
IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 527 | P a g e

BUG LOCALIZATION AUTOMATION USING

COMBINATION OF IR TECHNIQUES

 Mr. S. Mastan 1 Dr. E. Kesavulu Reddy2,

 3rd Year Student, Assistant Professor,

Department of Computer Science, Department of Computer Science,

 SV U CM & CS, Tirupati. SV U CM & CS,, Tirupati.

ABSTRACT: Bug localization is the technique to locate the relevant source code from bug reports in order to fix that issue.
Usually developers do it manually, hence take lot of time and efforts which leads to high maintenance cost. Our effort is to

reduce that cost by applying the more efficient Information Retrieval techniques for bug localization. We are going to use the

combination of various methods in order to reduce the efforts and time for bug localization and also to provide the automated

framework. This framework consists of major four phases as bug and source code preprocessing as removal of stack traces and

unnecessary data, then applying concept location with page rank algorithm to find the relevant source code for the given bug also

further applying Relational Topic Model for finding the relevant source code for the given bug. Then combine these two

techniques and by Reciprocal Rank Fusion method compare its results and get the best relevant source code files.

I INTRODUCTION

Bug Localization can be defined as an information

retrieval problem. It can be mentioned as a classification

problem as given m source code entities and a bug report r,
now classify the bug report r as entity belonging to one of the

source code entities m. This way by classification the relevant

source code files will be found relevant to the bug. Bug

localization is the task of finding the relevant source code

entities which needs to be modify in effort to fix the bug. Most

of the time in industry this task is done manually. This task is

time consuming and effort consuming as well. Still most of the

industry follows the manual bug localization method. Once it

has been realized that bug localization is a classification

problem and can be solved by using Information Retrieval

techniques, it leads researcher to automate it by using
traditional Information Retrieval techniques. Once this

problem is automated the implications are that it will require

less manual efforts and less time. Hence it will lead to less

maintenance cost of the software. So automation for bug

localization can be a major factor in attempts to reduce the

software maintenance cost. It uses the basic fact that classifier

configuration makes a significant impact so we need to choose

the parameters carefully and the use of combination of

classifiers give better results [1].

II LITERATURE SURVEY

Information Retrieval is the study of querying for text

within a collection of documents [2]. It is more or less finding

some entity through the search engine. Hence, the IR

techniques play a major role in bug localization. Much

research is done on various IR techniques used for bug

localization. The research of Rao and Kak employed several
popular IR techniques for bug localization and evaluated their

performances [3]. Rao and Kak’s work includes evaluating the

various IR models as VSM (Vector Space Model), LSI and

LDA and various combinations. They performed a case study

and concluded that the simpler IR models often outperform

more sophisticated models. Lukis et.al.Applied Latent

Dirichlet Allocation (LDA) for bug localization [4]. Using LSI

and LDA he build the two classifiers on the identifiers and

comments of the source code and compute the similarity

between a bug report and each source code entity using the

cosine and conditional probability similarity metrics. His
conclusions were based on performing the experiments on

Eclipse and Mozilla bug reports and concluded that LDA often

outperforms LSI. Neguyen et al. [5] worked on a new Topic

Model which was based on the earlier IR model LDA, it was

called BugScout. It mainly considered the past bug reports in

addition to the identifiers and comments.

Along with IR techniques there is tool which can be plug-

in in bug tracking system and version control system and helps

in performing bug localization online. Such tool is bug

localizer [7]. It is based on Zhou et al [8]. It is implemented

as Bugzilla extension, it extracts information from summary

and description parts and uses revised VSM and bug file graph

from past similar bug reports. So based on the past source

code entities which developers changed at that time,

developers can get links for this similar bug.

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 528 | P a g e

III PROPOSED WORK

The suggested framework is divided into four major

modules. The intention of this system is to use the

combination of two IR techniques as Concept Location and

Relational Topic Model. First on source code query perform

concept location and get its results and then on the same
source code and query apply Relational Topic Model. After

that the system will use the Reciprocal Rank Fusion method

and take out the best results from Concept Location and

Relational Topic Model and will deliver the most relevant

source file which tops on both models as output of the

suggested framework.

The first module is Bug and Source code Preprocessing. It

uses previously used techniques combined in one module. The

bug report and source code is considered to be the input and

these two entities are preprocessed to remove the noise from

the bug and source code.

The second module is the ‘Concept Location’. Here we use

the concept location technique with Page Rank algorithm for

bug localization.

The third module is Relational Topic Model. Like Concept

Location module, this module will also find the relational

topics based on the link importance and link structure which

are the relevant source code files and rank them as per their

relevance.

The forth module is the module for combinational

techniques used for combining the IR classifiers/techniques. In

this system the used combinational framework is Reciprocal

Rank fusion which combines studies of Concept location and

Relational Topic Model and finds the best relevant source

code.

A software bug is a error, flaw, failure or fault in a

computer program or system because of which the intended

program, system is not meeting the desired results as expected.

To achieve high quality software engineering tasks have

included software testing tasks to start side by side with

development activities. When the initial software is ready to
test then that version goes to software testers who test those

scenarios as per the customer requirements/system

requirements. Testing is the conformance to the requirements.

Testers test various scenarios and log the defect/flaw/bug in

some defect tracking tool so that later developers can check it

and find the source code which is the root cause for such error

and make necessary changes to the source code files and fix

the defect. The Defect life cycle starts when the defect is

found by the tester and he/she logs it in the defect tracking

system. The different states defect goes through its life cycle

are as below;

1. New: When a defect is logged for the first time by the

tester.

2. Assigned: After defect is logged by the tester the test

lead verifies and approves the defect as genuine defect and

assign the bug to the corresponding developer or developer

team.

