How to Design and Deliver Effective Math Intervention

\&
Sarah R. Powell, Ph.D.
November 13, 2019

Sarahpowellphd.com
 Evidence-based mathematics resources for educators

- srpowell@austin.utexas.edu @ @sarahpowellphd

Home About Resources Presentations Videos Contact

T.L.L. TEMPLE FOUNDATION

BUILDING A THRIVING DEEPEAST TEXAS

$$
\begin{aligned}
& \text { NATIONAL } \\
& \text { ACADEMY } \\
& \text { EDUCAATION }
\end{aligned}
$$

greater texis Foundation

$e^{v i d e n c e-b a s e d ~ p r a c t i c e ~}$
evidence-based intervention evidence-based strategy
promisin: practice

Evidence-Based Mathematics Practices

WWC Practice Guides:

- Assisting Students Struggling with Mathematics: Response to Intervention (RtI) for Elementary and Middle Schools

COMING SOON (2020-2021):

- Assisting Students Struggling with Mathematics: Intervention in the Elementary and Middle School Grades

(f) PRACTICE GUIDE

Assisting Students Struggling with Mathematics: Response to Intervention (RtI) for Elementary and Middle Schools

Taking early action may be key to helping students struggling with mathematics. The eight recommendations in this guide are designed to help teachers, principals, and administrators use Response to Intervention for the early detection, prevention, and support of students struggling with mathematics.

1 screen all students to identify those at risk for potential mathematics difficulties and provide interventions to students identified as at risk.	2 Instructional materials for students receiving interventions should focus intensely on in-depth treatment of whole numbers in kindergarten through grade 5 and on rational numbers in grades 4 through 8 . - Show More	3 Instruction during the intervention should be explicit and systematic.	4 Interventions should include instruction on solving word problems that is based on common underlying structures.
5 Intervention materials should include opportunities for students to work with visual representations of mathematical ideas and interventionists should be proficient in the use of visual representations of mathematical ideas.	6 Interventions at all grade levels should devote about 10 minutes in each session to building fluent retrieval of basic arithmetic facts.	7 Monitor the progress of students receiving supplemental instruction and other students who are at risk.	8 Include motivational strategies in tier 2 and tier 3 interventions.
こ...........		- Show More	- Show More

Validated Intervention Program (e.g. Tier2, Standard Protocol, Secondary Intervention)

Assessment/Functional Assessment

\$ Councill

Design

cCSS

WHERE TO FOCUS
GRADES K-8
MATHEMATICS

An important subset of the major work in grades K-8 is the progression that leads toward middle school algebra.

- Indicanes a cluster that is well thought of as a part of a student's progross to algebra, but that is currently not designated as major by the assessment consortia in their draft materids. Apart from the one asterisked exception, the clusters listed heere are a subiber of those detignated as major in the assessment consertio's draft documents.
"Depends on simierity ideass from geometry to show that slope can be defined and then used to show that a linear equation has a graph which is a straight line and conversely.

Table A.2. Grades 3-5 Curriculum Focal Points and Connections Compared with the Expectations of the Content Standards in Principles and Standards for School Mathematics

Curriculum Focal Points and Connections

Grade 3 Curriculum Focal Points

Number and Operations and Algebra: Developing understandings of multiplication and division and strategies for basic multiplication facts and related division facts
Students understand the meanings of multiplication and division of whole numbers through the use of representations (e.g., equal-sized groups, arrays, area models, and equal "jumps" on number lines for multiplication, and successive subtraction, partitionequal "jumps" on number lines for multiplication, and successive subtraction, partition-
ing, and sharing for division). They use properties of addition and multiplication (eg., ing, and sharing for division). They use properties of addition and multiplication (e.g.,
commutativity, associativity, and the distributive property) to multiply whole numbers and apply increasingly sophisticated strategies based on these properties to solve multiplication and division problems involving basic facts. By comparing a variety of solution strategies, students relate multiplication and division as inverse operations.

