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Abstract We introduce a smart sensor-based motion detec-
tion technique for objective measurement and assessment of
surgical dexterity among users at different experience levels.
The goal is to allow trainees to evaluate their performance
based on a reference model shared through communication
technology, e.g., the Internet, without the physical presence
of an evaluating surgeon. While in the current implementa-
tion we used a Leap Motion Controller to obtain motion data
for analysis, our technique can be applied to motion data
captured by other smart sensors, e.g., OptiTrack. To differ-
entiate motions captured from different participants, mea-
surement and assessment in our approach are achieved using
two strategies: (1) low level descriptive statistical analy-
sis, and (2) Hidden Markov Model (HMM) classification.
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Based on our surgical knot tying task experiment, we can
conclude that finger motions generated from users with dif-
ferent surgical dexterity, e.g., expert and novice performers,
display differences in path length, number of movements
and task completion time. In order to validate the discrim-
inatory ability of HMM for classifying different movement
patterns, a non-surgical task was included in our analy-
sis. Experimental results demonstrate that our approach had
100 % accuracy in discriminating between expert and
novice performances. Our proposed motion analysis tech-
nique applied to open surgical procedures is a promis-
ing step towards the development of objective computer-
assisted assessment and training systems.

Keywords Surgical dexterity · Training performance
evaluation · Hidden Markov Model · Smart sensor
detection · Leap Motion Controller

Introduction

As a result of technological advances in smart sensing,
motion data can be acquired with high precision, which
benefits many applications including surgical training. Sur-
gical procedures require a mastery of both technical and
judgment skills. The evaluation of this skill set is often
carried out towards the end of the training period by cer-
tification bodies composed of other surgeons. The current
evaluation methods followed by these bodies focus on
determining if trainees have obtained the necessary knowl-
edge and judgment for independent practice [1]. However,
despite attempts to develop standardized evaluation rubrics,
such as the Objective Structured Assessment of Techni-
cal Skill (OSATS) examination [2], using other surgeons
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as human evaluators often results in a significant amount
of inherent bias and subjectivity. Furthermore, given the
limited number of qualified evaluators and their busy sched-
ules, evaluation cannot be offered on a regular basis to
provide helpful feedback to trainees for improvement. We
propose using computer-assisted motion analysis, which is
able to help measure and decipher patterns in an individ-
ual’s motor movement, and provide a more objective and
reproducible method for evaluating dexterity. We envision a
real-time feedback generation system based on comparison
of a trainee’s motion with a reference database composed
of motions from surgeons with varying levels of experi-
ence. This database can be accessed through a communica-
tion network, e.g., the Internet, thus providing assessment
without an evaluator being present in person. This virtual
connectivity facilitates information sharing and just-in-time
decision making. While computer-assisted motion analysis
for training has been discussed for years, its application
to open surgical movement analysis is still in its infancy
due to the high number of degrees of freedom associated
with the motion. In recent years, smart sensors have been
increasingly utilized to capture motion data for analysis,
e.g., accelerometers are used to analyze motion state [3] and
smartphone acceleration sensors are used to classify physi-
cal activities [4]. Effective use of computer-assisted systems
is a common research topic in healthcare, e.g., Parkinson
disease diagnosis [5, 6] and virtual learning [7]. However,
these systems have yet to be applied to the evaluation of
hand motion performance in open surgery. This paper pro-
poses a smart sensor setup, e.g., the Leap Motion Controller
(Leap Motion, San Francisco, CA), for acquiring surgical
hand motion without using markers or other devices placed
on the hand.

In order to develop an accurate system to measure and
evaluate motor skills, it is necessary to understand how
human motor skills develop. The most commonly cited con-
temporary theory is Fitts and Posner’s three-stage model
that includes the cognitive, integrative and autonomous
learning stages [8]. The cognitive stage involves decomposi-
tion of a task into discrete steps in order to better understand
the mechanics of a movement sequence. In the integra-
tive stage, several discrete steps are concatenated to create
movement segments. In the final autonomous stage, the
movement sequence is smoothed to generate the complete
motion sequence. Note that these stages constitute itera-
tive sub-processes and often involve revisiting earlier stages.
Despite the complexity of the human movement, motion
analysis can identify patterns in motor movements specific
to a particular stage of learning and provides insight into
strategies for improving performance. Although this study
focuses on surgical tasks, our motion acquisition and anal-
ysis technique can be applied to other applications which
require comparison of hand motions or gestures.

