

Fabrication & Evaluation of Nanostructured Thermoelectrics

Generate Renewable Energy Efficiently using Nanofabricated Silicon (GREEN Silicon)

L. Ferre Llin, F. Mirando, A. Samarelli, A. Odia, J.M.R. Weaver & P. Dobson, D.J. Paul University of Glasgow, U.K.

S. Cecchi, G. Isella, D. Chrastina L-NESS, Politecnico de Milano, Como, Italy

T. Etzelstorfer & J. Stangl

University of Linz, Austria

E. Müller Gubler ETH Zürich, Switzerland

http://www.greensilicon.eu/GREENSilicon/index.html

Semiconductor Device Group

Si Photonics

Si thermal photovoltaics Miniature cold atom systems

MEMS gravimeters

Engineering and Physical Sciences Research Counci

Science & Technology Facilities Council

Ge MIR Plasmonics

Si SETs & **Electrometers**

Ge SPADs & Si Quantum **Photonics**

SiGe Thermoelectrics

Bulk Thermoelectric Materials Performance

Nature Materials 7, 105 (2008)

- Bulk n-Bi₂Te₃ and p-Sb₂Te₃ used in most commercial thermoelectrics & Peltier coolers
- But tellurium is 9th rarest element on earth !!!

Bulk Si_{1-x}Ge_x (x~0.2 to 0.3) used for high temperature satellite applications

ZT versus Temperature

p-type

n-type

 \bigcirc

Nanostructures can improve Seebeck coefficient and/or decrease thermal conductivity

Increase α through enhanced DOS:

 $-\alpha$ increasing \longrightarrow

M. Cutler & N.F. Mott, Phys. Rev. 181, 1336 (1969)

Key wavelengths for scattering phonons 1.2 to 4 nm

Superlattice Designs: 4.5 µm Thick

Design 1	Design 2	Design 3	Design 4
80 nm n-Ge	80 nm n-Ge	80 nm n-Ge	80 nm n-Ge
1.55 nm n-Si _{0.22} Ge _{0.78}	2.3 nm n-Si _{0.3} Ge _{0.7}	1.8 nm n-Si _{0.3} Ge _{0.7}	1.5 nm n-Si _{0.3} Ge _{0.7}
		x178 repeats	x107 repeats
			15.5 nm n-Ge
x889 repeats	x336 repeats	9.3 nm n-Ge	1.5 nm n-Si _{0.3} Ge _{0.7}
4.64 nm n-Ge	12.2 nm n-Ge	1.8 nm n-Si _{0.3} Ge _{0.7}	16.0 nm n-Ge
1.55 nm n-Si _{0.22} Ge _{0.76}	2.3 nm n-Si _{0.3} Ge _{0.7}	9.3 nm n-Ge	2.0 nm n-Si _{0.3} Ge _{0.7}
		2.6 nm n-Si _{0.3} Ge _{0.7}	16.7 nm n-Ge
Augusta and a second		and the second se	2.8 nm n-Si _{0.3} Ge _{0.7}
Substrate	Substrate	Substrate	Substrate
4.64 nm n-Ge	12.2 nm n-Ge	9.3 nm n-Ge	16.7 nm n-Ge
5 nm graded n-SiGe	5 nm graded n-SiGe	5 nm graded n-SiGe	5 nm graded n-SiGe
1 μm n-Si _{0.083} Ge _{0.917}	1 μm n-Si _{0.05} Ge _{0.95}	1 μm n-Si _{0.032} Ge _{0.968}	1 μm n-Si _{0.032} Ge _{0.968}
y=0.917	y=0.95	y=0.968	y=0.968
13 μm graded Si _{1-y} Ge _y	13 μm graded Si _{1-y} Ge _y	13 μm graded Si _{t-y} Ge _y	13 μm graded Si _{1-γ} Ge _y
y=0.0	y=0.0	y=0.0	y=0.0
p [–] -Si (001)	p⁻-Si (001)	p⁻-Si (001)	p⁻-Si (001)

Narrow QW Superlattice Minibands

0

Only L-valley electrons form minibands

TEM of Single Barrier & 3 Barrier Material

Single barrier

Three barriers

n-type vertical Design 6 (8722)

3 barriers with wide Ge QWs

Vertical structure characterisation device

Comsol Thermal Parasitic Modelling

Cosmol Thermal Modelling

45 nm Wide n-Silicon Nanowires

10.0kV 12.5mm x1.80k SE(M) 2/20/13 16:11

30.0um

Bulk SiGe Material Design

LPCVD SiGe Wafer Growth

200 µm

ASM 2000E LPCVD system

200 mm SOITEC 55 nm Si, 155 nm box substrates

Slip planes

/ cracks

155

155 nm SiO₂

Si (001) substrate

Module Design: Heat Flow, Q

Simulation of Performance @ $T_H = 500$ °C

Operating temperature, T_H = 500 °C

Shorter legs better for high P but need to consider κ to maintain ΔT

Microfabricated Legs & Thermometers

68 pairs TE legs

16.00 kV

6.6 mm

Flip-Chip Bonding

In bumps

Final Module & Test

Heater & 2 Peltiers used to drive heat through module

Microfabricated thermometers measure ΔT

Material cracks limit yield & .. legs: requires better epitaxy (limited area epitaxy?)

In bumps limit T_H & dominate leg R

High temperature bumps & flip-chip bonding in development

Present silicides limited to ≤ 400 °C: new high T silicides e.g. TiSi₂ or WSi₂ stable to > 700 °C

Ohmic to bumps requires better diffusion barrier => TiN

Si/SiGe heterostructures for engineered electron & phonon transport towards enhanced thermoelectrics

New test structures for α and κ developed

ZT and power factor enhanced over bulk Si, Ge and SiGe values

Prototype modules delivered: optimisation required

http://www.greensilicon.eu/GREENSilicon/index.html

Douglas.Paul@glasgow.ac.uk http://userweb.eng.gla.ac.uk/douglas.paul/index.html http://www.jwnc.gla.ac.uk/

Tel:- +44 141 330 5219

Engineering and Physical Sciences Research Council

European Thermodynamics Limited

energy technology partnership