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Abstract

Sequential games of perfect information can be solved by
backward induction, where solutions to endgames are prop-
agated up the game tree. However, this does not work in
imperfect-information games because different endgames can
contain states that belong to the same information set and
cannot be treated independently. In fact, we show that this
approach can fail even in a simple game with a unique equi-
librium and a single endgame. Nonetheless, we show that
endgame solving can have significant benefits in imperfect-
information games with large state and action spaces: compu-
tation of exact (rather than approximate) equilibrium strate-
gies, computation of relevant equilibrium refinements, signif-
icantly finer-grained action and information abstraction, new
information abstraction algorithms that take into account the
relevant distribution of players’ types entering the endgame,
being able to select the coarseness of the action abstraction
dynamically, additional abstraction techniques for speeding
up endgame solving, a solution to the “off-tree” problem, and
using different degrees of probability thresholding in model-
ing versus playing. We discuss each of these topics in detail,
and introduce techniques that enable one to conduct endgame
solving in a scalable way even when the number of states and
actions in the game is large. Our experiments on two-player
no-limit Texas Hold’em poker show that our approach leads
to significant performance improvements in practice.

1 Introduction
Sequential games of perfect information can be solved by
a straightforward backward induction procedure in which
solutions to endgames are propagated up the game tree.
However, the same procedure does not work in general in
games of imperfect information, and more sophisticated al-
gorithms are needed. One algorithm for solving two-player
zero-sum imperfect-information games is based on a lin-
ear program (LP) formulation (Koller, Megiddo, and von
Stengel 1994). This formulation models each sequence of
actions down the game tree as a variable and is called
the sequence-form LP. It scales to games with around 108
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states in the game tree. Many interesting games are signifi-
cantly larger; for example, two-player limit Texas Hold’em
has about 1017 game states, and a popular variant of two-
player no-limit Texas Hold’em has about 10165 states (Jo-
hanson 2013). To address such large games, newer ap-
proximate equilibrium-finding algorithms have been devel-
oped that scale to at least 1012 states (Hoda et al. 2010;
Zinkevich et al. 2007). These algorithms are iterative and
guarantee convergence to equilibrium in the limit.

The leading approach for solving large games such as
Texas Hold’em is to abstract the game down to a game
with only 1012 states, then to compute an approximate equi-
librium in the abstract game (Gilpin and Sandholm 2006;
Billings et al. 2003; Sandholm 2010). In order to perform
such a dramatic reduction in size, significant abstraction is
often needed. Information abstraction involves reducing the
number of game states by bundling signals (e.g., forcing a
player to play the same way with two different hands). Ac-
tion abstraction involves reducing the number of actions by
discretizing large action spaces into a small number of ac-
tions.

1.1 Endgame Solving
A tempting technique to help mitigate the effects of abstrac-
tion and approximate-equilibrium finding is to solve relevant
portions of the game that we actually reach during play sepa-
rately online using a finer abstraction. We define an endgame
E of game G as follows:1

Definition 1. E is an endgame of game G if the following
two properties hold:

1. If s′ is a child of s and s is a state in E, then s′ is also a
state in E.

2. If s is in the same information set as s′ and s is a state in
E, then s′ is also a state in E.

For example, in poker we can consider endgames where
several rounds of betting have taken place and several pub-
lic cards have already been dealt (the rules of poker will be
discussed in more detail in Section 2). In these endgames,
we can assume both players have distributions of private

1An endgame is not the same as a subgame. In game theory, a
subgame is a game rooted at a node (of the full game) that is alone
in its information set.



information from states prior to the endgame that are in-
duced from the base approximate-equilibrium strategy that
we have precomputed in the coarse abstraction of the entire
game. Given these distributions as inputs, we can then solve
individual endgames in real time using much finer abstrac-
tions.

1.2 Theoretical Limitations of Endgame Solving

Unfortunately, this approach has some fundamental theoret-
ical shortcomings. It turns out that even if we computed an
exact equilibrium in the initial portion of the game prior to
the endgame (which is an unrealistically optimistic assump-
tion), and even if we are able to compute an exact equilib-
rium in the endgame, that the combined strategies for the
initial game and endgame may fail to be an equilibrium in
the full game. One obvious reason for this is that the game
may contain many equilibria, and we might choose one for
the initial game that does not match up correctly with the one
for the endgame; or we may compute different equilibria in
different endgames that do not balance appropriately. How-
ever, the following result shows that it is possible for this
procedure to output a non-equilibrium strategy profile in the
full game even if the full game has a unique equilibrium and
a single endgame.

