Calculus 3 - Directional Derivative

When we first introduced partial derivatives, we took slices of the surface

and defined the two derivatives

$$
\begin{align*}
& \frac{\partial f}{\partial x}=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \tag{1a}\\
& \frac{\partial f}{\partial y}=\lim _{k \rightarrow 0} \frac{f(x, y+k)-f(x, y)}{k} \tag{1b}
\end{align*}
$$

A view from the top, we see for each slice we moved in the x direction or y direction and follow the vectors $\langle 1,0\rangle$ or $\langle 0,1\rangle$.

We now want to ask, suppose we wish to move in another direction, say in the direction of the unit vector

$$
\begin{equation*}
\vec{u}=<u_{1}, u_{2}> \tag{2}
\end{equation*}
$$

Can we calculate the derivative if we move in this direction. The term directional derivative is used here.

Using the derivative like in calc 1 where

$$
\begin{equation*}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \tag{3}
\end{equation*}
$$

we use

$$
\begin{equation*}
D_{\vec{u}} f=\lim _{h \rightarrow 0} \frac{f\left(x+u_{1} h, y+u_{2} h\right)-f(x, y)}{h} . \tag{4a}
\end{equation*}
$$

To get an idea on how to calculate this (not the long way) we will first fix (x, y) say to (a, b) so

$$
\begin{equation*}
D_{\vec{u}} f=\lim _{h \rightarrow 0} \frac{f\left(a+u_{1} h, b+u_{2} h\right)-f(a, b)}{h} . \tag{5a}
\end{equation*}
$$

We define

$$
\begin{equation*}
g(h)=f\left(a+u_{1} h, b+u_{2} h\right) \tag{6}
\end{equation*}
$$

so (5) becomes

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{g(h)-g(0)}{h} \tag{7}
\end{equation*}
$$

which from calc 1 is $g^{\prime}(0)$. So we calculate $g^{\prime}(h)$ from (6) then substitute in $h=0$. From the last class, we us a type 1 chain rule so

$$
\begin{equation*}
g^{\prime}(h)=f_{1} u_{1}+f_{2} u_{2} \tag{8}
\end{equation*}
$$

where the subscripts in f refer to differentiation with respect to that argument. Now when $h=0$ we obtain

$$
\begin{equation*}
g^{\prime}(0)=f_{x} u_{1}+f_{y} u_{2} \tag{9}
\end{equation*}
$$

and thus we obtain the directional derivative

$$
\begin{equation*}
D_{\vec{u}} f=f_{x}(a, b) u_{1}+f_{y}(a, b) u_{2} . \tag{10}
\end{equation*}
$$

Note: When we have $<1,0\rangle$ and $\langle 0,1\rangle$, we obtain the usual x and y derivatives. Now it usual to rewrite (10) as a dot product of two vectors so

$$
\begin{equation*}
D_{\vec{u}} f=\left\langle f_{x}(a, b), f_{y}(a, b)\right\rangle \cdot\left\langle u_{1}, u_{2}\right\rangle \tag{11a}
\end{equation*}
$$

Gradient Vector

At this point we wish to define a new vector called the gradient vector. It is defined as

$$
\begin{equation*}
\nabla f=\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle \tag{12}
\end{equation*}
$$

and so the directional derivative is given as

$$
\begin{equation*}
D_{\vec{u}} f=\left.\nabla f\right|_{P} \cdot \vec{u} \tag{13}
\end{equation*}
$$

Let us look at some examples.
Example 1 Pg 928, \#8
Find the directional derivative of the function at P in the direction given

$$
\begin{equation*}
f=x^{3}-y^{3}, \quad P(4,3), \quad \vec{v}=<1,1> \tag{14}
\end{equation*}
$$

Soln.
First we find the unit vector. The magnitude of $\vec{v}=\sqrt{2}$ or the unit vector is
$\vec{u}=\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle$. The gradient is $\nabla f=\left\langle 3 x^{2},-3 y^{2}\right\rangle$. Thus, the directional derivative is

$$
\begin{equation*}
D_{\vec{u}} f=\left.\nabla f\right|_{P} \cdot \vec{u}=\langle 48,-27\rangle \cdot\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle=\frac{21}{\sqrt{2}} \tag{15}
\end{equation*}
$$

Example $2 \operatorname{Pg} 928, \# 12$
Find the directional derivative of the function at P in the direction of $\overrightarrow{P Q}$

$$
\begin{equation*}
f=\cos (x-y), \quad P(0, \pi), \quad Q\left(\frac{\pi}{2}, 0\right) \tag{16}
\end{equation*}
$$

Soln.
First we find the unit vector. The vector we follow $\overrightarrow{P Q}=\left\langle\frac{\pi}{2},-\pi\right\rangle$. The magnitude of this is $\frac{\sqrt{5} \pi}{2}$. Dividing by the magnitude gives $\vec{u}=\left\langle\frac{1}{\sqrt{5}},-\frac{2}{\sqrt{5}}\right\rangle$. Next, calculate the gradient. The gradient is

$$
\nabla f=\langle-\sin (x-y), \sin (x-y)\rangle
$$

At the point P this becomes

$$
\left.\nabla f\right|_{P}=\langle-\sin (-\pi), \sin (-\pi)\rangle=\langle 0,0\rangle
$$

Thus, the directional derivative is

$$
\begin{equation*}
D_{\vec{u}} f=\left.\nabla f\right|_{P} \cdot \vec{u}=\langle 0,0\rangle \cdot\left\langle\frac{1}{\sqrt{5}},-\frac{2}{\sqrt{5}}\right\rangle=0 \tag{17}
\end{equation*}
$$

Maximum Increase/Decrease

Consider the following problem. Find the directional derivative of

$$
z=2-x^{2}-y^{2}
$$

at the point $P(1,1)$ when we follow the vectors

$$
\langle 1,0\rangle, \quad\langle 0,1\rangle, \quad\left\langle\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right\rangle .
$$

The gradient is

$$
\begin{equation*}
\nabla f=\langle-2 x,-2 y\rangle . \tag{18}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left.\nabla f\right|_{P}=\langle-2,-2\rangle . \tag{19}
\end{equation*}
$$

The three directional derivatives are
(1) $D_{\vec{u}} f=\langle-2,-2\rangle \cdot\langle 1,0\rangle=-2$,
(2) $D_{\vec{u}} f=\langle-2,-2\rangle \cdot\langle 0,1\rangle=-2$,
(3) $D_{\vec{u}} f=\langle-2,-2\rangle \cdot\left\langle\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right\rangle=-2 \sqrt{2}$.
so we see following the third vector, the decrease (negative slope) is larger than following the other two vectors. So we ask, in what direction should we move to find the maximum/minimum increase.

Let us return to our definition (13)

$$
\begin{align*}
D_{\vec{u}} f & =\left.\nabla f\right|_{P} \cdot \vec{u} \tag{21}\\
& =\left\|\left.\nabla f\right|_{P}\right\|\|\vec{u}\| \cos \theta
\end{align*}
$$

Now $\cos \theta$ will vary from -1 to 1 with it's maximum and minimum being at $\theta=0$ and $\theta=\pi$. So for maximum/minimum increase follow the direction of the gradient.

3D Gradients

Gradients easily extend to function of more variables. For example if

$$
\begin{equation*}
f(x, y, z)=x^{2}+3 y+e^{z} \tag{22}
\end{equation*}
$$

then

$$
\begin{align*}
\nabla f & =\left\langle f_{x}, f_{y}, f_{z}\right\rangle \tag{23}\\
& =\left\langle 2 x, 3, e^{z}\right\rangle
\end{align*}
$$

