Calculus 3 - Directional Derivative

When we first introduced partial derivatives, we took slices of the surface

and defined the two derivatives

$$\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h},$$
(1a)

$$\frac{\partial f}{\partial y} = \lim_{k \to 0} \frac{f(x, y+k) - f(x, y)}{k}.$$
 (1b)

A view from the top, we see for each slice we moved in the *x* direction or *y* direction and follow the vectors < 1, 0 > or < 0, 1 >.

We now want to ask, suppose we wish to move in another direction, say in the direction of the unit vector

Can we calculate the derivative if we move in this direction. The term *directional* derivative is used here.

Using the derivative like in calc 1 where

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
(3)

we use

$$D_{\vec{u}}f = \lim_{h \to 0} \frac{f(x + u_1h, y + u_2h) - f(x, y)}{h}.$$
 (4a)

To get an idea on how to calculate this (not the long way) we will first fix (x, y) say to (a, b) so

$$D_{\vec{u}}f = \lim_{h \to 0} \frac{f(a+u_1h, b+u_2h) - f(a, b)}{h}.$$
 (5a)

We define

$$g(h) = f(a + u_1h, b + u_2h)$$
(6)

so (5) becomes

$$\lim_{h \to 0} \frac{g(h) - g(0)}{h} \tag{7}$$

which from calc 1 is g'(0). So we calculate g'(h) from (6) then substitute in h = 0. From the last class, we us a type 1 chain rule so

$$g'(h) = f_1 u_1 + f_2 u_2 \tag{8}$$

where the subscripts in *f* refer to differentiation with respect to that argument. Now when h = 0 we obtain

$$g'(0) = f_x u_1 + f_y u_2 \tag{9}$$

and thus we obtain the directional derivative

$$D_{\vec{u}}f = f_x(a,b)u_1 + f_y(a,b)u_2.$$
(10)

Note: When we have < 1, 0 > and < 0, 1 >, we obtain the usual *x* and *y* derivatives. Now it usual to rewrite (10) as a dot product of two vectors so

$$D_{\vec{u}}f = \langle f_x(a,b), f_y(a,b) \rangle \cdot \langle u_1, u_2 \rangle$$
(11a)

Gradient Vector

At this point we wish to define a new vector called the *gradient* vector. It is defined as

$$\nabla f = \langle f_x(x,y), f_y(x,y) \rangle \tag{12}$$

and so the directional derivative is given as

$$D_{\vec{u}}f = \nabla f|_P \cdot \vec{u}. \tag{13}$$

Let us look at some examples.

Example 1 Pg 928, #8

Find the directional derivative of the function at *P* in the direction given

$$f = x^3 - y^3$$
, $P(4,3)$, $\vec{v} = <1,1>$. (14)

Soln.

First we find the unit vector. The magnitude of $\vec{v} = \sqrt{2}$ or the unit vector is

 $\vec{u} = \langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \rangle$. The gradient is $\nabla f = \langle 3x^2, -3y^2 \rangle$. Thus, the directional derivative is

$$D_{\vec{u}}f = \nabla f|_P \cdot \vec{u} = \langle 48, -27 \rangle \cdot \langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \rangle = \frac{21}{\sqrt{2}}$$
(15)

Example 2 Pg 928, #12

Find the directional derivative of the function at *P* in the direction of \overrightarrow{PQ}

$$f = \cos(x - y), P(0, \pi), Q\left(\frac{\pi}{2}, 0\right)$$
 (16)

Soln.

First we find the unit vector. The vector we follow $\overrightarrow{PQ} = \langle \frac{\pi}{2}, -\pi \rangle$. The magnitude of this is $\frac{\sqrt{5}\pi}{2}$. Dividing by the magnitude gives $\overrightarrow{u} = \langle \frac{1}{\sqrt{5}}, -\frac{2}{\sqrt{5}} \rangle$. Next, calculate the gradient. The gradient is

$$\nabla f = \langle -\sin(x-y), \sin(x-y) \rangle.$$

At the point *P* this becomes

$$abla f|_P = \langle -\sin(-\pi), \sin(-\pi) \rangle = \langle 0, 0 \rangle.$$

Thus, the directional derivative is

$$D_{\vec{u}}f = \nabla f|_P \cdot \vec{u} = \langle 0, 0 \rangle \cdot \langle \frac{1}{\sqrt{5}}, -\frac{2}{\sqrt{5}} \rangle = 0$$
(17)

Maximum Increase/Decrease

Consider the following problem. Find the directional derivative of

$$z = 2 - x^2 - y^2$$

at the point P(1, 1) when we follow the vectors

$$\langle 1,0\rangle, \langle 0,1\rangle, \langle \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\rangle.$$

The gradient is

$$\nabla f = \langle -2x, -2y \rangle. \tag{18}$$

Then

$$\nabla f|_P = \langle -2, -2 \rangle. \tag{19}$$

The three directional derivatives are

(1)
$$D_{\vec{u}}f = \langle -2, -2 \rangle \cdot \langle 1, 0 \rangle = -2,$$

(2) $D_{\vec{u}}f = \langle -2, -2 \rangle \cdot \langle 0, 1 \rangle = -2,$
(3) $D_{\vec{u}}f = \langle -2, -2 \rangle \cdot \langle \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \rangle = -2\sqrt{2}.$

so we see following the third vector, the decrease (negative slope) is larger than following the other two vectors. So we ask, in what direction should we move to find the maximum/minimum increase.

Let us return to our definition (13)

$$D_{\vec{u}}f = \nabla f|_P \cdot \vec{u}$$

= $\|\nabla f|_P \|\|\vec{u}\| \cos \theta$ (21)

Now $\cos \theta$ will vary from -1 to 1 with it's maximum and minimum being at $\theta = 0$ and $\theta = \pi$. So for maximum/minimum increase follow the direction of the gradient.

3D Gradients

Gradients easily extend to function of more variables. For example if

$$f(x, y, z) = x^2 + 3y + e^z$$
(22)

then

$$\nabla f = \langle f_x, f_y, f_z \rangle$$

= $\langle 2x, 3, e^z \rangle.$ (23)