Proposition 1. There exist games with a unique equilibrium
and a single endgame for which endgame solving can pro-
duce a non-equilibrium strategy profile in the full game.

Proof. Consider the Rock-Paper-Scissors game depicted in
Figure 1. It has a single endgame—when it is player 2’s turn
to act. This game has a unique equilibrium—where each
player plays each action with probability 1

3 . Now suppose
we restrict player 1 to follow the equilibrium in the initial
portion of the game. Any strategy for player 2 is an equilib-
rium in the endgame, because each one yields her expected
payoff 0. In particular, suppose our equilibrium solver out-
puts the pure strategy Rock for her. This is clearly not an
equilibrium of the full game.

Figure 1: Sequential rock-paper-scissors with imperfect in-
formation.

1.3 Prior Work on Solving Endgames in
Imperfect-Information Games

Despite this negative result, endgame solving has been
incorporated into some agents for imperfect-information
games. Limit Texas Hold’em agents PsOpti1 and PsOpti2
precomputed approximate equilibrium strategies for the fi-
nal three betting rounds assuming a fixed strategy for the ini-
tial round (Billings et al. 2003). Several years later, the agent
GS1 computed a real-time approximate equilibrium for the
final two betting rounds using the LP formulation (Gilpin
and Sandholm 2006); this was combined with a precom-
puted strategy for the first two rounds to produce a full
strategy. However, this approach was soon replaced in GS2
which instead used a holistic approach that precomputed an
approximate equilibrium for all four rounds in advance and
did not perform any endgame solving (Gilpin, Sandholm,
and Sørensen 2007). Endgame solving was again incorpo-
rated into the agent GS5 a few years later by solving the
last betting round in real time, with a holistic approximate-
equilibrium strategy precomputed for the prior rounds of-
fline (Ganzfried and Sandholm 2010). This approach used
a mixed integer programming formulation that took advan-
tage of the qualitative structure of equilibrium strategies.
While this approach was demonstrated to improve perfor-
mance when applied to GS4, it actually led to a worse per-
formance in GS5.

Applying finer-grained abstraction to different parts of
the game tree repeatedly has been used as a way to try to
improve equilibrium finding for the entire game offline, in
limit Texas and Leduc Hold’em (Waugh, Bard, and Bowl-
ing 2009). This approach, known as grafting, was incorpo-
rated into the 2009 Hyperborean agent. A generalization of
this, called strategy stitching, has been shown to be one vi-
able way to tackle three-player limit Texas Hold’em by com-
bining base strategies for the three-player game with solu-
tions to two-player endgames (Gibson and Szafron 2011).
Overall, progress on three-player poker is dramatically more
nascent than in the two-player case, however.

Despite the attempts discussed above, by and large
endgame solving has had very limited success in games
of imperfect information. To the best of our knowledge, it
is not used by any of the strongest agents for two-player
limit Texas Hold’em. Furthermore, it has not been imple-
mented by any competitive agents for games with large ac-
tion spaces, such as no-limit Texas Hold’em (for any number
of players).

1.4 Summary of the Rest of This Paper
In the rest of this paper, we describe several benefits of incor-
porating endgame solving for imperfect-information games
with large state and action spaces. These benefits include
significantly finer-grained state and action abstraction in the
endgames, more sophisticated information abstraction algo-
rithms that take into account type distributions induced by
players’ strategies before the endgames, exact computation
of Nash equilibrium in the endgames, computation of rele-
vant equilibrium refinements in the endgames, solving the
‘off-tree problem’ by correcting for ambiguities when the



opponent takes actions outside of our abstract action model
for him before the endgames, using different degrees of
probability thresholding in modeling and playing, and being
able to select the coarseness of the action abstraction dynam-
ically. We discuss each of these topics in detail, and describe
techniques that enable one to conduct endgame solving in a
scalable way in the large. Finally, experiments on two-player
no-limit Texas Hold’em poker show that our techniques lead
to significant performance improvements in practice.

