
IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 971 | P a g e

Using Metaheuristic Search Technique Optimizing the Test

Cases for Regression Testing
Alok Kumar1, Vaibhav Sharma2,

1Department of Computer Science & Technology, Department of Computer Science & Engineering
12Assistant Professor, Central University of Jharkhand, Ranchi, India, SRM University, Delhi-NCR,

Sonepat, Haryana, India.

Abstract- This proposed technique investigates the use of a

metaheuristic approach, called genetic algorithm, for this test-

suite reduction problem. Unlike other algorithms, our

algorithm uses a new criteria, which is a combination of a

block based coverage criteria and a test-execution cost criteria,

to make decisions about reducing a test suite. Finally, Results

show that our algorithm can significantly reduce the size and

the cost of the test-suite for regression testing, and the test-

execution cost is one of the most important features that must

be taken into consideration for test-suite reduction. In Existing

techniques, Greedy approach use test-suite coverage criteria,
other criteria such as risk or fault-detection effectiveness, or

combination of this criterion. The greedy algorithm is sub set

selection problem which is NP complete. The problem

occurring when use this approach are test suit reduction time

is more and Increasing complexity to find the coverage.

Index Terms:-Test-suite reduction; Regression testing; Test
Levels; Genetic Algorithms, testing strategies.

I. INTRODUCTION

Testing is a crucial part of the software life cycle, and recent

trends in software engineering evidence the importance of this

activity all along the development process. Testing activities

have to start already at the requirements specification stage,

with ahead planning of test strategies and procedures, and

propagate down, with derivation and refinement of test cases,

all along the various development steps since the code-level

stage, at which the test cases are eventually executed, and
even after deployment, with logging and analysis of

operational usage data and customer’s reported failures.

Testing is a challenging activity that involves several high

demanding tasks: at the forefront is the task of deriving an

adequate suite of test cases, according to a feasible and cost

effective test selection technique. However, test selection is

just a starting point, and many other critical tasks face test

practitioners with technical and conceptual difficulties (which

are certainly under-represented in the literature): the ability to

launch the selected tests (in a controlled host environment, or

worse in the tight target environment of an embedded

system); deciding whether the test outcome is acceptable or
not (which is referred to as the test oracle problem); if not,

evaluating the impact of the failure and finding its direct cause

(the fault), and the indirect one (via Root Cause Analysis);

judging whether testing is sufficient and can be stopped,

which in turn would require having at hand measures of the

effectiveness of the tests: one by one, each of these tasks

presents tough challenges to testers, for which their skill and

expertise always remains of topmost importance.

II. TERMINOLOGY AND BASIC CONCEPTS
Before deepening into testing techniques, we provide here

some introductory notions relative to testing terminology and

basic concepts.

Nature Of The Testing
There exist many types of testing and many test strategies,

however all of them share a same ultimate purpose: increasing

the software engineer confidence in the proper functioning of

the software. Towards this general goal, a piece of software

can be tested to achieve various more direct objectives, all

meant in fact to increase confidence, such as exposing

potential design flaws or deviations from user’s requirements,

measuring the operational reliability, evaluating the

performance characteristics, and so on. Generally speaking,

test techniques can be divided into two classes:

1. Static analysis techniques
A. Dynamic analysis techniques

Static and dynamic analyses are complementary techniques:

the former yield generally valid results, but they may be weak

in precision; the latter are efficient and provide more precise

results, but only holding for the examined executions.

TYPES OF TESTS

The one term testing actually refers to a full range of test

techniques, even quite different from one other, and embraces

a variety of aims.

Static Techniques
A coarse distinction can be made between dynamic and static

techniques, depending on whether the software is executed or

not. Static techniques are based solely on the (manual or
automated) examination of project documentation, of

software models and code, and of other related information

about requirements and design. Thus static techniques can be

employed all along development, and their earlier usage is of

course highly desirable. Considering a generic development

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 972 | P a g e

process, they can be applied.

At the requirements stage for checking language syntax,
consistency and completeness as well as the adherence to

established conventions;

At the design phase for evaluating the implementation of

requirements, and detecting inconsistencies (for instance

between the inputs and outputs used by high level modules

and those adopted by sub- modules).
During the implementation phase for checking that the form

adopted for the implemented products (e.g., code and related

documentation).

