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Introduction

Data from remote sensing and GIS have assumed pivotal roles in contemporary
spatial analysis methodologies. Whatever the application, geo-coded data handled
by both technologies have improved over the years not only in quality but also in the
efficiency of how such data are processed. Improvements in quality and efficiency
of data models inevitably result in “better” application results, which in turn provide
the opportunity to challenge established theory (Longley, 2002). Within urban
geographical theory, inroads in data quality, in terms of precision and
disaggregation have recently provoked developments in system-wide models of
urban form and function (Longley and Mesev, 2002). These, in turn, have fuelled
rational urban planning, the delineation of store catchment areas, customer
targeting (Harris and Longley, 2000), and land use change distributions. One of the
most important urban monitoring applications has been the shift in the geographies
of retail activity — the rise of Internet shopping and the growth of suburban “out of
town” locations — which have diminished the attraction of traditional urban central
cores. Along with similar centrifugal movements in both manufacturing and
business sites urban systems in the developed world have experienced rapid land
use adjustments without necessarily the scales of urban growth evident in many
developing world cities. Such examples are increasingly monitored by data models
generated from remote sensing and GIS.

The building of “data-rich” models has become the consensus within remote
sensing and GIS research groups active in both the urban and natural environment
domains. In urban planning, research has become sympathetic to the needs for
precision and up to date maps of land use delineation, as well as accountable to the
repercussions of government policy decisions on individual household behavior and
interaction (Donnay, 1999). It is within this dynamic urban backdrop that this paper
will seek to contribute towards the growing body of knowledge on the recognition of
urban land use patterns as represented by remotely sensed images.

Traditionally, urban land use interpretation from remote sensing is problematic and
highly dependent on the scale, generalization, and scope of the application (Forster,
1985; Mesev, 2003). Inherent spatial variability of urban land use and acute spectral
heterogeneity between pixel values typically lead to low interpretation accuracy.
Methodologies to improve accuracy have ranged from the manipulation of
neighboring pixel values (textural and contextual measures, for example by Moller-



Jensen, 1990), to the spatial arrangement of classified pixels (for instance, using
graph theory by Barnsley and Barr, 1997; or Pesaresi and Bianchin, 2001), and to
the incorporation of information from beyond the spectral domain, usually during the
classification process (for example, fuzzy sets, neural nets and Bayesian
modifications by Mesev, 1998). On the whole, success in improving urban land use
accuracy has been small to negligible, usually qualified by local site-specific and
time-specific conditions.
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Figure 1: ADDRESS-POINT distributions for Bristol, UK



The common factor in most of these methodologies that restricts improvements in
classification and pattern recognition accuracy is undoubtedly the inability to
measure urban land use at a scale fine enough to identify individual building
characteristics and hence infer human behavioral processes. If the objective is to
delineate the maximum extent of human settlement then traditional approaches
using coarse spatial resolution imagery and aggregated government statistics may
suffice. However, such city-wide measures have as yet to convince planners and
decision makers of their importance and as a consequence play only peripheral
roles within local government policies (Donnay, 1999). If proponents of remote
sensing and GIS want to rebuild the reputation of their data they need to seriously
tackle the limitations of aggregated urban models and begin to embrace the
challenges of disaggregated urban models. Although such models may be more
demanding theoretically and technically they are nonetheless essential
pragmatically.

The main objective of this paper is to outline a tentative agenda for building
disaggregated models that infer urban land use distributions and therefore can be
used to inform classified imagery of urban areas. The disaggregated models are
based on digital postal records of every delivery address in a city; both residential
and commercial properties (Figure 1). Knowing the spatial distribution of postal
addresses introduces a number of key indicators of density (compactness versus
sparseness) and arrangement (linearity versus randomness). These are measured
using standard and linear readjusted nearest neighbor statistics. By establishing a
relationship between image pixels and building distributions, the long-term research
goal is to facilitate reliable and accurate spatial pattern recognition and multispectral
classification methodologies to a level that renders resulting output irresistible to
planners and policy makers (Donnay, 1999). Such work may even deflect criticism
and restore flagging confidence in the applicability of urban remote sensing in the
developed world (Mesev, 2003).

