Quantum-interference-enhanced thermoelectricity in single-molecule junctions. Colin Lambert, Physics, Lancaster University Morecambe Bay

A state of the sta

Collaborating experimentalists

Can quantum interference be exploited to enhance thermoelectric properties of single molecule devices and thin films?

- Evidence of room-temperature quantum interference
- Three strategies for enhancing thermoelectric properties of single molecules

 $(V_2 - V_1) = -S(T_2 - T_1)$

• One strategy for reducing thermal conductance

Evidence of QI in electroburnt junctions

Sadeghi et al., PNAS 2015, 9, 2658-2663

Molecules vs. Quantum dots

ancaster

Answer provided by a magic number table.

Magic Ratio Rule (MRR) $G_{1,8}/G_{17,8}$ = ratio of the squares of their magic numbers

An example of constructing M-table

Lancaster 🎦

Fun with magic numbers:the pyrene M-table

Comparison with experiment

Mid-gap Ratio Rule MRR – A new rule

Molecular heart	Anchor group	Literature notation "Conductance Ratio of connectivity"	Mid-gap MRR	Experimental ratios	GW prediction	DFT Prediction
Naphthalene	thiol	Red / Blue (JACS, 2012)	4	5.1	NA	2
Anthracene	thiol	Red / Blue (JACS, 2012)	16	10.2	NA	13
Pyrene	carbon	Red / Blue (JACS, 2015)	9	8	NA	9
Anthanthrene	pyridyl	Red / Blue (JACS, 2015)	81	79	NA	81
Azulene	thiochroman	Red / Blue (Nano Lett., 2014)	0.72	1	0.32	0.93
Azulene	thiochroman	Green / <mark>Blue (Nano Lett., 2014)</mark>	0.003	0.06	0.1	0.05

Lancaster 🤒

Jniversit

More evidence of QI: A quantum circuit rule for room temperature conductance

Nat Comm 2015, 6, 6389

A quantum circuit rule for room temperature conductance and thermopower: $S_{ppp} + S_{mmm} = S_{mpm} + S_{pmp}$ $G_{ppp}G_{mmm} = G_{mpm}G_{pmp}$ >>> N<u>)</u>=()=() >=() non (<u>)</u>=()=() non 0400 40 a) **b**) $(S_{XBX} + S_{YBY})/2 (\mu V/K)$ zoom 20 $\sqrt{G_{XBX}} G_{VBY}$ (G) RR 0 0.01 T_1 T₃ D₁ -20 \mathbf{D}_2 S_1 S_2 -40 S_3 OPE Η But 10^{-9} -60 10^{-3} 10^{-6} -40 20 40 -20 10-60 G_{XBY} (G₀) S_{XBY} ($\mu V/K$)

QI effects disappear when a molecule is too long.

Zhao et al, Chemistry of Materials, 25 21 4340 (2013)

Why is quantum interference expected to be helpful?

Mott formula:

 $S \sim - d[logT_e(E_F)]/dE_F$

 $T_e(E)$ = transmission probability for electrons of energy E travelling from the source to the drain via the molecule.

High slope = large S, provided the high slope coincides with the Fermi energy of the electrodes

Strategies for controlling thermoelectric properties of single molecules

- 1. Creating quantum scatterers in series
- 2. Control of thermopower by mechanical gating
- 3. Electrostatic gating via charge transfer complexation
- 4. Suppression of phonon transport in 'edge-overedge' porphyrins and molecular Christmas trees

```
Note regarding a target value for S and κ<sub>p</sub>Wiedemann-Franz: κ<sub>e</sub>=αTG, so if κ<sub>p</sub> <<κ<sub>e</sub>, ZT = S<sup>2</sup>GT/ κ<sub>e</sub> = S<sup>2</sup>/ αSo to achieve ZT > 1 requires S<sup>2</sup> > αie S > 150µV/K
```


Incident electron of energy E

reflected electron

Scattering region

transmitted electron

Transmission probability $T_e(E)$

At low temperature or for nottoo-narrow resonances:

S=-($\Pi ^{2}k_{B}^{2}T/2e$) dInT_e(E_F)/dE_F

Transmission probability T_e^2

 $\ln T_e^2 = 2 \ln T_e$

So Seebeck coefficient should double!

Two scatterers in series

Does it work? Application to C_{60} molecular junctions: a quantum ball game

Evangeli, et al, NanoLett (2013) 13 2141

Comparison between theory and experiment

Strategy 2: Control of thermopower by mechanical gating

L. Rincón-García, A. Ismael, et al. Nature Materials, 15, 289–293 (2016)

Control of thermoelectricity via tip pressure

Nature Materials, 15, 289-293 (2016)

Strategy 3: Electrostatic gating via charge transfer complexation in "crown-ether anthraquinones"

AK Ismael, I Grace, CJL, Nanoscale 7 (41), 17338-17342 (2015)

Seebeck coefficient S and power factor P

1 doped with TTF possesses S=-640 μ V/K, which is higher than any single-molecule thermopower measured to date. At room temp. P= 73 μ W m⁻¹K⁻² for **1** + TTF + 2Na and 90 μ W m⁻¹K⁻² for **2** + TTF. These compare favourably with other organic materials. eg P = 0.016, 0.045 μ W m⁻¹K⁻² and 12 μ W m⁻¹K⁻² for Polyaniline , Polypyrole and PEDOT:PSS.

Thermoelectric properties of metallo-porphyrins

Al-Galiby et al., Nanoscale, 2016, 8, 2428

High-performance thermoelectricity in edge-overedge zinc-porphyrin molecular wires.

Can phonon interference effects be exploited to reduce thermal conductance?

Length dependence of the thermal conductance of alkanes

Experiment: Meier et al., Phys. Rev. Lett. (2014) 113, 060801

Theory: Sadeghi et al., Nano Lett. (2015) 15, 7467

Suppression of thermal conductance through molecular christmas trees

M. Famili, I. Grace, H. Safdeghi and CJL, submitted Nat. Comm. (2016)

Eg: Alkane trunk with alkyl branches

Marjan Famili, Iain Grace, Hatef Sadeghi and CJL, submitted

Summary

- Electroburnt graphene junctions Synthesis Anderson, measurements Briggs group (Oxford): PNAS 2015, 9, 2658; Nano Letters 2016 16, 170
- Connectivity-driven electron transport Experiments by Bern group of Silvio Decurtins: JACS 2015 137,11425; JACS 2015 137, 4469
- Quantum circuit rule for single-molecule electrical junctions Synthesis by Durham group of Martin Bryce, + measurements by Bern group: *Nat. Comm.* 2015 6 6389
- Fullerene-based thermoelectricity Synthesis by Porfyrakis Oxford, measurements by Madrid group): Nature Mat.2016 15, 289–293
- Thermoelectricity in crown-ether anthraquinones and metallo-porphyrins
 Nanoscale 2015 7 (41), 17338; Nanoscale, 2016, 8, 2428
- Suppression of phonon transport in molecular Christmas trees submitted Nano Lett.

Lancaster theory: S. Bailey, I. Grace, D. Manrique, H. Sadeghi, S. Sangtarash, Q. Al-Galiby, O. Al-Owaedi A. Ismael, M. Noori, M. Famili, E. Almutib, V. García-Suárez, N. Almutlaq, Z. Mijbil, Q. Wu.