CHEMISTRY I (HONORS) K PRACTICE #1

1. Consider the following reaction at 100°C.

 $N_2O_4(g) \Leftrightarrow 2NO_2(g)$

If the equilibrium concentrations of N_2O_4 and NO_2 are 0.0400 M and 0.120 M, respectively, what is the value of K ?

2. In the reaction:

 $NH_3(g) + H_2O(l) \Leftrightarrow NH_4^{1+}(aq) + OH^{1-}(aq)$ The value of K is 1.80 x 10⁻⁵ M at 25°C. What are the equilibrium concentrations of all species if the initial concentration of ammonia is 0.0238 M?

- 3. At 1000°C hydrogen iodide gas is prepared from the following reaction: H₂(g) + I₂(g) ⇔ 2HI(g) K = 710 M What is the equilibrium concentration of HI if the initial H₂ and I₂ are 0.0890 M and 0.247 M, respectively?
- 4. K is 0.720 for the following reaction at 25°C: CO(g) + H₂O(g) ⇔ CO₂(g) + H₂(g)
 What are the equilibrium concentrations of all four species if the initial concentrations of CO and H₂O are 0.500 M and 1.15 M, respectively?
- 5. The value of K for the following reaction at 2027°C is 1.70 x 10⁶: N₂(g) + O₂(g) ⇔ 2NO(g) What are the equilibrium concentrations of all three species if 10.0 g of each reactant are initially present in a 500-mL container?

Answers

- 1. 0.360 M
- 2. $[NH_3]_{eq} = 0.0231 \text{ M}$ $[NH_4^{1+}]_{eq} = 6.55 \text{ x } 10^{-4} \text{ M}$ $[OH^{1-}]_{eq} = 6.55 \text{ x } 10^{-4} \text{ M}$
- 3. [HI]_{eq} = 0.177 M
- 4. $[CO]_{eq} = 0.177 \text{ M}$ $[H_2O]_{eq} = 0.827 \text{ M}$ $[CO_2]_{eq} = 0.323 \text{ M}$ $[H_2]_{eq} = 0.323 \text{ M}$
- 5. $[N_2]_{eq} = 0.089 \text{ M}$ $[O_2]_{eq} = 1.03 \text{ x } 10^{-5} \text{ M}$ $[NO]_{eq} = 1.25 \text{ M}$

CHEMISTRY I (H) K PRACTICE #2

- 1. 5.00 g of both $N_2(g)$ and $O_2(g)$ are placed in an empty 2.00-L flask at 0°C. K for the reaction is 4.10 x 10⁻⁴. What are the equilibrium concentrations of the N_2 , O_2 , and NO gases?
- 2. K for the following reaction is 100: $H_2(g) + F_2(g) \Leftrightarrow 2HF(g)$. In an experiment, 2.0mol of each reactant are introduced to an empty 1.0-L flask. What are the equilibrium concentrations of all three species?
- 3. 10.0g of ClF(g) are placed in an empty 500-mL flask. K for the reaction is 0.0690. What are the equilibrium concentrations of ClF(g), $Cl_2(g)$, and $F_2(g)$?
- 4. Calculate the equilibrium concentrations of all species for the following reaction provided that the initial concentration of the reactant is 0.250 M and the K is 230 M: PCl₅(g) ⇔ PCl₃(g) + Cl₂(g).
- 5. 0.125 mol of oxygen gas is added to carbon in a 250-mL flask. K for the following reaction is 0.086 M: $C(s) + O_2(g) \Leftrightarrow 2CO(g)$. What is the equilibrium concentration of CO(g)?

Answers

- 1. $[N_2]_{eq} = 0.0883 \text{ M}$ $[O_2]_{eq} = 0.0773 \text{ M}$ $[NO]_{eq} = 0.00169 \text{ M}$
- 2. $[H_2]_{eq} = 0.333 \text{ M}$ $[F_2]_{eq} = 0.333 \text{ M}$ $[HF]_{eq} = 3.33 \text{ M}$
- 3. $[ClF]_{eq} = 0.240 \text{ M}$ $[Cl_2]_{eq} = 0.0635 \text{ M}$ $[F_2]_{eq} = 0.0635 \text{ M}$
- 4. $[PCl_5]_{eq} = 2.72 \times 10^{-4} \text{ M}$ $[PCl_3]_{eq} = 0.250 \text{ M}$ $[Cl_2]_{eq} = 0.250 \text{ M}$
- 5. $[CO]_{eq} = 0.187 \text{ M}$