2 DISAGGREGATE DATA MODELS

Aggregate models are the standard vehicles for extraneous information commonly
used in the augmentation of remotely sensed images representing urban land use
(Chen, 2002). Typically, census records and other government directed statistics
are aggregated into areal units for the sole purpose of preserving confidentiality. In
the most recent UK Population Census, the finest level of aggregation is known as
an output area (OA), which normally represents approximately 150 to 250
households. Within large, dense cities these aggregations are sometimes at a fine
enough scale to adequately inform multispectral classifications (Mesev 1998;
Mesev 2001), generate zonal-based dasymetric measurements (Langford, 2003;
Lo, 2003), and even pixel-based population estimates (Geoghegan et al, 1998;
Harvey, 2002). However, as with all aggregations of data, census tracts inextricably
suffer from the ecological fallacy and the modifiable areal unit problem. Other than
generalized city-wide applications, such aggregated zonal data have limited use for



precision land use identification and therefore limited scope for informing accurate
image classification of urban buildings.

Field Format Description
Address key 18 Key identifying addresses
Building name A50 If number not available
Building number 14 Range 0-9999

Change type A1 Insert; change; or delete
Change date D6  Date of last change to record
Department name A60  For organizations

Dependent locality A35  Subdivision of post town
Eastings (0.1m) 18 National grid (0.1m resolution)
Northings (0.1m) 7 National grid (0.1m resolution)
OSAPR A18  OS unique identifier

Physical status 11 E.g. planned

PO box number A6 PO box number

Postcode A7  Approx. 14 addresses
Positional quality 11 Accuracy of seed addresses
Post town A30 Name of post town

Royal Mail version 18 Date of last PAF update

Table 1: ADDRESS-POINT attribute table

From the mid 1990s the Ordnance Survey of Great Britain began to compile a
digital database of every one of the 25 million postal delivery points in Great Britain
that has an address. The product is known as ADDRESS-POINT (Table 1) and the
planimetric coordinates of this point-based dataset are claimed to be precise to
within 0.1 meters (50 m in some rural areas) of the actual location of the building. It
was created primarily using the Royal Mail’'s Postcode Address file (PAF) along with
ground survey measurements, and is updated on a frequent interval (usually 3
months). The database represents one of the first attempts at disaggregating the
geographical distributions of individual households and as such provides an unique
opportunity to view the urban landscape as a surface of discrete entities rather than
the traditional and administratively convenient partition by artificial zones
representing aggregated and uniform values. It also offers, for the first time, the
possibility of analyzing the spatial configuration and density of individual addresses
within neighborhoods, which are typically hidden by zonal representations. All in all,
the creation of ADDRESS-POINT is a major step forward in the pursuit of
‘framework’ data that encapsulate the desire for higher quality urban data not just
for image pattern recognition improvement but also for all urban-based spatial data
analyses.

In highlighting the merits of point-based disaggregated data it is also important to
understand their limitations. For a start, point-based data are essentially
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dimensionless cartographic symbols, independent of the size and shape of the
buildings they represent. The geographic co-ordinates of each point are positioned
to correspond with the center of the building, and as such the only measurable
parameters that can be derived are those related to the distribution of points
indicating density (compactness or sparseness) and arrangement (linearity or
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Figure 2: Residential ADDRESS-POINTS
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Figure 3: Commercial ADDRESS-POINTS

Postal geography of Bristol, UK

The city of Bristol in southwestern England is large (population of approximatelg/
375,000 at the time of the 2001 census) and dense (occupying around 200 km®). It
is an archetypal English city with high traffic congestion and a complex
morphological structure. The mix of residential and commercial land use patterns is
highly interlaced and only physically discernible by remote sensing in some parts of
the central area and the more recent peripheral commercial estates. The spatial
arrangement of residential street patterns is highly variable, ranging from dense
inter-war linear patterns to modern curved geometrical layouts (Figure 2). Aimost
every address record is known by the Post Office to be in current use, although the
database also contains other minor categories, such as properties under
construction. Frequent maintenance updates by the Ordnance Survey ensure that
the database is much more contemporary than the census, although it does not
contain any of the socio-economic variables associated with the census. At first this
may seem as a major disadvantage but not when placed into perspective that the
only variables from the census to have had any impact on image classification are
population and household categories. Moreover, even these standard census
variables are difficult to accommodate into standard image classifications given the
aggregate nature of census tract representations. Instead this paper will explore the
possibility of calculating indices that characterize the spatial distributions of address



points and how these indices can be used to infer land use from classified land
cover.