2 No-Limit Texas Hold’em
Poker has received significant academic interest since the
founding of the field of game theory (Nash 1951; von Neu-
mann and Morgenstern 1947). This interest has been height-
ened in recent years due to the emergence of poker as a cen-
tral AI challenge problem and the development of the An-
nual Computer Poker Competition. The most popular variant
of poker among humans is no-limit Texas Hold’em. Two-
player no-limit Texas Hold’em is played competitively by
humans, and it is perhaps the game of most active research in
the computer poker community currently. This game works
as follows. Initially two players each have a stack of chips
(worth $20,000 in the computer poker competition). One
player, called the small blind, initially puts $50 worth of
chips in the middle, while the other player, called the big
blind, puts $100 worth of chips in the middle. The chips in
the middle are known as the pot, and will go to the winner
of the hand.

Next, there is an initial round of betting. The player whose
turn it is to act can choose from three available options:

• Fold: Give up on the hand, surrendering the pot to the
opponent.

• Call: Put in the minimum number of chips needed to
match the number of chips put into the pot by the oppo-
nent. For example, if the opponent has put in $1000 and
we have put in $400, a call would require putting in $600
more. A call of zero chips is also known as a check.

• Bet: Put in additional chips beyond what is needed to call.
A bet can be of any size from 0 up to the number of chips
a player has left in his stack (provided it is a multiple of
the smallest chip denomination). A bet of all of one’s re-
maining chips is called an all-in bet. If the opponent has
just bet, then our additional bet is also called a raise. In
some variants, the number of raises in a given round is
limited, and players are forced to either fold or call at that
point.

The initial round of betting ends if a player has folded,
if there has been a bet and a call, or if both players have
checked. If the round ends without a player folding, then
three public cards are revealed face-up on the table (called
the flop) and a second round of betting takes place. Then
one more public card is dealt (called the turn) and a third
round of betting, followed by a fifth public card (called the
river) and a final round of betting. If a player ever folds,
the other player wins all the chips in the pot. If the final
betting round is completed without a player folding, then
both players reveal their private cards, and the player with

the best hand wins the pot (it is divided equally if there is a
tie).

In particular, we will be interested in solving endgames
after the final public card is dealt (but before the final round
of betting). Thus, the endgame contains no more chance
events, and only publicly observable actions of both play-
ers remain. As we show, these endgames are solvable in real
time using the techniques we present.

3 Benefits of, and Techniques for, Endgame
Solving

In imperfect-information games with large state and ac-
tion spaces, endgame solving can have several benefits even
though it may lose the equilibrium property. We describe
several of these benefits in this section, and techniques that
enable them in the large. The techniques are domain inde-
pendent, but for concreteness we discuss them in the context
of no-limit Texas Hold’em.

Recall that the overall approach is to first compute base
strategies—one for each player—for the entire game offline
(typically using abstraction-based approximation of game-
theoretic equilibrium), and then to solve the endgame that
is actually reached in more detail online. The inputs to our
endgame solver are the current pot and stack sizes, the public
cards on the table, and the hand distributions induced by the
base strategies from the betting history using Bayes’ rule.

3.1 Exact Computation of Nash Equilibrium in
Endgames

The best algorithms for computing equilibria in large games
of imperfect information scale to games with about 1012

states. However, these algorithms are iterative and guaran-
tee convergence only in the limit; in practice they only pro-
duce approximations of equilibrium strategies. Sometimes
the approximation error can be quite large. For example, one
recent no-limit Texas Hold’em agent reported having an ex-
ploitability of 800 milli big blinds per hand (mbb/h) even
within the abstract game (Ganzfried and Sandholm 2012).
This is extremely large, since an agent that folds every hand
would only have an exploitability of 750 mbb/h. An exact
linear programming algorithm exists as well, based on the
sequence-form formulation; however, it only scales to games
with 108 states. While the LP algorithm is not applicable
to large games like Texas Hold’em, we can use it to solve
endgames that have up to 108 states exactly.

3.2 Computation of Equilibrium Refinements
The Nash equilibrium solution concept has some theoreti-
cal limitations, and several equilibrium refinement solution
concepts have been proposed which rule out Nash equilib-
rium strategy profiles that are not rational in various senses.
Common equilibrium refinements for extensive-form games
of imperfect information include undominated Nash equi-
librium, perfect Bayesian equilibrium, sequential equilib-
rium, trembling hand perfect equilibrium, and proper equi-
librium. In general, these solution concepts guarantee that
we behave sensibly against an opponent who does not follow
his prescribed equilibrium strategy (e.g., he takes actions



that should be taken with probability zero in equilibrium).
Specialized algorithms have been developed for comput-
ing many of these concepts (Miltersen and Sørensen 2008;
2010). However, those algorithms do not scale to large
games. In Texas Hold’em, computing a reasonable approxi-
mation of a single Nash equilibrium already takes weeks or
even months; so computing a refinement is clearly compu-
tationally infeasible. However, when solving endgames that
are significantly smaller than the full game, it can be possi-
ble to compute a relevant equilibrium refinement.