Number and Operations: Developing an understanding of fractions and fraction equivalence
Students develop an understanding of the meanings and uses of fractions to represent parts of a whole, parts of a set, or points or distances on a number line. They understand that the size of a fractional part is relative to the size of the whole, and they use fractions to represent numbers that are equal to, less than, or greater than 1 . They solve problems that inolve conparing ders. They understa or common numerators or denominators. They understand and use models, including the number line, to identify equivalent fractions.

Geometry: Describing and analyzing properties of two-dimensional shapes Students describe, analyze, compare, and classify two-dimensional shapes by their sides and angles and connect these attributes to definitions of shapes. Students investigate, describe, and reason about decomposing, combining, and transforming polygons to make other polygons. Through building, drawing, and analyzing two-dimensional shapes, students understand attributes and properties of two-dimensional space and the use of those attributes and properties in solving problems, including applications involving congruence and symmetry.

Expectations of the Content Standards

Number and Operations, Grades 3-5

- Understand the place-value structure of the base-ten number system and be able to represent and compare whole numbers and decimals

Recognize equivalent representations for the same number and generate them by decomposing and composing numbers

- Develop understanding of fractions as parts of unit wholes, as parts of a collection, as locations on number lines, and lin Grade 6 Curriculum Focal Points] as divisions of whole numbers
- Use models, benchmarks, and equivalent forms to judge the size of fractions
- Recognize and generate equivalent forms of commonly used fractions, decimals, and [in Grade 7 Curriculum Focal Points] percents
- Explore numbers less than 0 by extending the number line and through familiar applications
- Describe classes of numbers according to characteristics such as the nature of their factors
- Understand various meanings of multiplication and division

Understand the effects of multiplying and dividing whole numbers

Identify and use relationships between operations, such as division as the inverse of multiplication, to solve problems

Understand and use properties of operations, such as the distributiv. ity of multiplication over addition

Develop fluency with basic number combinations for multiplication and division and use these combinations to mentally compute related problems, such as 30×50

Deliver

Instructional Platform

INSTRUCTIONAL DELIVERY

Explicit instruction

Precise language

Multiple
representations

INSTRUCTIONAL STRATEGIES

INSTRUCTIONAL DELIVERY

Explicit instruction

INSTRUCTIONAL STRATEGIES

Modeling	Practice
Clear	Guided
Explanation	Practice
Planned Examples	Independent Practice

Goal and importance

Modeling	Practice
Clear	Guided
Explanation	Practice
Planned	Independent Examples

Supports

- Asking the right questions
- Eliciting frequent responses
- Providing immediate specific feedback
- Maintaining a brisk pace
"Today, we are learning about division. This is important because sometimes you have to share objects or things with your friends."
"Let's continue working with our three-dimensional shapes and volume. Understanding volume and calculating volume helps with measuring capacity."

Goal and importance

Modeling
 Clear
 Explanation
 Planned
 Examples

Supports

- Asking the right questions
- Eliciting frequent responses
- Providing immediate specific feedback
- Maintaining a brisk pace

Model steps

"To solve 26 plus 79, I first decide about the operation. Do I add, subtract, multiply or divide?"
"The plus sign tells me to add. So, l'll add 26 plus 79. I'll use the partial sums strategy. First, I add 20 plus 70 . What's 20 plus 70 ?"
" 20 plus 70 is 90 . I write 90 right here under the equal line. Where do I write 90?"
"Then I add 6 plus 9. What's 6 plus 9?"
"How did you add 6 plus 9?"
" 6 plus 9 is 15 . So, I write 15 here under the equal line."
"Finally, we add the partial sums: 90 and 15.90 plus 15 is 105 . So, 26 plus 79 equals 105. What's 26 plus 79?"

Goal and importance

Modeling
 Clear
 Explanation
 Planned
 Examples

Practice
Guided
Practice
Independent Practice

Supports

- Asking the right questions
- Eliciting frequent responses
- Providing immediate specific feedback
- Maintaining a brisk pace

Model steps

With examples

"Today, we are learning about division. This is important because sometimes you have to share objects or things with your friends."