Motion capture and analysis in surgical procedures

Motion analysis applied to the assessment of surgical dex-
terity is based on the dynamic system theory of motor
skill development [9, 10]. This theory describes how move-
ments made by novice performers become progressively
and measurably more efficient with practice. Higher levels
of experience consequently result in more timely comple-
tion of a task and increased confidence of hand movement.
Motion analysis has been used in other fields, particularly
in physiotherapy and rehabilitation for gait analysis [11],
where kinetic and kinematic data from the experiments
can be used to provide guidance for optimizing gait char-
acteristics, improving prosthetic comfort and ambulatory
efficiency. Our contribution lies in introducing a robust hand
motion detection and assessment system for use in surgi-
cal training. Open surgery presents a comparatively more
complex environment for motion analysis, as surgeons are
able to freely manipulate a variety of tools with both hands,
resulting in many degrees of freedom (DOF) for each hand
and a plethora of hand-instrument interactions. Hand motion
data can be captured by applying a variety of technologies,
including force or mechanical, electromagnetic and opti-
cal detections. Here we briefly discuss some of the current
technology available for acquiring hand motion data.

Mechanically-based motion detection

Gloves with embedded sensors can be worn by a surgeon
in order to generate hand and joint position data as well
as velocity data. Several commercially available gloves are
available for this purpose, including Cyber glove (Cyber
glove Systems, San Jose, California), ShapeWrap II (Mea-
sured, Fredericton, New Brunswick) and the 5DT Data
Glove (Fifth Dimension Technologies, Irvine, California)
[11]. These devices measure mechanical deformation of
‘bend sensors’ that translate hand motion and changes in
joint movement into digital signals. Some of these gloves
can also be fitted with wireless data systems in order to
minimize cables that might obstruct natural movement.
However, the gloves themselves are bulky and can impair
the user’s sense of tactile or haptic feedback.

Electromagnetic-based motion detection

One widely recognized system for obtaining motion data
in open surgery is the Imperial College Surgical Assess-
ment Device (ICSAD) [12]. This system is comprised
of a Bespoke computer software program and two elec-
tromagnetic (EM) 10 mm sensors (Isotrack II, Polhemus
Inc, Colchester, Vermont) placed on the dorsum of each
hand. Computer software translates the raw movement data
obtained from the trackers into three scores of dexterity,
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including the number of movements of each hand, distance
traveled by each hand and the time taken to complete a task.
Similar to magnetically-based systems, this traditional form
of electromagnetic tracking requires sensors to be placed
on hands and fingers, limiting its use in a sterile operating
environment.

EM tracking technology has evolved rapidly over the
years. For example, trakSTARTM (Ascension Technology
Corp, Shelburne, VT) - a new electromagnetic tracking
system which can accommodate multiple sensor units -
incorporates tiny sensors that could foreseeably be inserted
between two surgical gloves in order to measure the posi-
tion of each finger in 6 DOF (position and orientation). The
magnetic sensor units are tiny with an outer diameter of 1.5
mm. Compared to bulky mechanically based glove systems,
sensor embedded gloves using this technology would do lit-
tle to impede natural movement. The disadvantage is that
gloves customized with sensors are needed. Disposal of the
gloves after surgery means disposal of the sensors, which
can be costly.

Optically-based motion detection

Optically-based surgical motion analysis methods range
from analysis of raw video to the use of specially designed
motion tracking technologies that employ optical markers.
By using a camera or an array of cameras to determine
object or hand position, these systems do not impede natural
hand movement. However, they have to be properly located
to strike a balance between obstruction and occlusion.

In open surgery, Glarner and colleagues conducted a
feasibility study in the Department of Surgery at the Uni-
versity of Wisconsin, Madison, where they applied a digital
video analysis system to record in the operating room [13].
When the recording is done, an analyst selects a region of
interest (ROI) in the video. The template matching track-
ing algorithm then follows the specified ROI and generates
kinematic data including displacement, velocity, and accel-
eration [14].