In particular, we compute an undominated Nash equilib-
rium.
Definition 2. A strategy s∗ for player i weakly dominates
strategy s′ if for all pure strategies s−i for the opponent,

ui(s
∗, s−i) ≥ ui(s

′, s−i),

where the inequality is strict for at least one s−i.
It seems intuitive that we would never want to play a dom-

inated strategy s′, since we could guarantee at least as good a
payoff if we played some other strategy s∗ instead. However,
standard equilibrium-finding algorithms may find an equi-
librium that is dominated. One example of this phenomenon
is the equilibrium strategy profile computed by Gordon for
one-card poker,2 which used the LP formulation. In that
equilibrium, player 1 always checks initially with a 5–8 and
bets with positive probability with a 2–4 and 9–A. In re-
sponse to a bet by player 1, player 2 always folds with a 2–
4, always calls with a 9–A, and calls with probability strictly
between 0 and 1 with 5–8. In particular, player 2 calls with
a 5 with probability 0.251, with a 6 with probability 0.408,
with a 7 with probability 0.583, and with an 8 with probabil-
ity 0.759. Denote this strategy by s′. Now suppose player 2
instead called with a 5 with probability 0.01 and called with
an 8 with probability 1, while keeping all other probabilities
the same. Denote this new strategy by s∗. Clearly s∗ weakly
dominates s′ (it performs strictly better if player 1 decides to
bet with some probability with a 5, 6, 7, or 8). It is also clear
that s∗ also constitutes an equilibrium strategy for player 2.

It turns out that we can compute an undominated equi-
librium with a relatively straightforward procedure (using
the fact that any strategy that is a best response to a fully
mixed strategy of the opponent is undominated (van Damme
1987)):

1. Compute the value of the game to player 1 (v1) by solving
the initial game.

2. Compute the best response of player 1 to a fully mixed
strategy of player 2 subject to the constraint that an ex-
pected payoff of at least v1 is attained in the worst case.

3. Compute the best response of player 2 to a fully mixed
strategy of player 1 subject to the constraint that an ex-
pected payoff of at least −v1 is attained.
Step 1 can be accomplished using the sequence-form LP

formulation. Steps 2 and 3 can be solved using straightfor-
ward modifications of this LP. If our goal is just to play an

2One-card poker is a simplified poker variant with a single
round of betting, a single private card for each player from a 13-
card deck, and a fixed bet size.

undominated equilibrium strategy ourselves (which is often
the case), we only need to perform Step 2 or Step 3 (depend-
ing on which player we are). Thus, overall this approach
takes about twice as long as the standard approach for com-
puting a Nash equilibrium. In our experiments, we used a
uniform random strategy as the fully mixed strategy of the
opponent.

3.3 Finer-Grained Information and Action
Abstraction

Perhaps the main benefit of endgame solving in games with
large state and action spaces is that we can perform much
finer abstraction in the endgame that is actually played than
if we are forced to abstract the entire game at once in ad-
vance. In Texas Hold’em, there are many different informa-
tion sets in the final betting rounds that must be compressed
into a much smaller number of abstract information sets.
When solving the endgame separately, we can solve it with
no information abstraction at all quickly in real time for the
particular sequence of publicly-observed actions and chance
events. Rather than grouping all hands together into a small
number of indistinguishable buckets, we can treat all distinct
hands separately.

Significant action abstraction is also necessary to pro-
duce agents in no-limit Texas Hold’em. While agents are
allowed to bet any integral number of chips (up to the
number of chips remaining in their stack) at each oppor-
tunity, it is not computationally feasible to allow all such
bet sizes. The standard approach is to discretize the betting
spaces into a small discrete number of bet sizes for each his-
tory of publicly-observable actions. For example, the bet-
ting abstraction for a recent agent allows a fold, check/call
(whichever is applicable), all-in, and at most 2 additional bet
sizes at each game state (Ganzfried and Sandholm 2012).
When solving endgames independently, significantly finer-
grained betting abstractions can be used. For example, one
of the betting abstractions we use (discussed in detail later)
allows 8 different betting sizes for both players if no players
have bet.

