Brain Death

Understanding the Process, Optimizing the Gifts

Introduction

- Conflicts of Interest
 - None
- Goal:
 - Extend the gifts that each organ donor has to give
 - Increase the number of organs per donor
 - But also:
 - Closure for families
 - Friendships between donor families and recipients
 - Grief processing

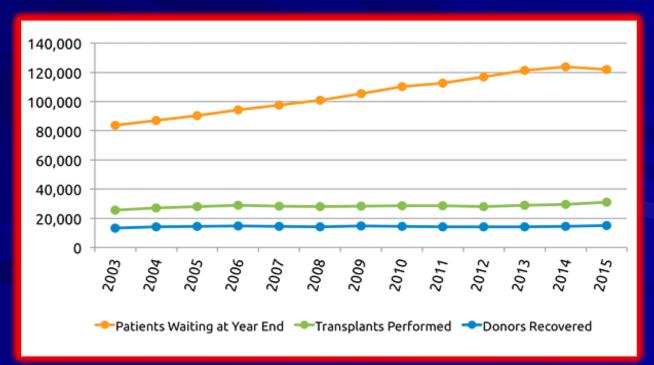
Introduction

- Outline
 - Background
 - The Need and Answer to the Need
 - The Gap
 - Closing the Gap
 - Identifying the patient and the potential
 - Physiology of the brain death process
 - Brain death declaration
 - Organ donor management and successes

- Trauma Surgeon 2000 current
 - Anywhere from 3-7 call nights per month
 - 10 20 admits
 - 50 curse words / night; 1-2 punches at team by pt
 - Little "thanks"
- Surgical Intensivist 2004-current
 - Director of 20 bed ICU
 - Work on "one" to get "one" better
 - Receive "thanks"

- AOC (Legacy of Hope)
 - Approached in February 2015
 - Describe their plans for Organ Recovery Center
 - 2 ICU Beds
 - 2 OR suites
 - Bring donors from around the state
 - Goals:
 - Increase organs per donor
 - Improve SRTR
 - Develop protocols to optimize donor management

- Before LoH Recovery center
 - Drove to hospitals with coordinators
 - Broad range of capabilities at various sites
 - Various "buy-in" from physicians and teams
 - Impressed with the coordinators and abilities to adapt
 - Learned management on site
 - Some literature out there on management



- LoH
 - Intensivist / Help Direct Organ Recovery Center
 - 2 ICU beds
 - 2 OR's
 - Select ICU RN
 - Coordinators
 - Families!
 - 1 life \rightarrow 6-7 lives

The Need

- Challenges Faced:
 - 2.2 million people die each year in US
 - < 1% die in manner to allow organ donation

The Need and Answer to the Need

- Steps to Close the Gap
 - Brain Dead Organ Donation
 - Increase the registered donors
 - Increase the referrals
 - Increase family consent to donation
 - Preserving the chance for organ donation
 - Optimize the donor management
 - Donation after cardiac death
 - Living Related Organ Donation—Locke
 - Xenotransplant—Tector, Eckhoff, Cooper
 - Organ 3-D building/ stem cell therapy

- Increase the referral
 - Timely referral
 - 1998 CMS timely referral rule
 - Notify OPO within 1 hour of 3 findings:
 - No pupil response
 - No cough
 - No gag
 - No response to pain
 - No spontaneous breaths
 - Or change to withdrawal for the goals of care
 - UAB / AOC has created a Cerner notification system

- Increase likelihood of referral
 - Dedicated FSC at level 1
 - Helpful to establish relationship with staff as well as families
 - Detect referrals sooner
 - They are good

- Increase likelihood of family consent
 - Designated requestor
 - Separate "bad news" from "approach"
 - Team can't care for the patient and then ask for organs—public concern for "they just wanted his/her organs"
 - Important in the grief process
 - FSC assigned to trauma center
 - Family witnessing and understanding the brain death exam
 - The Organ Alliance—key words

- Increase likelihood of organ use
 - GOOD CARE
 - Brain death process is only one type of "injury" to organs
 - Sometimes harder to overcome a decrease in level of care
 - Turning, suctioning, "routine" care
 - "Non-survivable" so....
 - High UOP
 - Hypotension

Increase likelihood of organ use

- Catastrophic Brain Injury Guidelines
 - Maintain SBP > 90
 - Consider invasive monitoring and access
 - Vasopressor support
 - Maintain UOP > 1cc/kg/hr and < 300cc/hr
 - Fluid if behind
 - Vasopressin if DI
 - Maintain PaO2 > 100
 - Maintain pH 7.35 7.45