 Software inspection: the step-by-step analysis of the
documents (deliverables) produced, against a compiled

checklist of common and historical defects.

 Software reviews: the process by which different aspect of

the work product is presented to project personnel

(managers, users, customer etc) and other interested
stakeholders for comment or approval.

 Code reading: the desktop analysis of the produced code

for discovering typing errors that do not violate style or
syntax.

 Algorithm analysis and tracing: is the process in which

the complexity of algorithms employed and the worst

case, average-case and probabilistic analysis evaluations

can be derived.

Dynamic Techniques
Dynamic techniques obtain information of interest about a

program by observing some executions. Standard dynamic

analyses include testing (on which we focus in the rest of the

chapter) and profiling. Essentially a program profile records

the number of times some entities of interest occur during a set

of controlled executions. Profiling tools are increasingly used

today to derive measures of coverage, for instance in order to

dynamically identify control flow invariants, as well as
measures of frequency, called spectra, which are diagrams

providing the relative execution frequencies of the monitored

entities. In particular, path spectra refer to the distribution of

(loop-free) paths traversed during program profiling. Specific

dynamic techniques also include simulation, sizing and timing

analysis, and prototyping.

Objective of Testing

Software testing can be applied for different purposes, such as

verifying that the functional specifications are implemented

correctly, or that the system shows specific non-functional
properties.

Acceptance/ qualification testing generally, it is run by or
with the end-users to perform those functions and tasks the

software was built for.

 Installation testing: the system is verified upon

installation in the target environment. Installation testing

can be viewed as system testing conducted once again

according to hardware configuration requirements.

 Alpha testing: before releasing the system, it is deployed
to some in- house users for exploring the functions and

business tasks. Generally there is no test plan to follow,

but the individual tester determines what to do.

 Beta Testing: the same as alpha testing but the system is

deployed to external users. In this case the amount of

detail, the data, and approach taken are entirely up to the

individual testers. Each tester is responsible for creating

their own environment, selecting their data, and

determining what functions, features, or tasks to explore.

Each tester is also responsible for identifying their own

criteria for whether to accept the system in its current state

or not.

 Reliability achievement: testing can also be used as a

means to improve reliability; in such a case, the test cases

must be randomly generated according to the operational

profile, i.e., they should sample more densely the most

frequently used functionalities.

 Conformance Testing/Functional Testing: In particular

it checks whether the implemented functions are as

intended and provide the required services and methods.

This test can be implemented and executed against

different tests targets, including units, integrated units,

and systems.

 Regression testing: According to regression testing is the

“selective retesting of a system or component to verify
that modifications have not caused unintended effects and

that the system or component still complies with its

specified requirements”. In practice, the objective is to

show that a system which previously passed the tests still

does.

 Performance testing: this is specifically aimed at

verifying that the system meets the specified performance

requirements, for instance, capacity and response time.

 Usability testing: this important testing activity evaluates
the ease of using and learning the system and the user

documentation, as well as the effectiveness of system

functioning in supporting user tasks, and, finally, the

ability to recover from user errors.

 Test-driven development: test-driven development is not

a test technique per se, but promotes the use of test case

specifications as a surrogate for requirements document

rather than as an independent check that the software has

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 973 | P a g e

correctly implemented the requirements.

 Increasing the confidence that the developed product

correctly implements the required capabilities;

 Collecting information useful for deciding the release of
the product.

Generally system testing includes testing for performance,
security, reliability, stress testing and recovery. In particular,

test and data collected applying system testing can be used for

defining an operational profile necessary to support a

statistical analysis of system reliability.

Regression Test

Properly speaking, regression test is not a separate level of
testing, but may refer to the retesting of a unit, a combination

of components or a whole system (see Fig.1.1 below) after

modification, in order to ascertain that the change has not

introduced new faults.

As software produced today is constantly in evolution, driven

by market forces and technology advances, regression testing

takes by far the predominant portion of testing effort in

industry.