There is a clear tradeoff between information and action
abstraction. Using more of one clearly means that we do not
have to use as much of the other, and the optimal balance
is application-specific. While full lossless information ab-
straction is possible in no-limit Texas Hold’em endgames,
we decided to use some information abstraction so that we
were able to use finer-grained action abstractions (as we will
discuss in detail later).

3.4 New Algorithms for Strategy-Biased
Information Abstraction

In this section we introduce a new technique for performing
information abstraction and show that there is a natural way
of applying it to endgame solving.

The standard approach for performing information ab-
straction in large imperfect-information games is to bucket
information sets together for hands that perform similarly
against a uniform distribution of the opponent’s private in-
formation (Gilpin and Sandholm 2006; Gilpin, Sandholm,



and Sørensen 2007; Johanson et al. 2013).3 However, the as-
sumption that the opponent has a hand uniformly at random
is extremely unrealistic in many situations; for example, if
the opponent has called large bets throughout the hand, he is
unlikely to hold a very weak hand. Ideally, a successful in-
formation abstraction algorithm would group hands together
that perform similarly against the relevant distribution of
hands the opponent actually has—not a naı̈ve uniform ran-
dom distribution.

Fortunately, we can accomplish such strategy-biased
information abstraction in endgames.4 In particular, our
endgame abstraction algorithm takes as input the distribu-
tions of private information of both players (which, as de-
scribed earlier in this paper, are induced using Bayes’ rule
by the approximate-equilibrium strategies precomputed for
the entire game and the path of play so far in the game).
Since there is no more public information to be revealed at
the river (i.e., last betting round) in Texas Hold’em, we do
not even need to store histograms for each hand; a single
value will suffice to store the expected hand strength against
the distribution of the opponent’s hands. We compute the
expected hand strength for each possible river hand for each
player and perform clustering to compute an information ab-
straction of desired size.

3.5 Additional Information Abstraction
Techniques for Speeding up Endgame Solving

To improve performance, we also applied another form of
information abstraction by abstracting away the effects of
card removal. When we arrive at the river endgame, the
precomputed approximate equilibrium strategies induce a
joint distribution over private cards of both players; how-
ever, the individual distributions are not independent. For
example, if one player has AQ, then it is less likely the
other player also has an ace or a queen. We ignore this
card removal effect, and treat the distributions of players’
hands as being independent; this assumption is fairly com-
mon in the poker literature (Ankenman and Chen 2006;
Ganzfried and Sandholm 2010). This independence assump-
tion allowed us to significantly reduce the runtime of our
endgame solver. Without the assumption, we were forced
to iterate over all possible values of the hole cards for both
players. This four-card rollout was by far the bottleneck of
the endgame solving, and using the independence assump-
tion reduced runtime from about 45 seconds to about 3 sec-
onds per endgame.

In order to make the computation fast, we use an ad-
ditional technique for speeding up endgame solving. Our

3Recent work has also considered an approach where the op-
ponent’s preflop hands are first grouped into several buckets, then
hands for the later rounds are grouped together if they perform sim-
ilarly against each of the preflop buckets. (Johanson et al. 2013).

4The idea of using computed strategies to guide abstraction
(and iterating between abstraction and equilibrium finding) has al-
ready been proposed (Sandholm 2010), but there the idea was used
very differently, namely to bucket together information sets where
the equilibrium plays similarly and to separate other previously
bucketed information sets.

endgame solver first conducts information abstraction by ig-
noring card removal and grouping hands together that have
equal values at the given showdown (e.g., 42 and 52 are
equivalent on a board of AKJT8, since the best five-card
hand is on the board). Next, it conducts strategy-biased in-
formation abstraction using the input distributions to obtain
20 card buckets for each player (in some cases, lossless ab-
stractions were found with fewer buckets). To improve the
quality of the information abstraction, our endgame solver
does 10 repetitions of k-means++ (Arthur and Vassilvitskii
2007) and uses the clustering with lowest error out of the 10
results.

