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Abstract— A necessary condition for global performance
guarantees in most of the motion coordination algorithms is
connectivity of the underlying network topology. In proximity
networks, connectivity maintenance becomes critical because
the neighborhood set of each agent is dynamic and depends on
the locations of all the other agents in the network. We present
an efficient framework for distributed motion coordination
in proximity networks. The proposed framework relies on
identifying agents in a so called weakly connected dominating
(WCD) set of the underlying network graph. Maintaining
only the edges incident to the agents in WCD, which we
call as critical edges, preserves the connectivity of the overall
network. The proposed framework is presented in the context of
rendezvous problem, which is selected because of its canonical
importance in distributed systems with mobile agents. We
propose a controller that drives all the agents to a common point
by preserving the critical edges only. The proposed scheme is
robust to failure of edges that are not critical and nodes that
do not belong to WCD. Moreover, it performs well in terms of
energy consumption and computational complexity.

I. INTRODUCTION

In the distributed control and coordination of multiagent
systems, maintaining connectivity among agents is one of
the primary requirements. In particular, success of various
distributed algorithms employed towards achieving formation
control, coverage control, and boundary protection deeply
depends on the connectivity of the underlying network
structure. Moreover, despite the algorithmic advances in
coordinating multiagent systems, issues related to energy
efficiency and real time implementability of these algorithms
are significant and still require thorough investigation.

We propose an efficient framework for multiagent systems
comprising mobile robots that ensures connectivity of the
underlying network topology in proximity networks. In these
networks, two agents are neighbours if and only if they are
within the sensing range of each other, which results in a
dynamic neighborhood set for each agent. Therefore, main-
taining connectivity in proximity graphs requires additional
measures. In the proposed framework, we first identify a
set of nodes that constitute a weakly connected dominating
(WCD) set in the underlying network graph. We establish that
maintaining only the edges incident to the nodes in WCD,
which we refer to as critical edges, preserve the connectivity
of the overall network. This weakly connected dominating
set is computed offline before the deployment of the system.
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In order to find a small WCD set, we refer to the well-
established theory of domination in graphs (see e.g. [11]), in
particular to the weakly connected dominating sets in graphs
(see e.g., [13], [14], [15], [16], [17]).

We also design an energy efficient controller that ensures
that all the critical edges are maintained, and guarantees a
desired global objective. The controller is designed for the
consensus problem, in which the objective is to ensure that all
agents converge at a common state, which is a position here.
Consensus-based controllers have been extensively studied
and applied to solve problems related to formation control,
coverage control, and distributed estimation to name a few
(e.g., [1], [2], [7]). We present a detailed stability analysis
for the proposed controller through which we prove that the
proposed controller drives all the agents to a common point
while guaranteeing that all the critical edges are maintained
for all the time. Moreover, we verify the performance of the
proposed framework via simulations. The simulations also
highlight the energy efficiency and real time implementabil-
ity of the proposed framework as compared to the existing
schemes.

In the existing literature, different schemes have been
proposed to ensure connectivity. In [10], the authors pro-
posed a centralized scheme to maximize the second smallest
eigenvalue λ2, called the algebraic connectivity of a graph,
using semi definite programming. A graph with N nodes is
connected as long as λ2 > 0. A distributed solution for this
problem was presented in [5]. Based on the same concept, a
new scheme was proposed in [8], where each agent gets its
estimate of λ2 in a distributed manner. Edges are allowed to
break if the value of λ2 is greater than some threshold value.
The problem with these schemes is their high computational
complexity since an optimization problem has to be solved
at each decision time either by a centralized authority or by
individual agents. This computational complexity severely
limits the real time implementability of these algorithms.