Spatial indicators of address point distributions

The nearest neighbor technique is simple but ideal for expressing spatial
distributions. It compares the observed average distance connecting neighboring
points (Dogs) and the expected distance among neighbors in a random distribution
(Dran)- The statistic is a straightforward ratio, where randomness is represented by
parity; a clustering tendency has values towards 0; and perfect uniformity towards a
theoretical value of 2.15. The nearest neighbor statistic R is expressed as,

D
R = " oBs 1)

RAN

where Dogs is the total measured distance between neighboring points divided by
the total number of points (N), and Dgran is calculated as,

1

2A/N/ A )

where (N/A) is the density of points within area A. One of many strengths of the
nearest neighbor statistic is the facility to compare spatial distributions on a
continuous scale, especially when area (A) is constant.

DRAN =

N R LN LR
Residential-1 1214 0.586 34 0.570
Residential-2 1084 0.715 28 0.653
Residential-3 503 0.910 16 0.841
Residential-4 443 0.610 30 0.598
Residential-5 494 0.747 21 0.717
Residential-6 132 1.528 8 1.885
Commercial-1 155 0.523 23 0.509
Commercial-2 637 1.297 14 0.903
Commercial-3 18 0.627 5 0.916
Commercial-4 321 1.289 10 1.175

Table 2: Density and nearest neighbor statistics

Of the six different residential neighborhoods measured in the Bristol example, four
are successfully identified as having strong clustering patterns (Residential 1, 2, 4
and 5) (Table 2). As expected, given the compact architecture of terraced housing
in the UK, the most clustered neighborhoods are the linear patterns of Residential-1
and Residential-4. However, although their nearest neighbor values may be very
similar, it is plainly apparent that Residential-1 exhibits a far denser concentration of



address points. The same situation applies between Residential-2 (inner-city local
government-owned estate) and Residential-5 (more affluent 1980s peripheral
estate). Conversely, Residential-3 and Residential-4 have very similar densities yet
somewhat dissimilar nearest neighbor values. The remaining neighborhood,
Residential-6, is a highly affluent low density area of Bristol with large dwellings,
and is the only one demonstrating a uniform tendency. Overall, what is clear is that
if nearest neighbor and address point densities are taken together they are valuable
measures for identifying and characterizing different residential types.

The same measurements can also be applied to commercial address points (Figure
3). A strong clustering pattern is, again, indicative of linear developments in
Commercial-1, but the city center (Commercial-2) and peripheral estates
(Commercial-4) exhibit definite signs of uniformity. Again, if both nearest neighbor
and density values are taken in combination then unequivocal differences can be
revealed. Both Commercial-1 and Commercial-3 (commercial development within
residential areas), and Commercial-2 and Commercial-4 have similar nearest
neighbor values but contrasting densities.

The conventional nearest neighbor statistic is effective for measuring clustering
patterns but it lacks the ability to detect spatial arrangement. A variant of two-
dimensional nearest neighbor analysis is the linear readjustment (LR) devised by
Pinder and Witherick (1973). Instead of measuring all observed distances between
neighboring points, Dogs is determined from a linear sequence (L) of consecutive
points (LN) in all directions, whilst Dgan is,

L
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Values for both R and LR are documented in Table 2. On the whole, they are very
similar for both residential and commercial address point distributions. However, LR
values are usually lower for linear patterns of address points (Residential-1 through
5, and Commercial-1, 2 and 4) and higher for inherently random or uniform
distributions (Residential-6 and Commercial-3).

IMAGE PATTERN RECOGNITION

Previous methodologies designed to improve the accuracy of image classifications
representing the city of Bristol have had variable success (Mesev, 1998; Longley
and Mesev, 2002). One of the more successful was centered on the use of a
surface model to disaggregate census tracts to inform training samples as well as
modify the prior probabilities of the classical maximum likelihood discriminant
function. The surface model, which was built on a linear distance decay
interpolation procedure, was essentially a dasymetric technique that sought to
eliminate the non-residential areas of Bristol. Using an empirically-tested spatial
resolution of 200m, the location of each surface cell corresponded to the location of



the population-weighted centroid of each census tract. The disaggregation effect of
the surface model was noticeable and it served as a vehicle for importing census
ancillary information into the classification process by producing sharper estimates
of the spatial distribution of property types (terraced, detached, semidetached, and
apartments) than could be obtained from the image alone.

Although training sample selection using surface model cells was based on
disaggregated census tracts, the disaggregation was still at a coarse scale (200m)
and the information within the surface cell was an average number of households
not individual dwellings. It was an improvement on zonal-based census surfaces but
the surface cells were nonetheless limited in their usefulness. Address points, on
the other hand, represent the entire distribution of individual dwelling units within a
city, and as such are the ultimate in disaggregated surfaces. They convey valuable
information on local spatial association — density and arrangement — information
that is surprisingly overlooked in research on urban image classification, especially
given the spatial nature of class distributions and the inherent limitations of spectral
data.