3.6 Solving the Off-Tree Problem
When we perform action abstraction, the opponent may take
an action that falls outside of our action model for him.
When this happens, an action translation mapping (aka re-
verse mapping) is necessary to interpret his action by map-
ping it to an action in our model (Ganzfried and Sandholm
2013; Schnizlein, Bowling, and Szafron 2009). However,
this mapping may ignore relevant game state information. In
poker, action translation works by mapping a bet of the op-
ponent to a ‘nearby’ bet size in our abstraction; however, it
does not account for the size of the pot or remaining stacks.
For example, suppose remaining stacks are 17,500, the pot is
5,000, and our abstraction allows for bets of size 5,000 and
17,500. Now suppose the opponent bets 10,000, which we
map to 5,000 (if we use a randomized translation mapping,
we will do this with some probability). So we map his action
to 5,000, and simply play as if he had bet 5,000. If we call his
bet, we will think the pot has 15,000 and stacks are 12,500.
However, in reality the pot has 25,000 and stacks are 7,500.
These two situations are completely different and should be
played very differently (for example, we should be more re-
luctant to bluff in the latter case because the opponent will
be getting much better odds to call). This is known as the
off-tree problem. Even if one is using a very sophisticated
action translation algorithm, one will run into the off-tree
problem.5

When performing endgame solving in real time, we can
solve the off-tree problem completely. Regardless of the ac-
tion translation used to interpret the opponent’s actions prior
to the endgame, we can take the stack and pot sizes (or
any other relevant game state information) as inputs to the
endgame solver. Our endgame solver in poker takes the cur-
rent pot size, stack sizes, and prior distributions of the cards
of both players as inputs. Therefore, even if we mapped the
opponent’s action to 5,000 in the above example, we correct
the pot size to 25,000 before solving the endgame.

3.7 Dynamically Deciding the Granularity of
Action Abstraction

Another advantage of endgame solving is that we can dy-
namically decide the granularity of the action abstraction

5Some agents try to solve this problem by themselves taking an
action that is designed specifically to get us back ‘on-path’; how-
ever, this is not always desirable or even possible.



used for the endgame. We now present a way of accom-
plishing that. Again, the technique is domain independent,
but we describe it in full detail in the context of no-limit
Texas Hold’em so that our experiments are reproducible.

We precomputed a set of (three in our experiments) dif-
ferent action abstractions of varying granularities for the
endgame. Each of the three allowed for fold, call/check, and
all-in options at each situation. Our coarsest abstraction just
allowed for a single additional action (similar to action ab-
stractions currently used by most competitive agents). Our
medium abstraction allowed for three bet sizes when no bets
have been made yet on the river, 2 bet sizes after a single bet
has occurred, and 1 bet size after a bet and raise have oc-
curred. Our finest action abstraction had 8 bet sizes for the
initial bet, four sizes for a raise, and two sizes for an addi-
tional raise. Thus, the medium and fine action abstractions
are significantly finer grained than abstractions commonly
used by no-limit Texas Hold’em agents.

To determine which action abstraction to use, we used the
following procedure. First, we compute the number of bet-
ting sequences in each of the three abstractions for the rele-
vant pot and stack sizes of the given endgame: let bi denote
this value for the i’th abstraction (where i = 0 is the coarsest
one and i = 2 is the finest one). Let a denote the number of
states for each player in our card abstraction in the endgame
(in our experiments we used a = 20). Let T denote a thresh-
old for the maximum number of action sequences allowable
in the LP in order to compute a Nash equilibrium sufficiently
quickly. If a · b2 < T, then we used the finest abstraction;
otherwise if a·b1 < T then we used the medium abstraction;
otherwise we used the coarse abstraction.

3.8 Different Degrees of Thresholding for Playing
and Modeling

Another important design decision is the degree of thresh-
olding to use—both for our play, and for constructing the
hand distributions of us and the opponent leading into the
endgame. Thresholding is a technique used by most com-
petitive agents where actions taken with low probability (be-
low a specified threshold) are rounded down to zero, and
remaining action probabilities are renormalized (Ganzfried,
Sandholm, and Waugh 2012). This has been shown to suc-
cessfully combat the problem of the equilibrium finder over-
fitting the strategies to the given abstraction, and to lead to
significantly better performance in limit and no-limit Texas
Hold’em. The extreme case of playing a deterministic strat-
egy is called purification.

We used purification for our own play in all rounds, as
it has previously been demonstrated to perform best. The
obvious approach for constructing the prior hand distribu-
tions (one per player) that are inputs to the endgame solver
would be to assume both players had been using purification
as well. However, this proved to be problematic for several
reasons. First, the opponent would occasionally take unusual
action sequences that our purified agent would never take,
and this would cause the prior distributions to be undefined
(this could still occur even if no thresholding were used, but
it is more likely to occur with a higher threshold). In addi-
tion, we observed that sometimes our hand distribution at the

given endgame included just a single hand. In this case, our
endgame equilibrium would assume that the opponent knew
our exact hand, which is an extremely unrealistic and pes-
simistic assumption because in practice the opponent would
not know our exact strategy. For these reasons, we decided
to not use any thresholding when constructing the input dis-
tributions to the endgame solver—though we continued to
use purification for ourselves when actually playing.