Another approach is based on potential functions in which
an energy or a potential is associated with each edge to
prevent edge loss (see [2], [3], and [4]). This approach is
computationally efficient but conservative in a sense that it
does not allow any edge to break. Consequently, the motion
of the agents can be overly restrictive and the agents are
often forced to move in an aggressive manner. Moreover,
in the case of rendezvous problem, the constraints on each
agent increases further with the formation of each new edge
as the agents move close to each other. In this approach,
convergence to a rendezvous point can be fast but this fast
convergence rate is achieved at a price of excessive energy
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consumption.
Our scheme provides a compromise between the above

approaches. We also add edge weights but only to the set
of critical edges. These are the edges incident to the nodes
belonging to the WCD set. Loss of an edge which is not
critical, or a node which does not belong to the WCD set
does not affect the connectivity of the network. Hence, it is
no longer required to maintain all edges. Since a WCD set
has to be computed only once before the deployment of the
system, the proposed framework is real time implementable.
Moreover, we show through simulations that the proposed
controller is energy efficient as compared to the scheme in [2]
because of the reduced number of constraints on each agent.
Moreover the transmission power level of each agent are
adjusted to maintain only the required connections, reducing
the energy consumption even further.

One final remark regarding the novelty of the proposed
framework. We note that the minimum number of edges that
are needed to maintain the connectivity of the underlying
network of n nodes is (n − 1). In particular, these are
the edges that are included in a minimum spanning tree.
However, in that case, a node has to identify a subset of its
neighbors with which it will maintain edges. In the proximity
model for network topology, an agent does not have the
authority to select its neighbors. An agent j is a neighbor of
agent i if the distance between them is less then the sensing
radius of agent i. Our framework handles this restriction of
proximity networks. In our model, if a node is responsible for
maintaining edges, i.e., if it is included in a WCD set, then
it preserves edges with all its neighbors. Thus, we eliminate
the requirement to explicitly distinguish between neighbors
for the purpose of keeping a track of edges that are included
in a spanning tree.

The outline of this paper is as follows. Section II presents
graph theoretic concepts used in the paper and describes
the system model. Section III discusses the notion of WCD
set. Section IV presents the controller for the rendezvous
problem. Section V provides a numerical evaluation of the
energy consumption, and Section VI concludes the paper.

II. PRELIMINARIES AND SYSTEM DESCRIPTION

Here, we introduce the terms and notations that will be
used throughout the paper. We represent the underlying
network structure by a graph G(V,E), in which V is the
vertex set, and E is the edge set. The graph is undirected if
the edge set is unordered, i.e., (vi ∼ vj) ∈ E ⇔ (vj ∼
vi) ∈ E, and the undirected graph is connected if a path
exists between any two vertices. If the edges are directed,
we obtain a directed graph, for which we define an incidence
matrix I = [eij ] as follows.

eij =

 1 if vi is the head of the edge ej
−1 if vi is the tail of the edge ej
0 otherwise.

Let G(V,E) be an undirected graph, and we assign an
arbitrary orientation to its edges to obtain a directed graph.

If I be the incidence matrix of the new directed graph, then
we define the Laplacian matrix of the undirected G(V,E)
as L = IIT . We denote the eigen values of L by λ1 ≤
λ2 ≤ · · · ≤ λN . Note that λ1 is always zero and 1 =
[1 1 · · · 1]T is the corresponding eigen vector. Moreover,
the number of connected components in G is exactly same as
the multiplicity of zero eigen values of its Laplacian matrix
L (e.g., see [6]).

The standard dynamics to solve the consensus problem are
given by the following consensus equation.

ẋi = −
∑

vj∈N (vi)

(xi − xj). (1)

Here N (vi) is the neighborhood set of node vi define as
N (vi) = {vj |(vi ∼ vj) ∈ E}. We define the close
neighborhood of a node vi as N [vi] = {vi ∪ N (vi)}. We
consider N agents in Rn and denote the location of agent i
by xTi = (xi,1, xi,2, . . . , xi,n). Then the dynamics in (1) can
be represented in matrix form as

ẋ = −Lx. (2)

where L is the laplacian matrix corresponding to the graph G.

We consider multiagent systems with planar agents, that is
xi ∈ R2 for each vi. We define the region in which an agent
can sense some event and communicate with others as the
sensor footprint or the sensing region. Since the neighbors
of an agent could change as a result of a change in its
location, we also study the so-called dynamic graphs, in
which the edge set changes as agents move in and out of
each others’ sensing regions. In particular, we study ∆-disk
graphs, G(V,E,∆), where (vi, vj) ∈ E ⇔ ‖xi−xj‖ ≤ ∆,
for some given ∆ > 0. The neighborhood set of such graphs
is defined as N (vi) = {vj |‖xi − xj‖ ≤ ∆}. If ∆ is same
for all the agents, then the resulting graph is undirected. We
also consider the case in which agents might have different
sensing radii resulting in a directed disk graphs, where
(vi, vj) ∈ E ⇔ ‖xi − xj‖ < ∆j .