III. TEST CASE REDUCTION TECHNIQUE

A. Test Suite Reduction Problem
Test case reduction technique reduces the effective test cases

thereby reducing the test cost to nearly half and hence reduces

the overhead during maintenance phase. It focuses on reducing

test suites to obtain a subset that yields equivalent coverage

with respect to some criteria.

Problem: Find a representative set of test cases from TSj that

satisfies all of the Reqi.

Table 2.1 Test Requirement coverage information

A. Test Requirements Coverage

The logical form of Requirement coverage information can be

derived, as shown in table1. The Reqi in the foregoing

statement can represent various test case requirements, such as
source statements, blocks, decisions, definition-use

associations, or specification items.

B. Existing Test Suite Reduction Techniques

1. Greedy Algorithm

The test case reduction technique basically known as Test

Filter, selects test cases based on their statement-coverage (i.e.,

weight). Note, weight refers to the number of occurrences of a

particular test case that covers different statement of the

program under test. The technique first calculates weight of all

generated test cases. Next it selects test cases of higher weight
and marked all of its corresponding requirements as satisfied.

Again this process continues until all requirements are

satisfied. In case of tie between test cases (i.e., test cases

having same weight), random selection strategy is used.

2. Modified Greedy Algorithm

Usually used in test laboratory, the greedy algorithm takes into

consideration the change in the coverage when choosing a test
case to add to the reduced test-suite. We calculate the marginal

coverage of each test case, i.e., the change in the coverage as a

consequence of the change in reduced test- suite. We then

compare it with the change in cost, and choose the test case

that proves to be the best.

step1: Let T = Ø;

step2: For each ti -T, calculate the increase in coverage

and cost if it is added to T:

∆Covrg(ti) = Covrg(

step3: Find a test case ti in TS-T for which

∆Covrg(ti)/∆Cst (ti) is minimal. If there are more, then

choose the one with the lowest i;

step4: If ∆Covrg(T) ≥ K, then STOP, otherwise go to
Step2.

Here, Covrg(ti) denotes the coverage information of test case ti

and Cst(ti) denotes the cost information of test case ti.

a. Get Split Algorithm
Dynamic Domain Reduction (DDR) DDR is the technique that

creates a set of values that executes a specific path. It

transforms source code to a Control Flow Graph (CFG). A

CFG is a directed graph that represents the control structure of

the program. Each node in the graph is a basic block, a

junction, or a decision node

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 974 | P a g e

b. Coverall Algorithm

Steps:

1) Finding all possible constraints from start to finish nodes.

A constraint is a pair of algebraic expressions which

dictate conditions of variables between start and finish

nodes (>, <, =, ≥, ≤, ≠).

2) Identifying the variables with maximum and

minimum values in the path, if any. Using Conditions dictated

by the constraints, two variables, one with maximum value
and the other with minimum value, can be identified. To

reduce the test cases, the maximum variable would be set at

the highest value within its range, while assigning the

minimum variable at the lowest possible value of its range.

3) Finding constant values in the path, if any. When
constant values can be found for any variable in the path, the

values would then be assigned to the given variables at each

node.

4) Using all of the above-mentioned values to create a

table to present all possible test cases.

IV. RELATED WORK

A. In Existing techniques, Greedy approach use test-suite

coverage criteria, other criteria such as risk or fault-

detection effectiveness, or combination of this criteria.

The greedy algorithm is sub set selection problem which
is NP complete. The following problem occurring when

use this approach

a. Test suit reduction time is more.

b. Increasing complexity to find the coverage.

This proposed technique investigates the use of a
metaheuristic approach, called genetic algorithm, for this test-

suite reduction problem. Unlike other algorithms, our

algorithm uses a new criteria, which is a combination of a

block based coverage criteria and a test-execution cost criteria,

to make decisions about reducing a test suite. Finally, Results

show that our algorithm can significantly reduce the size and

the cost of the test-suite for regression testing, and the test-

execution cost is one of the most important features that must

be taken into consideration for test-suite reduction.

V. SYSTEM DESIGN

A. TSR Using Greedy Algorithm

The working procedure of this approach is as follows:

Step 1: Calculates a Weighted Set (WS) of test cases. The

weighted set is a function from test cases to their weights.

The weight of a test case is the number of its occurrences in

the set of test suites.