24 / 6

$$
28 \div 7
$$

Supports

- Asking the right questions
- Eliciting frequent responses
- Providing immediate specific feedback
- Maintaining a brisk pace

Model steps

With examples

With non-examples

"Today, we are learning about division. This is important because sometimes you have to share objects or things with your friends."

$$
32 \div 8 \quad 42 \div 7 \quad 25-5
$$

Modeling	Practice
Clear	Guided
Explanation	Practice
Planned Examples	Independent Practice

Modeling
Clear
Explanation
Planned
Examples

Practice
 Guided
 Practice
 Independent
 Practice

Student practices with teacher support

Supports

- Asking the right questions
- Eliciting frequent responses
- Providing immediate specific feedback
- Maintaining a brisk pace

Modeling	Practice
Clear	Guided
Explanation	Practice
Planned Examples	Independent Practice

Low-level and high-level

Modeling
Clear
Explanation
Planned
Examples

Practice
 Guided
 Practice
 Independent Practice

"What is 7 times 9?"
"Which shape has 6 sides?"
"What do you do when you see a word problem?"
"Why do you have to regroup?"
"How would you solve this problem?"
"Why do you have to use zero pairs?"

- Asking the right questions
- Eliciting frequent responses
- Providing immediate specific feedback
- Maintaining a brisk pace

Low-level and high-level

Modeling
 Clear
 Explanation
 Planned
 Examples

Practice

Guided
Practice
Independent Practice

Classwide, individual, partner, write on paper, write on whiteboard, thumbs up, etc.
"Turn and discuss the formula for perimeter with your partner."
"Write the multiplication problem on your whiteboard."
"In your math journal, draw a picture to help you remember to term parallelogram."

- Asking the right questions
- Eliciting frequent responses
- Providing immediate specific feedback
- Maintaining a brisk pace

Modeling	Practice
Clear	Guided
Explanation	Practice
Planned Examples	Independent Practice

Supports

- Asking the right questions
- Eliciting frequent responses
- Providing immediate specific feedback
- Maintaining a brisk pace

Classwide, individual, partner, write on paper, write on whiteboard, thumbs up, etc.

Affirmative and

 corrective"Good work using your word-problem attack strategy."
"Let's look at that again. Tell me how you added in the hundreds column."

Modeling	Practice
Clear	Guided
Explanation	Practice
Planned Examples	Independent Practice

Supports

- Asking the right questions
- Eliciting frequent responses
- Providing immediate specific feedback
- Maintaining a brisk pace

Classwide, individual, partner, write on paper, write on whiteboard, thumbs up, etc.

Affirmative and

 correctivePlanned and organized

Modeling	Practice
Clear	Guided
Explanation	Practice
Planned	Independent Practice

Modeling
 Practice

Supports

Instructional Platform

INSTRUCTIONAL DELIVERY

Explicit instruction

```
                                    Precise language
```


INSTRUCTIONAL STRATEGIES

1. Some math terms are shared with English but have different meanings

right
2. Some math terms are shared with English but have different meanings
3. Some math words are shared with English with similar meanings (but a more precise math meaning)

4. Some math terms are shared with English but have different meanings
5. Some math words are shared with English with similar meanings (but a more precise math meaning)
6. Some math terms are only used in math
7. Some math terms are shared with English but have different meanings
8. Some math words are shared with English with similar meanings (but a more precise math meaning)
9. Some math terms are only used in math
10. Some math terms have more than one meaning

square

1. Some math terms are shared with English but have different meanings

2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
divide vs. Continental Divide
variable vs. variably cloudy
6. Some math terms are shared with English but have different meanings
7. Some math words are shared with English with similar meanings (but a more precise math meaning)
8. Some math terms are only used in math
9. Some math terms have more than one meaning
10. Some math terms are similar to other content-area terms with different meanings
11. Some math terms are homographs

sum vs. some

1. Some math terms are shared with English but have different meanings

2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
6. Some math terms are homographs
7. Some math terms are related but have distinct meanings