III. CONNECTIVITY MAINTENANCE THROUGH WEAKLY
CONNECTED DOMINATING (WCD) SETS

We start with a group of N planar agents with G(V,E,∆)
representing their underlying interaction topology. Our pro-
posed scheme is based on identifying a subset of nodes in
a network such that maintaining all the edges incident to
these nodes will preserve the connectivity of the overall
network. This means instead of maintaining all the edges,
as in [2], we only need to maintain a subset of the edges.
The subset of nodes is the one that constitute a Weakly
Connected Dominating (WCD) set in the graph. The notions
of dominating sets and its variants have been extensively
applied in the domain of wireless sensor and mobile ad hoc
networks to exploit the network structure to design energy-
efficient efficient routing and clustering schemes (e.g. [18]).
A dominating set in a graph is defined as below.
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Definition 3.1: For a graph G(V,E,∆), a set of nodes
S ⊆ V is a dominating set if and only if

⋃
vi∈S
N [vi] = V .

Note that for each dominating node v of degree r, we can
associate a star graph, K1,r+1, in G where a dominating node
v is a central vertex and vertices in N (v) are the branches.
The union of all such stars is a graph, GD ⊆ G with a vertex
set V and an edge set ED ⊆ E where, ED = {v ∼ u :
v ∈ D}. This GD will necessarily span G by the definition
of a dominating set, but it may not be connected as shown
in the Figure 1(b). The goal is to extend the dominating set
of G such that the union of star graphs obtained from the
nodes in D results into a connected spanning subgraph of G.
Such a dominating set is referred to as the Weakly Connected
Dominating set.

Definition 3.2: A set of nodes D is a Weakly Connected
Dominating (WCD) set if and only if

(a) D is a dominating set
(b) A graph with a vertex set V and an edge set Ed ⊆ E,

where ED = {v ∼ u : v ∈ D} is a connected spanning
subgraph of G.

Definition 3.3: An edge (vi ∼ vj) is critical if and only
if vi ∈ D.

v1 v2 v1 v2

v1 v2

(a) (b)

(c)

y

y

x

x

Fig. 1. (a) A graph with a dominating set, D = {v1, v2}. (b) A subgraph
GD = Gv1 ∪ Gv2 , where Gvi is a star graph with a vertex set N [vi] and
edge set consisting of all edges incident to vi. Note that Gd is not connected.
(c) vertex x is added to a dominating set, thus giving a connected graph,⋃
k∈{v1,v2,x}

Gk , that spans original G.

We note that the WCD set, as the name suggests, is a
weaker notion as compared to the more widely used concept
of connected dominating (CD) set. A set of nodes constitute
a CD set if they also form a dominating set, and the subgraph
induced by the vertices in CD is connected. In the case of
WCD, the subgraph induced by the vertices in WCD may
not be connected, but the subgraph with a vertex set V and
the edge set ED containing only those edges of E(G) that
originates from the vertices in WCD, is connected.

The problem of finding a minimum sized WCD set is NP-
hard [12]. In [13], Chen and Liestman proposed centralized
algorithms having an approximation ratio O(log dmax) to
compute WCD sets. Here, dmax is the maximum degree of
the graph. They also provided distributed implementation of
their algorithms. In [14], the same authors proposed another
algorithm based on the idea of dividing the whole graph
into various regions, computing WCD set for each region,
and then making adjustments to construct the WCD of the

whole graph. Alzoubi et al. proposed an algorithm in [15]
that ran in O(n) time, required a message complexity of
O(n log n), and had a constant approximation ratio of 5.
Another distributed algorithm with a constant approximation
ratio was presented in [17], whose time and message com-
plexities were both O(n). Some other distributed algorithms
for a small sized WCD sets were also presented in [16].