Since our goal is to efficiently measure the motion data
and evaluate its performance, our technique is designed
for any motion data regardless of the type of acquisition
system used. Ideally, the acquisition system should not be
bulky, or impede natural hand movements. Also, the system
should be able to deploy safely in an aseptic environment.
Thus, in our case study we used a Leap Motion Con-
troller [15] as the motion detection device. This detector
determines hand and finger position in 3D space based on
tracking 27 segments of each hand in order to mimic each
bone. Similar to the aforementioned optically-based tech-
niques, this markerless and inexpensive sensor does not
restrict hand movement. Leap controllers are commonly
used in game applications and as a scientific instrument; but

to the best of our knowledge, this technology has not been
applied to the field of open surgical training.

Objective analysis of hand movements in surgical
tasks

Evaluating surgical hand movements is challenging given
the operating room environment and multidimensional
motion data. Our analysis involves defining a quantitative
statistical distance (similarity) between experts and novices.
Rosen and colleagues addressed this problem in laparo-
scopic surgery by using a discrete Markov Model (MM) to
reveal the decomposition of a surgical task [16]. They sub-
divided a complex surgical task in order to select low-level
elements that can be associated with quantifiable and mea-
surable parameters. Murphy and colleagues further demon-
strated the utility of the MM language model [17]. These
results indicate that a stochastic approach might describe the
surgical process better than a deterministic approach based
on validation via comparison with traditional expert perfor-
mance [18]. Despite these encouraging findings, a major
challenge of motion analysis in open surgery is the high
Degrees of Freedom (DOF). Previous studies applied on
laparoscopic surgery have had the advantage of a decreased
complexity of movement due to more restricted DOF [11].
In contrast, open surgery involves greater DOF and more
bimanual (two-handed) maneuvers. As a result, additional
parameters such as orientation and position of individual
hand components, i.e., finger segments, are necessary to
define the corrent state of a Markov Model. To address this
parameter complexity issue in open surgery, we explore the
Hidden Markov Model and introduce a cluster based anal-
ysis method to detect discrete sets of highly concentrated
or clustered information in the sample data for each pre-
defined Markov state, leading to a significant reduction in
the data complexity. We achieve data reduction in three
steps:

1. Creating a subset of the data associated with each state
common to all subjects;

2. Using K-means vector quantization algorithm [19] to
identify a number of centers associated with each state;

3. Encoding the raw motion data of the surgical tasks
based on these clusters in order to convert the multi-
dimensional data into 1-dimensional vectors with finite
symbols.

Processing the data in this fashion effectively generates
a discrete Markov Model for each individual. Once the
Markov Models are defined to characterize subjects with
specific skill levels, it is possible to compute the statisti-
cal difference between individual’s performance based on
their hand motion. By comparing trainees to expert level
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performance, objective criterion can be generated for
evaluating user dexterity.

Our proposed motion detection and evaluation
computational model

In order to establish an efficient topology to characterize
users with mixed skills, we incorporate the Hidden Markov
Model Theory in our computational technique. In a Markov
Model (MM), each state has an associated physical mean-
ing, but in Hidden Markov Model (HMM) some of the states
are abstract and not related to a specific physical interac-
tion [18]. Although their notations and the architecture are
similar, there are several fundamental differences between
MM and HMM. In a discrete MM, a unique set of observa-
tions that map to each specific state is required. This allows
one to match a discrete observation with a vector quantiza-
tion code-word in order to recognize the corresponding state
in subsequent observations. In HMM, even though states
can be derived from the same observations, the presence of
unobserved states makes establishing relationship between
measured parameters and observed states impossible. Nev-
ertheless, HMM supports a more compact model topology
that allows the system to model surgical motion in a group
of subjects with mixed abilities. By applying an objective
evaluation approach making use of the HMM topology, we
anticipate eliminating the bias inherent in subjective evalu-
ation. HMM has been used in a similar fashion for activity
recognition for personal health applications [21]. Here, we
apply HMM to differentiate expert and novice performance
in open surgery training. In the following paragraphs we dis-
cuss only the basic HMM equations. Readers interested in
more detail can refer to Rabiners’ review [22].

Given a certain process requiring hand movements and
gestures, we represent each task element by one of n distinct
hidden states S1, S2, S3...Sn. However, as “hidden” implies,
these states are not directly observable or measurable but
the observable sequence of movements are statistically
dependent on these hidden states. Fig. 1 depicts the relation-
ship between each observable state O and hidden state S.