1. Some math terms are shared with English but have different meanings

2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
6. Some math terms are homographs
7. Some math terms are related but have distinct meanings
8. An English math term may translate into another language with different meanings

1. Some math terms are shared with English but have different meanings

2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
6. Some math terms are homographs
7. Some math terms are related but have distinct meanings
8. An English math term may translate into another language with different meanings
9. English spelling and usage may have irregularities

four vs. forty

1. Some math terms are shared with English but have different meanings

2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
6. Some math terms are homographs
7. Some math terms are related but have distinct meanings
8. An English math term may translate into another language with different meanings
9. English spelling and usage may have irregularities
10. Some math concepts are verbalized in more than one way

one-fourth vs. one quarter

1. Some math terms are shared with English but have different meanings

2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
6. Some math terms are homographs
7. Some math terms are related but have distinct meanings
8. An English math term may translate into another language with different meanings
9. English spelling and usage may have irregularities
10. Some math concepts are verbalized in more than one way

rhombus vs.
 diamond

vertex vs.
11. Informal terms may be used for formal math terms

Excoptiona
Children

1. Some math terms are shared with English but have different meanings
2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
6. Some math terms are homographs
7. Some math terms are related but have distinct meanings
8. An English math term may translate into another language with different meanings
9. English spelling and usage may have irregularities
10. Some math concepts are verbalized in more than one way
11. Informal terms may be used for formal math terms

Modeling

Clear
Explanation
Planned
Examples

Practice

Guided

 PracticeIndependent Practice

Supports

- Asking the right questions
- Eliciting frequent responses
- Providing immediate specific feedback
- Maintaining a brisk pace

Use formal math language

Use terms precisely

Instructional Platform

INSTRUCTIONAL DELIVERY

Explicit instruction

Precise language

Multiple
representations

INSTRUCTIONAL STRATEGIES

Abstract

Concrete

Pictorial

Abstract

Concrete

Pictorial

Three-dimensional objects

Modeling Fractions with Cuisenaire Rods

Numerals
$34=3$ tens and 4 ones

$$
x-6=8
$$

$$
4,179
$$

$$
\begin{array}{r}
569 \\
\hline
\end{array}
$$

Abstract

Concrete

Pictorial

Instructional Platform

INSTRUCTIONAL DELIVERY

Explicit instruction

Precise language

Multiple
representations

INSTRUCTIONAL STRATEGIES

BRIEF
 DAILY
 (1-2 min)
 (everyday)

cover, Copr, compre 8		File Folder	
9	$\begin{array}{r} 8 \\ \times \quad 6 \end{array}$		
$\times 6$		$1+7=$	9
54		$6+4=$	8
7	6 \times	$7+3=$	10
$\times 8$	a $\times 3$	2+7=	10
$\stackrel{5}{\times}$	30	$5+6=$	9
56	7	$4+7=$	11
9	+ 9	$7+8=$	11
$\times 9$	63	$6+7=$	15
81	8	$7+9=$	13
6	8 $\times \quad 5$	7+6=	16
$\times 7$	$\times 5$	$8+7=$	13
42	40	$7+0=$	15
42	7	$9+6=$	7
	$\times 7$	$6+0=$	15
+8	49	$6+8=$	6
64			14