An example of a dominating set and a weakly connected
dominating set are illustrated in Figure 2. A set of nodes D =
{v1, v4, v5, v7, v13} is a dominating set as ∪vi∈DN [vi] = V .
If ED is the set of edges incident on the vertices in D,
then the subgraph consisting of vertices V and edges ED

is not connected. In fact, it has three components as shown
in Figure 2(a). On the other hand, if we consider D′ =
D ∪ {v3, v10}, then D′ is a WCD as ∪vi∈DN [vi] = V ,
and the subgraph with the vertex set V and the edge set
containing edges that are incident on the vertices in D′ only,
is connected, as shown in Figure 2(b).

v2

v1

v3

v4

v5

v6 v7

v8v9

v10

v11

v12

v13

v14

v17v16

v15

(a) (b)

v17v16

v2

v1

v3

v4

v5

v8v9

v10

v11

v12

v13

v14
v6 v7

v15

Fig. 2. (a) A graph with a dominating set D = {v1, v4, v5, v7, v13}. (b)
A graph with a weakly connected dominating set D′ = D ∪ {v3, v10}.

IV. RENDEZVOUS WITH CONNECTIVITY MAINTENANCE
DOMINATING SET

In this section, we design a control law to solve the ren-
dezvous problem using WCD sets. The rendezvous problem
is selected because of its fundamental importance to the
distributed control of multiagent systems. If the underlying
network structure induces an undirected graph that remains
connected at all times, the controller in Equation (1) solves
the problem. But for ∆-disk graphs, this connectivity con-
dition cannot be guaranteed as shown in [2] and [7]. To
address this issue, one approach is to modify Equation (1)
by introducing edge weights w(xi, xj).

ẋi = −
∑

vj∈N (vi)

w(xi, xj)(xi − xj), (3)

In the case of an undirected network graph, we consider the
edge tension energy for each edge (vi ∼ vj) as

Eij(x) =
‖xi − xj‖2

∆− ‖xi − xj‖
. (4)

If a graph is initially connected (at t = 0), then it was shown
in [2] that the controller

ẋi = −∂E(x)

∂xi

T

= −
∑

vj∈N (vi)

w(xi, xj)(xi − xj). (5)
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guarantees that the graph remains connected ∀t, while solv-
ing the rendezvous problem for ∆-disk proximity graphs.

Although Equation (5) preserves all the edges and solves
the rendezvous problem, it is over restrictive. In order to
maintain all the edges, agents are forced to move in an
aggressive manner at high velocity which is costly in terms
of energy consumption. Here, we first propose an energy
efficient controller to solve the rendezvous problem using
WCD set, denoted by D, and then prove the stability and
convergence of the proposed controller. By definition (3.2),
a graph G is connected if all of its edges (vi ∼ vj) such
that vi ∈ D, exist. The task of the controller is thus to
ensure that these edges are preserved for all time. We start
with an undirected network where the footprints of all the
agents are ∆. For simplicity, we consider each undirected
edge (vi ∼ vj) as a collection of two directed edges. With
this in mind, the edge tension energy is defined as

Eij(x) =



‖xi−xj‖2
∆−‖xi−xj‖ if vi ∈ D and (vi ∼ vj) ∈ E,

1
2‖xi − xj‖

2 if vi ∈ V \D and (vi ∼ vj) ∈ E,

0 otherwise.
(6)

Lemma 4.1: If G(V,E,∆) is an undirected ∆-disk graph
that is connected at t = 0, i.e., ‖xi(0)− xj(0)‖ < (∆− ε),
for some, 0 < ε < ∆ and for all (vi, vj) ∈ E(0); then
the graph G(V,E,∆) remains connected ∀ t > 0 under the
following control law.

ẋi = −
∑

vj∈N (vi)

∂Eij(x)

∂xi

T

, (7)

where Eij(x) is defined in Equation (6).
Proof: The total energy of the system is

E(x) =

N∑
i=1

N∑
j=1

Eij(x). (8)

Then

Ė(x) =

N∑
i=1

∂E(x)

∂xi
ẋi,

where ẋi is as in Eq. (7), which can be rewritten as follows.

ẋi = −∂E(x)

∂xi

T

+
∑

vj∈N (vi)

∂Eji(x)

∂xi

T

,

where

∂E(x)

∂xi

T

=
∑

vj∈N (vi)

∂Eij(x)

∂xi

T

+
∑

vj∈N (vi)

∂Eji(x)

∂xi

T

.