Fig. 1 A Hidden Markov chain representing a sequence of observable
states where Oi are the observations, Sj the hidden states that cannot
be directly observed, and tk is the time index [20]

Assume that we have M observable states vk, 1 ≤ k ≤ M .
According to the Markov process, the probability of state q

at time t only depends on the previous state at time t − 1.
Thus, we have Eq. 1:

P
[
qt = Sj |qt−1 = Si, qt−2 = Sh, qt−3 = Sg...

]

= P
[
qt = Sj |qt−1 = Si

]
(1)

To define a HMM model in our case study, we use the
notation λ = (A, B, π), where A is the state transition
probability matrix, which contains the probability of tran-
sition from state Si to Sj . Assuming we have N states, the
elements in matrix A are denoted by Eq. 2.

aij = P
[
qt = Sj |qt−1 = Si

]

1 ≤ i, j ≤ N, aij ≥ 0,

n∑

j=1

aij = 1 (2)

B is the observation probability matrix, which describes
the probability of one state Sj , generates one observation
vk at time t and has elements bjk defined by the following
Eq. 3.

bj (k) = P
[
vk at time t |qt = Sj

]

1 ≤ j ≤ N, 1 ≤ k ≤ M (3)

Finally, π is the initial state probability distribution as
defined by Eq. 4.

πt = P [q1 = St ] 1 ≤ t ≤ N (4)

Hypothesis Based on the above computational model, we
hypothesize that:

1. Descriptive statistics applied to hand motion data cap-
tured by smart sensor devices would be able to differ-
entiate between novice and expert performance.

2. Furthermore, based on the previous application of
HMM to laparoscopy [23], we hypothesize that HMM
applied to our tracked data would have at least 80 %
discriminatory ability to differentiate between expert
and novice performance based on normalized statistical
distance to an expert model in open surgery.

Hypothesis validation I - capability to differentiate
novice and expert performance

Motion data acquisition

We constructed an open surgery simulator for capturing
hand motion data with the Leap Motion Controller. This
consisted of an acrylic box with an adjustable system for
suspending a monofilament at a consistent position (15 cm)
above the Leap sensor. The experimental apparatus is shown
in Fig. 2. In this experiment, a nylon monofilament was
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Fig. 2 Experimental setup. Open surgery simulator with Leap Con-
troller and Canon DSLR for real-time motion and video capture
respectively

stretched between two adjustable acrylic mounts just above
the open top of the box and approximately 15 cm above the
Leap sensor. Surgical suture (2-0 Silk or 2-0 polygalactin)

was then tied to the nylon filament by each participant. Real
time video of the tying task was captured using a Canon
40D Digital Single Lens Reflex (DSLR) Camera in ‘Live-
view’ mode. The Leap sensor was placed cross to the middle
bottom, as shown; with the nylon monofilament towards the
rear part of the box to ensure that the participant’s hands
were centered over the Leap device during the suture tying task.

The Leap controller communicated with a Personal Com-
puter (PC) via a Universal Serial Bus (USB). Data was
captured using our new custom software developed in C++.
Figure 3 depicts our Graphical User Interface (GUI), which
illustrates a 3D hand model on the left panel. The right panel
displays the corresponding raw video image captured by the
camera. An overview of the motion acquisition pipeline is
shown in Fig. 4.

In our system, two streams of motion data are captured.
The first is recorded at a fixed frequency simultaneously
with video from the camera at 60Hz. The second stream
contains all the possible motion data captured by the Leap
Controller during the recording period (typically greater
than 100Hz). Both streams are saved to disk with the first
as a space-delimited text file, which contains readable data
for the pre-selected components of each hand for use in
later analysis (e.g., palm position and palm angle). The sec-
ond data file contains a series of bytes generated by the
Leap Motion API that allows one to replay the tracked data
and contains all the motion data that the Leap is able to
register. We also implemented a function to generate the

Fig. 3 Screenshot of the GUI for our motion capture application: (Left) 3D hand model with Cartesian position data, and (Right) video image
captured by the digital camera
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Fig. 4 An overview of our
motion data acquisition pipeline

readable text file from a binary Leap recording. This allows
us to choose whatever parameters are needed from a single
recording in subsequent analysis.

Experimental setting

Early testing of the Leap Controller revealed that the raw
motion data generated by the proprietary software driver had
an inconsistent frequency. Thus, we implemented an interpo-
lation function to ensure that the captured data was recorded
at a constant frequency. After interpolation, we applied a
two-pass Butterworth filter algorithm to smooth the data and
eliminate high frequency noise in the tracked data.