Taped Problems

$\begin{array}{r}6 \\ \times \quad 5 \\ \hline\end{array}$	$\begin{array}{r}8 \\ \times \quad 6 \\ \hline\end{array}$	$\begin{array}{r}7 \\ \times \quad 9 \\ \hline\end{array}$	$\begin{array}{r}6 \\ \times \quad 8 \\ \hline\end{array}$
$\begin{array}{r} 9 \\ \times \quad 8 \\ \hline \end{array}$	$\begin{array}{r}8 \\ \times \quad 5 \\ \hline\end{array}$	$\begin{array}{r}7 \\ \times \quad 8 \\ \hline\end{array}$	$\begin{array}{r} 6 \\ \times \quad 6 \\ \hline \end{array}$
$\begin{array}{r} 7 \\ \times \quad 7 \\ \hline \end{array}$	$\begin{array}{r}6 \\ \times \quad 9 \\ \hline\end{array}$	$\begin{array}{r}5 \\ \times \quad 9 \\ \hline\end{array}$	$\begin{array}{r}8 \\ \times \quad 4 \\ \hline\end{array}$
$\begin{array}{r} 9 \\ \times \quad 4 \\ \hline \end{array}$	$\begin{array}{r}6 \\ \times \quad 9 \\ \hline\end{array}$	$\begin{array}{r}9 \\ \times \quad 5 \\ \hline\end{array}$	$\begin{array}{r}8 \\ \times \quad 7 \\ \hline\end{array}$
$\begin{array}{r}6 \\ \times \quad 7 \\ \hline\end{array}$	$\begin{array}{r}8 \\ \times \quad 8 \\ \hline\end{array}$	$\begin{array}{r}4 \\ \times \quad 8 \\ \hline\end{array}$	$\begin{array}{r}5 \\ \times \quad 7 \\ \hline\end{array}$

+
 Excoptiona

ATAT $\mathrm{F} \quad 9: 47 \mathrm{PM}$
math fact master
$-\infty$
0000
-aอe 5's 6's 7 's aeai

a

BRIEF
 DAILY
 (1-2 min)
 (everyday)

Instructional Platform

INSTRUCTIONAL DELIVERY

Explicit instruction

Precise language

Multiple
representations

INSTRUCTIONAL STRATEGIES

Don't tie key words to operations

Do have an attack strategy

Do teach word-problem schemas

RTDGTS

Read the problem.
I know statement.
Draw a picture.
Goal statement.
Fquation
development.
Sove tre ecluewic

RIDE

Read the problem.
Identify the relevant information.
Determine the operation and unit for the answer.
Enter the correct numbers and calculate, then check the answer.

Attack Strategy UPS

Read the problem.
Ask yourself.

- What information do I know?
- What is the question asking me to find?

Choose a strategy, a tool or an approach.

Show the math used to Solve the problem.
Solve
Check your math.
Ask yourSelf:

- Did I answer the question asked?
Check
- Is my answer reasonable?

Total

Difference

Change

Equal Groups

Comparison

Ratios/Proportions

Don't tie key words to operations

Do have an attack strategy

Do teach word-problem schemas

Instructional Platform

INSTRUCTIONAL DELIVERY

Explicit instruction

Precise language

Multiple
representations

INSTRUCTIONAL STRATEGIES

Intensive	Tools	Implementation	Intervention	Information
Intervention -	Charts -	Support -	Materials -	For... -

Intensive Intervention in Mathematics Course Content

NCII, through a collaboration with the University of Connecticut, developed a set of course content focused on developing educators' skills in designing and delivering intensive mathematics instruction This content is designed to support faculty and professional development providers with instructing p service and in-service educators who are developing and/or refining their implementation of intensive mathematics intervention.

Intensive instruction was recently identified as a high-leverage practice in special education and DBI is a research based approach to delivering intensive instruction across content areas (NCII, 2013). This course provides learners with an opportunity to extend their understanding of intensive instruction through in-depth exposure to DBI in mathematics, complete with exemplars from actual classroom teachers.

NCII, through a collaboration with the University of Connecticut and the National Center on Leadership in Intensive Intervention and with support from the CEEDAR Center developed course content focused on enhancing educators' skills in intensive mathematics intervention. The course includes eight modules that can support faculty and professional development providers with instructing pre-service and in-service educators who are learning to implement intensive mathematics intervention through data-based individualization (DBI). The content in this course complements concepts covered in the Features of Explicit Instruction Course and so we suggest that users complete both courses.

Sarahpowellphd.com
 Evidence-based mathematics resources for educators

- srpowell@austin.utexas.edu

@sarahpowellphd