Step 2: Select the first test case (tch) from the WS that has the

highest weight. In case of a tie between test cases, use a

random selection.

Step 3: Move tch to the Representative Set (RS), and mark all

test suites from Set of Test Suites (STS), which contain tch in

their domain. If all test suites of STS are marked then exit,
otherwise go back to step1. Consider the following function

Value takes three integers inputs X, Y, Z, and returns an

integer V.

Value Function: Int value (x, y, z) Int

x,y,z;

{

Int v; V=0;
If (x<y)

{ Z=15;

If (x<z) V=x+20;
else V=x;

}

else

{ Z=40;
V=x+y+z;

}

Consider the values for variables X, Y, Z respectively as
follows,

X [] = {11, 2, 15};

Y [] = {15, 20, 9};

Z [] = {6, 10, 17};

The test cases are developed using black box and white box
techniques for validation purposes. All possible test cases

came from number of values on the each variable

3*3*3=27.Saving (%) =100- ((100*Reduced test_cases)/all

possible test_cases).

B. TSR Using Genetic Algorithm (1)Genetic

algorithm:

A GA is a programming technique that mimics the process of
natural genetic selection according to Darwin Theory of

Biological Evolution as a problem solving strategy. Genetic

algorithms represent a class of adaptive search techniques,

based on biological evolution, which are used to approximate

solutions.

GA are optimization algorithms based on natural genetics and

selection mechanisms. To apply genetic algorithms to a

particular problem, it has to be decomposed into atomic units

that correspond to genes. Then individuals can be built with

correspondence to a finite string of genes, and a set of

individuals is called a population. A criterion needs to be

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 975 | P a g e

defined: a fitness function F which, for every individual

among a population, gives F(x), the value which is the quality

of the individual regarding the problem we want to solve.

Once the problem is defined in terms of genes, and fitness

function is available, a genetic algorithm is computed

following the process described.

Genetic Algorithm:

1. Initialization of Population.

2. Calculation of Fitness value among individual.

3. Reproduction.

4. Crossover.

5. Mutation.

6. Several Halting Criteria i.e. a given value is
reached.

Table 4.2 Action of Genetic Algorithm

As an adaptive search technique, genetic algorithms have been

used to find solutions to many NP-complete problems and

have been applied in many areas and can find a better solution.

Genetic algorithm uses three operators: reproduction,

crossover and mutation.

(2) Steps in genetic algorithm

A simple genetic algorithm is as follows:

(1) Initialization of population: A population is initialized

randomly. Each of these strings represents one feasible

solution to the search problem.

(2) Fitness evaluation: The fitness of each candidate is

evaluated through some appropriate measure. After the

fitness of the entire population has been determined, it

must be determined whether or not the Termination

criterion has been satisfied. If the criterion is not

satisfied, then we continue with the three genetic

operations of reproduction, crossover, and mutation.

(3) Selection: In this operation chromosomes are selected
from the population to be parents to crossover and

produce offspring. According to theory of survival of

fittest, the best ones should survive and create new

offspring.

(4) Crossover: Crossover operator is applied to the mating
pool with a hope that it would create a better solution.

The aim of this operator is to search the parameter space.

In addition, search is to be made in a way that the

information stored in the present solution is maximally

preserved because these parent solutions are instances of

good solutions selected during reproduction.

(5) Mutation: Mutation is simply an insurance policy
against the irreversible loss of genetic material. It introduces

new genetic structures in the population by randomly

modifying some of its building blocks. It helps the search

algorithm to escape from local minima’s traps since the

modification is not related t o any previous structure of the

population. The mutation is also used to maintain diversity

in population.

Tournament Selection: The tournament selection provides a

selective pressure by holding a tournament competition among

individuals. The best individual (the winner) from this group is

selected as parent. This process is repeated until the mating

pool for generating new offspring is filled.

Simulated Binary Crossover: It creates children solutions in
proportion to the difference in parent solutions. The two

properties which give SBX its search power are, The extend of

children solution is in proportion to the parent solutions Near

parent solutions are more likely to be chosen as children
solutions than solutions distant from parents.

Polynomial Mutation: Newly generated offspring undergo

polynomial mutation operation. Like in the SBX operator, the

probability distribution can also be a polynomial function,
instead of a normal distribution.