Two experiments were carried out based on motion data
obtained with the Leap Controller. In the first, two par-
ticipants were asked to perform a sequence of one- and
two-handed surgical ties to place a total of five square knots
on the nylon monofilament in the training box. Motion data
was captured from both procedures and analyzed using tra-
ditional metrics: path length, number of movements and
total time.

In the second experiment, which was designed to test
our objective evaluation algorithm, we chose a simple non-
surgical procedure involving an object transfer task using
a single hand. This required a participant to lift an object,
transfer it from Point A to Point B, and release the object
prior to transferring the object back to Point A and again
to point B (3 transfers). A total of nine participants were
asked to perform this procedure. The first six participants
were asked to perform the task as efficiently and smoothly
as possible, emulating expert movements. An additional
three participants were asked to perform the task with more
hesitation, including idling between movements to emulate
novice behavior. The performance of the participants was
then analyzed.

Motion analysis using hidden Markov models

In order to objectively assess the performance of a partic-
ipant in a given procedure, we first create a HMM λ =

(A, B, π) that characterizes an expert surgeon’s motion pat-
tern. Second, we require an evaluation function to compare a
participant’s performance with the expert HMM. To achieve
this, we need to solve the following HMM steps [22].

1. Evaluation Step: In order to compute the probability of
the observation sequence that can be generated by the
given model λ, we can apply the Viterbi algorithm to
find the most likely sequence of states by solving the
following:

Given:

{
λ = (A, B, π),

O = o1, o2, o3...oT ,

Compute:
{

P(O|λ)

2. Training Step: To optimize the model parameters
(A, B, π) for maximizing the ability of the model to
generate the training observation sequence, we can use
the Baum-Weltch algorithm.

Given:
{

λ = (A, B, π),

Adjust:
{

A, B, π,

Compute:
{

P(O|λ)

Our proposed assessment approach is carried out in four
phases and the outcome is described in the Results section.
The four phases are:

1. Data acquisition: using the system we presented above
to capture the required raw data for the predefined
procedure.

2. Data processing: filtering and smoothing the raw data
for use in subsequent analysis.

3. Data classification and modeling: vector quantization
to transform the multi-dimensional motion data to an
one-dimensional observation sequence; optimizing the
fitted parameters from the model.

4. Evaluation: using statistical functions to compare test
performances with the expert model.
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Descriptive statistics obtained from hand tying task

In the surgical simulation reported in the ICSAD experi-
ment [12], the authors completed two tasks: a small bowel
anastomosis and a vein patch insertion into an artery. Sur-
gical performance was measured based on the number of
hand movements made and time taken to complete a task. In
a similar fashion, our interpolated and filtered data require
tangential velocity analysis in order to calculate the number
of movements. The cumulative distance travelled by each
hand was calculated to determine the path length, before the
total time to complete each task was compared. The num-
ber of movements was calculated by using a peak finding
algorithm with a threshold set to the mean tangential veloc-
ity. These computations were applied to the surgical knot
tying tasks, where both a novice and an expert completed
five square knots using a one-hand and two-hand typing
technique. The results are shown in Table 1. As expected,
novices required more movements and time to complete
each task. Figure 5 depicts the tangential velocity curves
and mean velocity threshold (right hand) of novices and
experts in the two-hand tying task. Here, novices are gen-
erally slower and have decreased peak velocities compared
to experts. This experiment demonstrates the feasibility
of our smart sensor-based system as an evaluation metric
comparable to the ICSAD system.

Hypothesis validation II - discriminatory ability
of hidden Markov model to measure performance

The above differentiation between user performance at dif-
ferent dexterity levels is based on Hidden Markov Model
analysis. But does the HMM approach have sufficient dis-
criminatory capability to measure performance?