3. Open: Here in this state the developer starts analyzing

and working on the defect. 4. Fixed: When developer makes
necessary changes to the source code files to remove the

error/bug, he changes the state as ‘Fixed’.

5. Retest: At this state the tester again tests the

functionality/bug and verifies that whether the changes made
by developer are adequate and functionality is working as

expected.

6. Verified: Once the tester has tested and confirmed that

the functionality is working as expected then he/she changes
the state as ‘Verified’. It is the assurance that what the

developer has changed in source code that has been effective

and without creating any further error the error has been

removed.

7. Reopen: While testing the bug fix if the tester feels that

the issue is not fixed and error still persists then he/she

changes the state as ‘Reopen’ and then then the developer

should work again on that and the bug follows the whole cycle

again.

8. Closed: Once the tester is assured about the bug fix then

he/she closes the bug and changes its state as ‘Closed’.

9. Duplicate: Many testers are working simultaneously so

there is possibility that same bug is logged by others. In such

cases only one copy is kept and others are marked as

‘Duplicate’ and will not be entertained. 10. Rejected: In many

scenarios the development team might be in disagreement of a

bug in such scenarios with consultation and approval with

customer/client/analysts/end stakeholders development team

marks the bug as ‘Rejected’.

11.Deferred: In many situations the based on the priority

and timeline and severity few bugs are ‘Deferred’ to be fixed

in later releases.

IV IMPLEMENTATION DETAILS AND RESULTS

GROUND TRUTH AND BASE DATA

To compare the results of this framework first some

ground truth needs to be in place. To compare later we are

going to use some already registered bugs and their manually

found source files by developers. This is the manual bug

localization. Later on the same code and bug and on the same

version of the code we will implement our framework and

compare the results in terms of accuracy and time.

In this section the basic reported bug and its associated

manual source file is considered. On the very same data we

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 529 | P a g e

will be implementing our code and later in this section the

results are mentioned.

EXPERIMENTAL RESULTS

To get the idea of first module Bug and Source code

preprocessing the system will take an example of a bug

mentioned below as Bug B. Once the bug B enters into the

system as input first module preprocesses Bug and

preprocesses the source code based on the parameters

mentioned.

Bug Details- We are using here eclipse JDT bug report and

the source code dataset is Eclipse JDT.

PERFORMANCE METRIC

To check the actual performance and accuracy of this

suggested framework it should be based on the manual bug

localization; the file relevant file manually found by the

developer and the relevant file found by our suggested system.

We need to compare these two results and if they match then it

means this suggested system works accurately.

To measure the performance of used classifiers we are

using top-k accuracy metric. Many renowned researchers have

used the same method so this paper will also follow the same

method for measuring the performance of used classifier

combinations.

V CONCLUSIONS

In this paper we have seen that there are various IR

techniques used for bug localization, even some combinations

of IR classifiers are used for the same. They give better results

than individual classifiers still there is a need to do further

research in other combinations of classifiers/concept location

which exactly is our area of research in this paper. Here we

have suggested a combinational framework which consists of

preprocessing of bug and source code, implementing concept

location for finding relevant source files as a query result for

given bug, the same we are trying to apply on Relational

Topic Model and with Reciprocal Rank fusion/Score addition

we will combine the results and will find which is the best
candidate relevant to the files bug and that will be the bug

localization result of this system. In future we intent to show

that how it is less time consuming and equally accurate with

manual bug localization. Such automated combinational

frameworks definitely will reduce the effort and time on

developer’s side and hence will reduce the software

maintenance cost.

VI REFERENCES

[1] S. Thomas, M.Nagappan, D.Blostein,A.Hassan, “The

Impact of Classifier Configuration and Classifier

Combination on Bug Localization”, IEEE Transactions on

Software Engineering, vol. 39no. 10, pp. 1-2,2013.

[2] C.D. Manning, P. Raghavan, and H. Schutze, Introduction

to Information Retrieval, vol. 1, Cambridge Univ. Press

Cambridge, 2008

[3] S. Rao and A. Kak, “Retrieval from Software Libraries for

Bug Localization: A Comparative Study of Generic and

Composite Text Models,” Proc. Eighth Working Conf.

Mining Software Repositories, pp. 43-52, 2011

[4] S.K. Lukins, N.A. Kraft, and L.H. Etzkorn, “Bug

Localization Using Latent Dirichlet Allocation,”

Information and Software Technology, vol. 52, no. 9, pp.

972-990, 2010

[5] A.T. Nguyen, T.T. Nguyen, J. Al-Kofahi, H.V. Nguyen,

and T.N.Nguyen, “A Topic-Based Approach for

Narrowing the Search Space of Buggy Files from a Bug

Report,” Proc. 26th Int’l Conf. Automated Software Eng.,

pp. 263-272, 2011

[6] Automation for Bug Localization using combination of

IR techniques,Ms. Dhanashree P. Pathak,Computer

Engineering Department,G.S.M.C.O.E.,

Balewadi,Savitribai Phule Pune University, Pune, India,

[7] R.W. Selby, “Enabling Reuse-Based Software

Development of Large-Scale Systems,” IEEE Trans.

Software Eng., vol. 31, no. 6 pp. 495-510, June 2005.

[8] C.D. Manning, P. Raghavan, and H. Schutze,

Introduction to Information Retrieval, vol. 1, Cambridge

Univ. Press Cambridge, 2008

[9] G. Salton, A. Wong, and C.S. Yang, “A Vector Space

Model for Automatic Indexing,” Comm. ACM, vol. 18,

no. 11, pp. 613-620,1975. [9] S. Deerwester, S.T. Dumais,

G.W. Furnas, T.K. Landauer, and R.Harshman,

“Indexing by Latent Semantic Analysis,” J. Am.
Soc.Information Science, vol. 41, no. 6, pp. 391-407,

1990.