Ė(x) = −
∥∥∥∥∂E(x)

∂x

∥∥∥∥2

+

N∑
i=1

∂E(x)

∂xi

∑
vj∈N (vi)

∂Eij(x)

∂xi

T

.

Since ∣∣∣∣∣∣
∑

vj∈N (vi)

∂Eij(x)

∂xi

T
∣∣∣∣∣∣ <

∣∣∣∣∣∂E(x)

∂xi

T
∣∣∣∣∣ ,

we conclude that

Ė(x) < −
∥∥∥∥∂E(x)

∂x

∥∥∥∥2

+

∥∥∥∥∂E(x)

∂x

∥∥∥∥2

,

Ė(x) < 0.

The above inequality implies that the total energy of the
system is always decreasing. We know that initially ‖xi −
xj‖ < ∆ for all edges. Therefore, for any critical edge to
break, there has to be a time when ‖xi − xj‖ = ∆ making
the corresponding edge energy infinite. But we started with
a finite energy and the energy is always decreasing. This
proves that no critical edge can break and thus connectivity
will always be maintained by controller (9).

In Lemma (4.1), we have proved that under the proposed
controller (7), the network always remains connected. The
next step is to show that the controller indeed solves the
rendezvous problem.

Theorem 4.2: Consider an undirected and initially con-
nected ∆-disk graph, in which edge lengths are less than
(∆−ε) for some 0 < ε < ∆. Then, the system asymptotically
converges to the weighted initial centroid of the network
under the controller in Equation (7).

Proof: Consider the energy function defined in Equa-
tion (6). Then for any agent vi the controller in (7) is

ẋi =


−

∑
vj∈N (vi)

2∆−‖xi−xj‖
(∆−‖xi−xj‖)2

(xi − xj) if vi ∈ D,

−
∑

vj∈N (vi)

(xi − xj) if vi ∈ V \D .

(9)

Equation (9) shows that for all agents, the controller (7) can
be written in the form of weighted consensus equation.

ẋi = −
∑

vj∈N (vi)

w(xi, xj)(xi − xj).

wij =


2∆−‖xi−xj‖

(∆−‖xi−xj‖)2
if (vi ∼ vj) ∈ E and vi ∈ D,

1 if (vi ∼ vj) ∈ E and vi ∈ V −D,
0 otherwise.

(10)
We can also write this controller in terms of a weighted

Laplacian.

c(x, j) = −Lwc(x, j) ∀j = 1, 2 (11)

From [9], it is known that the controller (11) drives all the
agents asymptotically to the weighted centroid as long as
the network stays connected. The connectivity is guaranteed
from Lemma 4.1, and the proof follows.
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(a) Time t = 1.45

−10 −5 0 5 10 15
−10

−5

0

5

10

15

−10 −5 0 5 10 15
−10

−5

0

5

10

15

(b) Time t = 3

Fig. 4. Comparison between the proposed scheme (left in both plots) and the controller (5) (right in both figures) for network in Figure 3. For both cases
N = 15 and ∆ = 3. The controller (5) achieves rendezvous in t = 1.45 while our proposed controller achieves it in t = 3. The footprints in left plots
are adjusted according to (12).

A. Power conservation by adjusting transmission power

In the next section we will show through simulations that
the controller (9) drives the agents to their destination in an
energy efficient manner. However this energy is related to
mobility. As mentioned in the introduction, energy is also
consumed in sensing and communication. For sensors using
RF or radar based omni directional antennas, the power
transmitted for sensing and communication is directly related
to the square of the radius of sensors, footprint.

PT ∝ ∆2.

We have shown that to solve the rendezvous problem, the
controller (9) only needs to maintain edges (vi ∼ vj) such
that vi ∈ D. So an additional controller can be applied for
the transmission power level which will ensure that

1) For agents vi ∈ D, all the edges are maintained.
2) For agents vi ∈ V \D, the edges with the neighbors vj

such that vj ∈ D are maintained.
It is to be noted here that this controller for transmission
power level will operate while maintaining connectivity, thus
keeping all the previous analysis valid. The graph G(V,E′),
where E′ is the set of critical edges, will still be connected
with a slight modification that ∆i will be the footprint

−10 −5 0 5 10 15
−10

−5

0

5

10

15

Fig. 3. Initial network topology with N = 15 and ∆ = 3. The agents
represented by big circles constitute WCD. In this example the number of
agents in WCD is 6.

radius for agent vi. Now the requirements (1 and 2) can
be accomplished using a simple linear feedback controller.