Gesture definition and data filtering

To address the question above, we conducted a non-surgical
transfer task and defined six gestures (states): Idle, Drop-
ping, Grasping, Evaluating, Translating and Releasing, as

Table 1 Surgical knot tying tasks: ICSAD metrics obtained using
Leap sensor

Task Experience Path Number of Task

Level Length Movements Completion

(mm × 103) Time(s)

One-hand Novice(n = 1) 2.23 43 49

Expert(n = 1) 1.11 24 22

Two-hand Novice(n = 1) 3.08 40 65

Expert(n = 1) 3.05 26 36

Fig. 5 Tangential velocity curves and mean velocity threshold of the
right hand motion when performing two-hand tying task

the key motion segments of a procedure. We then selected
the Palm velocity (vx, vy) along the x-axis and y-axis,
and the velocity (vs) in the change of distance between
the thumb tip and middle finger as depicted in Fig. 6.
We selected these points of interest because they feature
significant movements in the predefined gestures.
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After the hand motion and video capture steps (as illus-
trated from Fig. 2 to Fig. 4), we applied the interpolation
function and Butterworth filter to reduce noise in the raw
data (Fig. 7a) and generated a new data set (Fig. 7b) with a
frequency of 60 Hz.

Data classification and modeling

We replayed the recorded synchronized video and motion
data, and an expert was asked to identify the Frame IDs cor-
responding to the start and end of each gesture. This manual
segmentation of the motion data served as the ground truth
for movement classification allowing us to define the obser-
vation distribution matrix B for the data classification and
modeling phase, where we built the reference HMM rep-
resenting expert performance. We used the six predefined
gestures as the hidden states. We then used the training func-
tion to train the model and initialized all the elements in each

row of the state transition probability matrix A with
1

N
=

1

6
.

Initially, the classification was done using frame-by-frame
video analysis by an expert; but once initialized, the HMM
was able to update matrix A through training algorithms.

After initializing Matrix A, we generated Matrix B

which stores the observation probabilities. Each one of the

six states was associated with a unique set of velocities
(vx, vy, vs). To simplify the theoretical and computational
load of the modeling process, we applied an efficient data
reduction process to translate the multidimensional data
to a one-dimensional observation vector sequence. As part
of this process, we applied a K-means vector quantization
algorithm [19]. This allowed us to transform the continu-
ous three-dimensional vectors into one-dimensional vectors
of 60 observation symbols (10 symbols for each of the
6 states). After applying the K-means algorithms to the
motion data representing expert performance, we were able
to identify 60 clusters of associated motion data (velocities).
The cluster centers were used as the observation symbols
for encoding all the multi-dimensional motion data to one-
dimensional sequences corresponding to the 60 clusters. To
achieve this, we calculated each frame’s Euclidean Distance
from each of the cluster centers and chose the minimum
as the observation symbol for the current frame. We were
then able to initialize the observation distribution matrix
B corresponding to our expert-encoded observation symbol
sequence and the video analysis table using Eq. 5. The ini-
tial state probability distribution can be defined based on the
assumption that all tasks start in the idle state. Therefore, we
have Eq. 6.

Fig. 6 Selected points of
interest on the hand from which
velocity data were obtained

bjk = No. of Frames staying at State Sj and Using the observation symbol vk

No. of Frames staying at State Sj

,

1 ≤ j ≤ N, 1 ≤ k ≤ M (5)
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Fig. 7 a Raw velocity data over time (vx -Blue, vy -Yellow, vs -Orange)
for a portion of the whole procedure performed by an expert, and b
Velocity over time in (a) after interpolation and filtering

πi(idle) = 1, π2...N = 0 (6)

The above process describes the initialization of all the
parameters necessary to define the HMM, λ = (A, B, π)

for our expert reference model. Next, we used additional
sets of motion data captured from the expert(s) to train the
model. This step further optimized the parameters in the
model, making it more reliable and accurate to describe
expert performance. Figures 8 and 9 show the color-coded
results of the optimized matrix A and B after training.

Defining the evaluation functions

After obtaining the trained models corresponding to the
expert performance λE , we applied an evaluation function
to compare test behaviors to our expert performance.

Fig. 8 The probability of transition from each state to any other state

This function provides the probability that a performance
described by a given observation symbol sequence is gen-
erated by the expert group model λE . We normalized the
values generated by the evaluation function [20] in order
to compare different observations composed of different
lengths. We defined NL as the normalized mean probability
that a given observation sequence matched the expert model
in Eq. 7.

NL(O, λE) = 1

n

n∑

i=1

[
logP (ÔE

i |λE)
]

= 1,

ÔE
i is the observation sequence automatically

generated by λE with length i. (7)

S(O, λE) = |logP (O|λE) − NL(O|λE)|
1
n

∑n
i=1 |logP (ÔE

i |λE) − NL(O|λE)| (8)

The final evaluation metric for the evaluation score S

is then calculated. In Eq. 8, S is the normalized distance
of a given observation sequence from the normalized set
of observations generated by the expert model. This value
can be used to objectively assess performance based on dif-
ferent observation sequences obtained from hand motion
data. Lower S scores (E4, E5 and E6) imply that the per-
formance closely approximates the expert model. Novices
(N1, N2 and N3) have a larger normalized distance.