4 Example Demonstrating the Operation of
our Endgame Solver

Before presenting our results, we first present an actual hand
from our experiments that demonstrates how each step of a
no-limit Texas Hold’em agent that uses our endgame solver
works in practice. Recall that blinds are $50 and $100 and
that both players start with $20,000. Also recall that the
strategies for our agent in the preflop, flop, and turn rounds
are precomputed, and are not determined by our endgame-
solving algorithm.

In this hand, we are in the big blind with KsAc. The oppo-
nent raises to $264, we re-raise to $1056, and he calls (there
is now $2112 in the pot). The flop is 2h8c6d, we check, the
opponent bets $915, and we call (there is now $3942 in the
pot). The turn is 7s, we check, he bets $1482, and we call
(there is now $6906 in the pot). The river is As (pairing our
ace), and it is our turn to act. The endgame-solving algo-
rithm begins at this point.

The first step is to compute the distributions of hands both
players could have, using Bayes’ rule and the precomputed
strategies for the first three betting rounds. For efficiency, we
computed these distributions independently for both play-
ers ignoring card removal, as described in Section 3.5. This
resulted in a probability distribution over 72 possible hand
groupings for each player. Our particular hand KsAc, fell
into group number 53 (where 0 is the worst possible hand
and 71 is the best possible hand—T9 in this case). Accord-
ing to the distributions we computed, our hand group beats
about 85% of the opponent’s hands in this situation (by con-
trast, if the opponent had the same hand, he would beat about
71% of our hands). If we had used the standard uniform ap-
proach for information abstraction, we would only have a
single hand strength for a given hand (i.e., its performance
against a uniform random hand). But because of our new
strategy-biased approach, described in Section 3.4, we are
able to assign different strengths to the same hand which de-
pend on the distribution of hands we believe the opponent
has.

Next, we cluster each of these 72 hand groups into 20
clusters using k-means++ (separately for each player), as
described in Section 3.5. The clustering occured almost in-
stantaneously, producing an error6 of 0.005 for player 1 (us)
and 0.0007 for player 2 (the opponent). It placed our actual
hand into cluster 17 (where 0 is the weakest and 19 is the
strongest).

6The error is the sum of squares of differences between the
strategy-biased expected hand strength of each hand and that of
the mean of the cluster to which it is assigned.



Next, we determine which action abstraction to use, em-
ploying the technique described in Section 3.7. Recall that
we have precomputed three different action abstractions of
varying granularity for each pot size (this explicit depen-
dence of our action abstraction on the actual pot size solves
the off-tree problem, described in Section 3.6). For this par-
ticular pot size, the abstractions had 88, 28, and 16 betting
sequences per player, respectively. Since 20 ·88 = 1760, the
product of the number of abstract information states and the
number of betting sequences is below our threshold of 7500
for the finest action abstraction; so the algorithm choses that
one.

Next, the system computes an equilibrium in the endgame
with the chosen information and action abstractions. We do
this using CPLEX’s dual simplex algorithm. For this partic-
ular hand, the solve took about 1.5 seconds. If we were com-
puting an undominated equilibrium, we would need to solve
a second LP, using the procedure described in Section 3.2.

To play our strategy, we look up the relevant action prob-
abilities in the strategy vector we computed. In the actual
hand, it is our turn to act first on the river. Our action ab-
straction has eight allowable actions at this point: check,
0.25 pot, 0.5 pot, 0.75 pot, pot, 1.5 pot, 2 pot, and all-in.
Our computed strategy said to check with probability 0.52
and to bet 0.25 pot with probability 0.48. Since we are using
purification for our own strategy (see Section 3.8), we round
the probabilities to be 1 for check and 0 for 0.25 pot, and we
choose to check. Our opponent then decided to go all-in, for
a large bet of $13,094 into a pot of $6,906. In this situation,
our strategy indicated to call with probability 1. We called
and ended up winning the pot (the opponent had Qd4d).

5 Experiments
We ran experiments on two-player no-limit Texas Hold’em
against several agents submitted to the 2012 Annual Com-
puter Poker Competition (ACPC).