Instead of informing image classification, this paper concentrates on pattern
recognition, which is arguably more responsive to the extreme spatial heterogeneity
of urban areas. Specifically, the objective is to explore the potential of
measurements on the spatial structure of residential and commercial developments
(from address points) to infer land use from classified land cover. Instead of
classifying types of dwellings (detached, semidetached, terraced) address points
are used to infer spatial structure on building density (determined by compactness
and sparseness in dwelling spacing) and building arrangement (from linearity to
randomness). In a way, density and arrangement are very similar to dwelling type,
for instance low density and linearity would probably indicate detached housing;
medium density and dwelling pairing are more likely of semidetached housing; and
high density and linearity would point to terraced housing. However, the additional
benefits derived from measurements in the level of linearity or randomness would
further place density types within the history of the city’s development, with linear
arrangements more characteristic of inner city inter-war and post-war architecture
and randomness associated with 1980s and 1990s styles.
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Figure 4: Pattern recognition of high spatial resolution imagery

The testing of image pattern recognition by unique address point characteristics is
yet to be completed but preliminary results are very encouraging. Some early work
includes the inference of residential land use spatial patterns from a classified
digital aerial photograph of Bristol produced by Cities Revealed® at 15cm spatial
resolution. Figure 4 represents the residential built land cover (shown by white
pixels) for a subset of residential types in north Bristol. Using the spatial indices
developed by density and nearest neighbor statistics, linear developments were
identified in the right of the figure (labeled as “A”), more uniform patterns in the
bottom-center and top right (“B”), and curved linear to the left (“C”). In each type of
residential land use, density and nearest neighbor values were very close to the
samples demonstrated by Figure 2. More testing and refinement is necessary
before an automated pattern recognition system can be fully implemented and
results evaluated. Nevertheless, there is considerable scope for the use of spatial
attributes calculated by nearest neighbor techniques, as well as more sophisticated
spatial metrics (Wu et al, 2000), in recognizing urban land use patterns. The
importance of such work is especially relevant given the recent proliferation of very
high spatial resolution imagery at 4m/1m and 2.4m/0.6m from the IKONOS and
QUICKBIRD sensors respectively. Urban land cover Information at such spatial
resolutions is discrete and highly identifiable. However, subsidiary information, in
the form of ADDRESS-POINTS for example, is critical for converting urban land
cover to urban land use with a reliable degree of consistency and accuracy.
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CONCLUSION

The OS ADDRESS-POINT product represents a type of disaggregated urban data
set with tremendous opportunity for inferring land use from remote sensing. It can
be used to help discern at least three geographies: the built environment,
commercial, and residential, which are geographically exhaustive, regularly
updated, and highly precise. On-going research has been presented on the
possibilities for generating unique summaries of the various structural patterns of
address points representing density and linear arrangement of residential and
commercial buildings. These summaries have immense potential for inferring land
use from land cover patterns classified from high spatial resolution remotely sensed
data. Results so far, for the city of Bristol in southwest England, are most
encouraging but further testing is crucial if an even closer relationship between
imagery and postal information can be statistically established. In particular,
research breakthroughs are needed in linking classified land cover with land use
using not only nearest neighbor but also entropy maximization (Harvey, 2002); as
well as the resolution of non-residential from residential land use patterns using
targeted training sample selections; neighborhood differentiation using invariant
fractal dimensions (Longley and Mesev, 2002), and urban growth using spatial
metrics (Pesaresi, M. and Bianchin, 2001).

The methodology of characterizing address points for use in image pattern
recognition is an effective means of integrating GIS data with remote sensing where
the benefits of both are harmonized in the pursuit of greater accuracy (Mesev,
2004). A future research direction would be to establish direct relationships between
socio-economic information within census tracts and the spatial distribution of
address points. In this way, both attribute and spatial indicators would be readily
available to inform multispectral classifications of urban areas. However, for the
time being, research is focused on the spatial utility of address points and how
spatial indices can be used to infer land use from high spatial resolution land cover
data. Once residential and commercial characteristics from address points are
established and comprehensively tested, a situation is envisaged where land cover
patterns can be routinely categorized into a variety of types. A fully automated
procedure is currently being built with many more address point configurations,
which will allow consistent pattern recognitions both across settlements and through
time. The advent of disaggregated models, such as address points, represents a
major step forward in precision urban mapping, which is intuitively more realistic
than the uniformity of traditional areal representations.
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