A. Genetic algorithm for test-suite reduction

Gene modeling for test-suite reduction: - For our problem of

test-suite reduction, gene of an individual is modeled as a ‘0’-

‘1’. Although in its primitive form each test-subset cannot

satisfy the test coverage bound, it is believed that after
evolution of numbers of generations it can evolve to be a

feasible solution to this problem. So, each test- subset is

naturally to be considered as a potential solution or an ancestor

of the solution to our reduction problem. That is to say if there

are k test cases in the original test-suite and the program has n

statements, the size of population is n, and the length of gene

code is

k. So the gene code of an individual can
be represented as follows:

Gj = [gj1, gj2, .., gjn],gji (0, 1), 1 ≤j ≤ k and 1 ≤ i ≤ n, here if

gji =1,it means test case ti has tested statement sj, and if gji=0

means case ti has not tested sj according to the original test

histories shown in Table1. So, the gene of each individual

denotes a subset of test cases that have tested sj and this subset

is named as Tj. Our genetic algorithm operates on the genes
with selection, crossover, and mutation, to find an individual

that satisfies the coverage bound with minimal cost. Another

aspect of the genetic algorithm which has to be decided for the

particular problem is a fitness function.

Fitness function: The fitness value for an individual is the

combination value of its associated coverage and its cost. The

fitness function for individual ti can be computed as follows:

(gj * wj)

F(ti) = --------------------

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 976 | P a g e

C(ti)

C(ti) is the cost of ti when used to test the program. Consider

the function F(ti), the bigger the function F(ti) value is, the

more possible the case can be selected, because the bigger
value of F denotes that the case has tested more statements

with less cost.

Selection: Selection operator is used to choose chromosomes

from a population for mating. This mechanism defines how

these chromosomes will be selected, and how many off

springs each will create. Selection has to be balanced: too

strong selection means that best chromosomes will take over
the population reducing its diversity needed for exploration;

too weak selection will result in a slow evolution. Classic

selection methods are Roulette-Wheel, Rank based,

Tournament, Uniform, and Elitism. In this work tournament

selection is used.

In tournament selection, a “tournament” is run among a few

individuals chosen at random from the population and the

winner (individual with the best fitness) is selected for

crossover. Selection pressure can be adjusted by changing the

tournament size. If the tournament size is larger, weak
individuals have a smaller chance to be selected..

Crossover: Let m be the size of individuals in a population,

and let’s select an integer i at random between 1 and m-i, then

from two individuals ind1 and ind2, we can create two new

individuals ind3 and ind4; one made of the i first genes of

ind1 and the m-i last genes of ind2, and the other made of the

i first genes of ind2 and m-i last genes of ind1.

Mutation: Based on the gene model, the mutation operator

consists in replacing syntactic node by another licit node. The

rate of the mutation is defined as 1/L; n which L is the

number of bits in the gene. Based on the gene model, the

mutation operator consists in changing a ‘1’ in to ‘0’ and vice

versa. The mutation operator chooses a gene at random in an

individual.

Termination: The generational process is repeated until a
termination condition has been met. There is no guarantee that

the genetic algorithm will converge upon a single solution.

Some common terminating conditions are:

 A solution is found that satisfies minimum

criteria

 Fixed number of generations reached

 Allocated budget (computation time/money)
reached

 Highest ranking solution fitness has

reached a plateau such that successive

iterations no longer produce better results.

(3) TESTING

Control Structure testing

In this testing, all the logical statements are in the

implementation of both greedy and genetic algorithm have

tested by using block box testing with help of WINRUNNER

tool. Finally tool ensured that following properties are satisfied

from source code.

1. All independent paths are exercised at least once.

2. All the logical statements are exercised

for both true and false paths.

3. All the loops are executed at their
boundaries and within operational bounds.

4. All the internal data structure is

exercised to ensure validity.

Basic path testing

A testing mechanism proposed by McCabe. Aim is to drive a
logical complexity measure of a procedural design.

Boundary value Analysis

Generally, the large no of errors tend to occur at boundaries of

the input domain. BVA leads to selection of the test cases that

exercise boundary values. BVA complements equivalence

portioning, rather than select any element in an equivalent

class, select those at the edge of the class. Finally this analysis

technique analyzed the genetic algorithm because there we

need some boundary value for optimization process.