The time limit in the competition is 7 seconds per hand
on average, and we determined that using T = 7500 kept
us well within this limit. In fact, our agent took approxi-
mately 3 seconds per hand that went to the river, and only
around 25% of hands make it to the river. Nearly all of the
time spent by our algorithm was on solving the LPs, and the
abstraction was performed essentially instantaneously. Our
undominated equilibrium agent took approximately 6 sec-
onds per hand that went to the river, which still kept us well
within the time limit. As discussed in Section 3.4, if we had
used the full joint distributions instead of assuming indepen-
dence, the computation would have taken approximately 40
seconds longer per hand, and would not have been tractable.
Using T = 7500, the procedure was almost always able to
use the fine or medium betting abstraction, as described in
Section 3.7.

For the base strategy for the entire game, we used our
competition strategy from the 2012 ACPC, called Tarta-
nian5 (which was computed using the standard paradigm
of hand-crafted action abstraction and automated informa-
tion abstraction, followed by approximate equilibrium com-
putation in the abstract game). That is the base strategy
that we used for the preflop, flop, and turn rounds. Once

the river card was dealt, we computed an equilibrium in
the corresponding endgame in real time using all the tech-
niques described above. Thus, the only difference between
our endgame-solving agent and Tartanian5 is how they play
the final betting round. For the LP solver, we used CPLEX’s
dual simplex algorithm.

We experimented with two different versions of our
endgame-solving agent: one that uses the standard LP ap-
proach to compute an equilibrium, and one that computes
an undominated equilibrium.

We experimented against five of the top six agents from
the 2012 ACPC (the remaining agent, neo.poker.lab, was not
available for testing due to technical issues). For all oppo-
nents, we present results against both Tartanian5 and our
new agents in order to gauge the performance improvement.
The results are given in Table 1.

The results indicate that solving endgames led to im-
proved performance against each of the opponents. In some
cases this improvement was quite dramatic; against Tarta-
nian5 and Sartre, our win rate improved by over 100 mbb/h.
Furthermore, against each opponent, computing an undom-
inated equilibrium for the endgame outperformed the ap-
proach of computing a potentially dominated one.

6 Conclusions and Future Work
We demonstrated that endgame solving can be successful
in practice in imperfect-information games with large state
and action spaces despite the fact that the strategy profile it
computes is not guaranteed to be an equilibrium in the full
game. We described several benefits and introduced tech-
niques that enable one to conduct endgame solving in a scal-
able way in the large. Finally, we described a Texas Hold’em
agent that successfully implements each of these features,
and showed that these techniques led to a significant perfor-
mance improvement against the top agents from the 2012
Annual Computer Poker Competition.

One direction for future research would be to study equi-
librium refinements more extensively. For instance, perhaps
it would be a better use of computational resources to com-
pute a Nash equilibrium in a finer-grained abstraction in-
stead of computing a refinement such as undominated Nash
equilibrium. Or perhaps some other equilibrium refinements
that we did not consider can be computed efficiently and lead
to bigger improvements. In addition, while we showed that
endgame solving can lead to a non-equilibrium full-game
strategy profile in some games, it is possible that in inter-
esting classes of games (perhaps even poker) it actually is
guaranteed to find an equilibrium.

We would also like to consider implications of our ap-
proach for human poker play. When examining the endgame
equilibrium strategies, we observed several behaviors that
challenge conventional strategy. For example, we observed
that many different bet sizes were used—ranging from small
bets of 1

4 pot all the way to large all-in bets for 30 times the
pot. In contrast, humans generally utilize a small number
of bet sizes, typically between 1

2 pot and pot. We also ob-
served that equilibrium strategies often involved significant
amounts of randomization—sometimes players would bet 3
or even 4 different amounts with positive probability at a



Opponent
Tartanian5 Hyperborean Sartre Hugh Little.rock

Vanilla endgame solver 115 ± 35 -124 ± 44 214 ± 56 -48 ± 43 204 ± 58
Undominated endgame solver 120 ± 42 -105 ± 59 238 ± 76 -39 ± 63 273 ± 84

Tartanian5 — -161 ± 36 56 ± 38 -102 ± 30 165 ± 63

Table 1: No-limit Texas Hold’em results against the strongest competitors from the 2012 computer poker competition. Our base
agent is Tartanian5, and the other opponents are listed in the final four columns. The units are milli big blinds per hand, and the
95% confidence intervals are reported.

given information set (humans generally play deterministic
strategies).
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