ṖTi
(t) = −u(x,∆i)PTi

(t) for all vi ∈ V , (12)

where ∆i is the radius of the footprint of agent vi and

u(x,∆i) =


∆i − ( max

vj∈N (vi)
‖xi − xj‖+ ε) vi ∈ D,

∆i − ( max
vj∈D∩N (vi)

‖xi − xj‖+ ε) vi ∈ V \D.
(13)

Since ∆ is directly related with PT , as PTi decreases so
does ∆i. One final note is that the controller (12) is one of
the many controllers that can be used to accomplish the same
task. We selected controller (12) owing to its simplicity.

V. SIMULATIONS

In this section, we establish through Matlab simulations
that our proposed scheme is efficient in terms of energy
consumption. We will consider energy consumption due
to mobility and sensing and communication. For mobility,
based on the model presented in [19], energy consumption
is related directly to acceleration. This mobility model is
intuitive since although moving at a constant velocity con-
sumes energy, it is more costly to frequently accelerate and
decelerate. That is why fuel consumption is more in cities
than on highways. The total energy consumed is

Etot = αEacc + βEtran (14)

Where α and β are the constants. In this simulation both the
constants are taken to be 1. Eacc is the energy consumed due
to mobility and Etran is the energy consumed due to sensing
and communication. In the simulation, we are assuming
that energy consumed is directly related to acceleration,
i.e., Eacc ∝ acceleration. This assumption is logical but
simplistic because higher acceleration will result in higher
fuel consumption but this relation is not necessarily linear.
However for an initial analysis, this assumption provides a
good insight.
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Fig. 5. Comparison of energy consumption between our proposed scheme
and the controller (5). The left plot is the energy consumed due to Mobility
(acceleration). The right plot is the energy consumed due to sensing and
communication. α = 1 and β = 1. In both cases power consumed under
our scheme is represented by the bold line. The power consumed by the
scheme proposed in (5) is represented by the thin line. In both cases our
scheme is consumes less energy.

We start with the system in Figure 3 with N = 15 and
∆ = 3, and compare the proposed controller (9) with the
existing controller (5) as presented in [2]. The reason for
this comparison is that, out of the various connectivity
maintenance schemes presented in Section I, the one in [2],
i.e., controller (5) using edge weights, is computationally
efficient and is easy to implement on practical systems. Now,
Figure 4(a) and Figure 4(b) show that the controller (5)
achieves rendezvous in almost half the time as our proposed
scheme. However, this faster convergence comes at a cost
of high energy consumption. Figure 5(a) gives a comparison
of energy consumption due to mobility in both the cases.
It is evident that our scheme outperforms the controller in
(5) by a huge gap. It is interesting to analyse the jumps
in the plot of controller (5). Since the controller does not
allow any edge to break and all the agents are running the
weighted consensus, the agents are forced to move in an
extremely aggressive manner. The jumps correspond to the
formation of new edges which increase the weights and
thus the velocity of the corresponding agents. On the other
hand the plot for our scheme is smoother as only the nodes
in WCD are running weighted consensus while remaining
nodes are running standard consensus with weight 1. As a
result the formation of new edges does not effect the agents
velocity in the drastic manner as is observed in the other plot.

VI. CONCLUSIONS

In this paper we presented a framework for distributed
motion coordination in multiagent systems with network
topology represented by proximity graphs. In the proposed
framework, to guarantee the connectivity of the underlying
network topology, we identified a subset of edges, which
we called critical edges. These were the edges incident
on the agents in a weakly connected dominating set. We
showed that maintaining only the edges incident to the
nodes in WCD is sufficient to enusre connectivity, thereby
proposing a controller that preserved those edges. Finally, we
demonstrated the efficiency of the proposed scheme in terms
of energy consumption through simulations. It is important

to note that although the controller designed in this work was
for rendezvous problem, the proposed framework is general
and it can be applied to address a wide class of distributed
motion coordination algorithms for proximity networks in
which connectivity of the underlying network is required.
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