Effectiveness of HMM in performance evaluation

In order to evaluate the effectiveness of HMM for hand
motion data classification, we collected motion data from
the non-surgical object transfer procedure described in
“Experimental setting”. From a total of nine participants,
six experts were in Group E1: (E1, E2, E3) and Group E2:
(E4, E5, E6). Three novices were included in Group N :
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Fig. 9 The probability of each
state generating an observation
symbol

(N1, N2, N3). Training of the expert reference model uti-
lized motion data from Group E1. The evaluation function
was then applied to the remaining subjects in Group E2
and Group N . Figure 10 shows the original plots of the
filtered motion data with (vx, vy, vs) parameters for each
replicate.

Visual inspection of the velocity profiles already sug-
gested a difference in the motion data between experts and
novices. The novice velocities were more discreet when
compared to the amount of overlap in the expert trials.
Next, we applied the HMM decoding function to iden-
tify the hidden states and compared the decoded gestures

Fig. 10 Velocity over time
obtained from 3 experts and 3
novices during the non-surgical
transfer task
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Fig. 11 Decoded state
transitions obtained from 3
experts and 3 novices during the
non-surgical transfer task

Fig. 12 Normalized distances
obtained from 3 experts and 3
novices during the non-surgical
transfer task
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Table 2 Normalized distances obtained from 3 experts and 3 novices
in a non-surgical transfer task

Experience Statistical t-test

Level Distance P-value

Novice 7.1±0.80 0.007

Expert 2.01±0.06

(Fig. 11). We then calculated the normalized distance
(SE4, SE5, SE6, SN1, SN2, SN3) for each novice and expert
performance. The comparison of normalized distance is
shown in Fig. 12.

We performed a statistical comparison between the three
replicates using Students t-test and found that the distance S

between the expert and novice groups was statistically sig-
nificant as supported by the P-vlaue of 0.007 in Table 2.
Differing from the ICSAD simulated tasks performed at depth
with lower DOF [24], we investigate open surgery tasks and
are able to discriminate between skill levels of subjects.

Discussion & future work

Surgical procedure movements can be complex and the
navigation path length may vary depending on specific oper-
ations and patient conditions. Only with a sufficiently large
library of gestures and predefined hidden markov states, will
the system be able to classify with confidence all the maneu-
vers in a particular operation. Advanced studies on the
rapidly developing smart sensor technology will improve
the accuracy and reliability of motion data acquisition. Nev-
ertheless, the encouraging results of our study demonstrate
that hand motion data obtained from smart sensors has the
capability to evaluate individual performance at different
dexterity levels.

Traditional metrics make use of a combination of motion
analysis techniques such as path length, movement volume
and number of movements. These metrics can be useful
in providing a baseline assessment of the movement effi-
ciency. The goal of our approach is to complement these
traditional motion analysis techniques, by exploiting hid-
den markov modeling that is necessary as a computational
framework in order to compare performance between dif-
ferent participants at a subtask level, which is missing in
traditional motion analysis metrics. While video based anal-
ysis methods have been deployed in the past, our smart
sensor technique provides much richer information includ-
ing 3D hand position and much higher degrees of free-
dom. In addition, our motion analysis algorithm is sensor-
platform independent and can be applied to motion data
captured from different sensors. Our computer-assisted sys-
tem can measure performance differences between experts

and novices using both low level descriptive statistics and
hidden markov modeling. To the best of our knowledge, this
is the first application of a markerless tracking system for
objectively measuring surgical dexterity.

We believe that in order to improve the objectivity and
effectiveness of hand motion assessment, analysis needs to
be performed at the subtask or surgeme [25] level. Since
establishing a robust hidden markov model is a fundamental
step towards surgeme analysis, we focus on building such
a model in this paper. In future work, we will explore the
use of a multi-Leap system, in conjunction with a poten-
tial future release of head-mounted Leap sensors, for hand
motion capture. By fusing multi-view data acquired from
different sensors, we will investigate whether motion classi-
fication accuracy can be improved, and how such a step will
affect the performance of real-time hand motion assessment.
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