500-mL container?

Answers

1. 0.360 M
2. $\left[\mathrm{NH}_{3}\right]_{\mathrm{eq}}=0.0231 \mathrm{M}$ $\left[\mathrm{NH}_{4}{ }^{1+}\right]_{\mathrm{eq}}=6.55 \times 10^{-4} \mathrm{M}$ $\left[\mathrm{OH}^{1-}\right]_{\mathrm{eq}}=6.55 \times 10^{-4} \mathrm{M}$
3. $[\mathrm{HI}]_{\mathrm{eq}}=0.177 \mathrm{M}$
4. $[\mathrm{CO}]_{\mathrm{eq}}=0.177 \mathrm{M}$
$\left[\mathrm{H}_{2} \mathrm{O}\right]_{\text {eq }}=0.827 \mathrm{M}$
$\left[\mathrm{CO}_{2}\right]_{\mathrm{eq}}=0.323 \mathrm{M}$
$\left[\mathrm{H}_{2}\right]_{\mathrm{eq}}=0.323 \mathrm{M}$
5. $\left[\mathrm{N}_{2}\right]_{\text {eq }}=0.089 \mathrm{M}$
$\left[\mathrm{O}_{2}\right]_{\mathrm{eq}}=1.03 \times 10^{-5} \mathrm{M}$
$[\mathrm{NO}]_{\mathrm{eq}}=1.25 \mathrm{M}$

CHEMISTRY I (H)

 K PRACTICE \#21. 5.00 g of both $\mathrm{N}_{2}(g)$ and $\mathrm{O}_{2}(g)$ are placed in an empty 2.00-L flask at $\mathrm{o}^{\circ} \mathrm{C}$. K for the reaction is 4.10×10^{-4}. What are the equilibrium concentrations of the $\mathrm{N}_{2}, \mathrm{O}_{2}$, and NO gases?
2. K for the following reaction is 100: $\mathrm{H}_{2}(g)+\mathrm{F}_{2}(g) \Leftrightarrow 2 \mathrm{HF}(g)$. In an experiment, 2.0mol of each reactant are introduced to an empty 1.0-L flask. What are the equilibrium concentrations of all three species?
3. 10.0 g of $\mathrm{ClF}(g)$ are placed in an empty $500-\mathrm{mL}$ flask. K for the reaction is 0.0690. What are the equilibrium concentrations of $\mathrm{ClF}(g), \mathrm{Cl}_{2}(g)$, and $\mathrm{F}_{2}(g)$?
4. Calculate the equilibrium concentrations of all species for the following reaction provided that the initial concentration of the reactant is 0.250 M and the K is $230 \mathrm{M}: \mathrm{PCl}_{5}(g) \Leftrightarrow \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g)$.
5. 0.125 mol of oxygen gas is added to carbon in a $250-\mathrm{mL}$ flask. K for the following reaction is $0.086 \mathrm{M}: \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{CO}(\mathrm{g})$. What is the equilibrium concentration of $\mathrm{CO}(\mathrm{g})$?

Answers

1. $\left[\mathrm{N}_{2}\right]_{\mathrm{eq}}=0.0883 \mathrm{M}$
$\left[\mathrm{O}_{2}\right]_{\mathrm{eq}}=0.0773 \mathrm{M}$
$[\mathrm{NO}]_{\mathrm{eq}}=0.00169 \mathrm{M}$
2. $\left[\mathrm{H}_{2}\right]_{\mathrm{eq}}=0.333 \mathrm{M}$
$\left[\mathrm{F}_{2}\right]_{\mathrm{eq}}=0.333 \mathrm{M}$
$[\mathrm{HF}]_{\mathrm{eq}}=3.33 \mathrm{M}$
3. $[\mathrm{ClF}]_{\mathrm{eq}}=0.240 \mathrm{M}$
$\left[\mathrm{Cl}_{2}\right]_{\text {eq }}=0.0635 \mathrm{M}$
$\left[\mathrm{F}_{2}\right]_{\mathrm{eq}}=0.0635 \mathrm{M}$
4. $\left[\mathrm{PCl}_{5}\right]_{\mathrm{eq}}=2.72 \times 10^{-4} \mathrm{M}$
$\left[\mathrm{PCl}_{3}\right]_{\mathrm{eq}}=0.250 \mathrm{M}$
$\left[\mathrm{Cl}_{2}\right]_{\mathrm{eq}}=0.250 \mathrm{M}$
5. $[\mathrm{CO}]_{\mathrm{eq}}=0.187 \mathrm{M}$