VIII. CONCLUSION AND FUTURE ENHANCEMENT

This work has presented a mathematical model of our test

reduction problem and transformed it into a linear integer-

programming problem. The results of studies are encouraging.
They show the potential for substantial reduction of test-suite

size and cost, and genetic algorithm is more effective than

greedy approaches. The initial studies also showed that the

promotion of effectiveness in test-cost reduction could be

achieved by taking the cost criteria into consideration. We

conclude that, the cost reduction is an important characteristic

needed to be taken into consideration in test-suite reduction.

A. FUTURE ENHANCEMENT
With help of parallel test case execution procedure to improve

the cost of testing and reduce the complexity to find the

coverage of code and also future work investigate test suite

reduction that attempts to use addition coverage information of

test cases to selectively keep some additional test cases in the
reduced suites that are redundant with respect to the test

criteria used for suite minimization, with the goal of

improving the fault detection effectiveness redundant of the

reduced suite and modifying an existing heuristics for test

suite minimization.

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 977 | P a g e

IX. REFERENCES
[1]. Anoj Kumar, 2Shailesh Tiwari, 3 K. K. Mishra and 4A.K.

Misra, Generation of Efficient Test Data using Path Selection
Strategy with Elitist GA in Regression Testing,IEEE 2007,PP 43
-51

[2]. Agastya Nanda_, Senthil Mani†, Saurabh Sinha†, Ma ry Jean

Harrold‡, and Alessandro Orso‡, Regression Testing in the
Presence of Non-code Changes,IEEE 2011,PP 211-218.

[3]. Bing JIANG, Yongmin MU, Research of Optimization
Algorithm for Path-Based Regression Testing Suit,IEEE
2011,PP 122-128.

[4]. Dennis Jeffrey and Neelam Gupta, Improving Fault Detection
Capability By Selectively Retaining Test Cases during Test
Suite Reduction, IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, VOL. 33, NO. 2, FEB- 2007,PP108-127.

[5]. Engin Uzuncaova, Sarfraz Khurshid, and Don Batory,
Incremental Test Generation for Software
Product Lines, IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING, VOL. 36, NO. 3, MAY/JUNE
2010 PP 309-321.

[6]. Kaner.C, J. Falk, and H.Q. Nguyen H.Q. Testing Computer
Software,2nd Edition, John Wiley & Sons, April, 1999.

[7]. Gregory M. Kapfhammer, Empirically Evaluating

 Regression Testing Techniques: Challenges,
Solutions, and a Potential Way Forward, IEEE 2011,PP 78-84.

[8]. Hyunsook Do, Ladan Tahvildari, The Effects of Time
Constraints on Test Case Prioritization, IEEE TRANSACTIONS
ON SOFTWARE ENGINEERING, VOL. 36, NO. 5,
SEPTEMBER/OCTOBER 2010PP 593-614

[9]. Irman Hermadi, Chris Lokan, Genetic Algorithm Based Path
Testing: Challenges and Key Parameters, 2010 Second WRI

World Congress on Software Engineering PP 341- 356.
[10]. James H. Andrews, Genetic Algorithms for Randomized Unit

Testing, IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, VOL. 37, NO. 1, JANUARY/FEBRUARY
2011,PP 80-102.

[11]. Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Preliminary
Guidelines for Empirical Research in Software Engineering,
IEEE 2005,PP 18-24.

[12]. Mary Jean Harrold, ,Empirical Studies of a Prediction Model for
Regression Test Selection, IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING, VOL. 27, NO. 3, MARCH
2001,PP 248-260

[13]. Mark Harman, Kiran Lakhotia, Phil McMinn, A Multi–
Objective Approach To Search–Based Test Data Generation,
IEEE 2008,PP 98-105.

[14]. Lyu M.R, eds., Handbook of Software Reliability Engineering,
McGraw-Hill, 1996.

[15]. Vaibhav Sharma, Amit Kumar, Priority Based Congestion
Control Technique for Heterogeneous Applications in WSN,
IJRIT 2014.