- Increase likelihood of organ use
 - CBIGs
 - Crit Care Med 2012 :
 - Adopt DMG 3.6 organs /donor → >4 organs per donor
 - Would mean <u>78 more organs transplanted in state of</u> <u>Alabama</u> with our last year referrals
 - JAMA Surg 2014:
 - DMG for ECD 2.1 organs/donor → 3 organs /donor

- Increase likelihood of organ use
 - Intensivist management
 - Some programs have found better outcomes with intensivist management vs transplant surgeon
 - Global perspective rather than organ center interest
 - Dismiss concept—"not a candidate"
 - HIV—Locke and the HOPE Act
 - Hep C
 - Age
 - Markers of "poor organ function"

- Physiology and Pathophysiology
 - What happens as patient progresses to brain death
 - Defined in 90's, South Africa, animal models
 - EKG, PA cath, Histology, hemodynamics, chemistries, etc
 - Brain death processes
 - Inflammatory changes
 - Circulatory changes (autonomic storm)
 - Metabolic changes
 - Hormonal changes

- Physiology and Pathophysiology
 - Inflammatory
 - Cytokines, Interleukins, inflammatory pathways
 - TNF, IL-6, IL-8, IL-10, IFN-γ
 - Vasodilation
 - Third spacing
 - Coagulopathy
 - Decrease organ function (donor & recipient)
 - Blood brain barrier disruption (GSW head)
 - Release tissue factor
 - Bleed

Schwarz, Cell Transplantation, 2018

- Physiology and Pathophysiology
 - Circulatory Changes
 - EKG
 - Stage 1: parasympathetic stimulation—slight bradycardia
 - Stage 2: Adrenergic stimulation—sinus tachycardia
 - Stage 3: Multifocal ventricular beats
 - Stage 4: Back to sinus, but often see "ischemic changes"
 - Stage 5: Sinus, ST changes resolve, J and T waves

- Physiology and Pathophysiology
 - Circulatory Changes

 - Pre-herniation: fluid shifts to capacitance vessels and lungs
 - Herniation:

 - ↓ C.O.
 - MV regurg \rightarrow \uparrow LA pressure \rightarrow $\uparrow\uparrow$ pulm edema
 - Post-herniation: circulatory collapse following catechol surg

- Physiology and Pathophysiology
 - Histology/Organ changes
 - Heart fibers damage as result of catechol surge and calcium shifts
 - Contraction band necrosis
 - Mononuclear infiltrate
 - Lungs develop significant edema
 - Kidneys develop ATN
 - Hypoperfusion
 - Energetics

- Physiology and Pathophysiology
 - Metabolic changes
 - Hypothermia
 - Acidosis
 - Renal dysfunction
 - Hyperchloridemia
 - Hypocalcemia
 - Hypophosphatemia

- Physiology and Pathophysiology
 - Hormonal changes—whole separate lecture but focus on what you see
 - No perfusion of brain results in no hormones output from hypothalamus/pituitary
 - So all hormones will disappear over time, depending of half life

- Physiology and Pathophysiology
 - Hormonal changes
 - Vasopressin
 - Acts on 3 different receptors in the body
 - Vasomotor tone, platelets, uterine
 - Anterior pituitary
 - Renal receptor
 - Half life 10 35 min
 - Why UOP often picks up at brain death
 - Start infusion early, helps stability and prevent DI
 - I recommend use during apnea test

- Physiology and Pathophysiology
 - Hormonal changes
 - Thyroid
 - Disappearance complex—different forms and interactions
 - Usually start drip in order to stabilize hemodynamics
 - Thyroid replacement usually increases ability to transplant heart and lungs

- Physiology and Pathophysiology
 - Hormonal
 - Stress Hormones: Glucocorticoid/Mineralocorticoid
 - Half life of ACTH 10 min, so within hour of brain death, level low to none
 - Steroids replacement in donor management: helps with adrenal insufficiency and inflammatory changes of brain death
 - In general 1gm load then 1mg/kg BID
 - Addition of steroids probably associated with organ improvement

- Various Injuries
 - Overdose
 - Trauma
 - Hypoxia
 - Cardiac arrest
- Common Result: complete and irreversible cessation of brain function
 - Cerebrum only—coma
 - Brainstem only—locked in syndrome

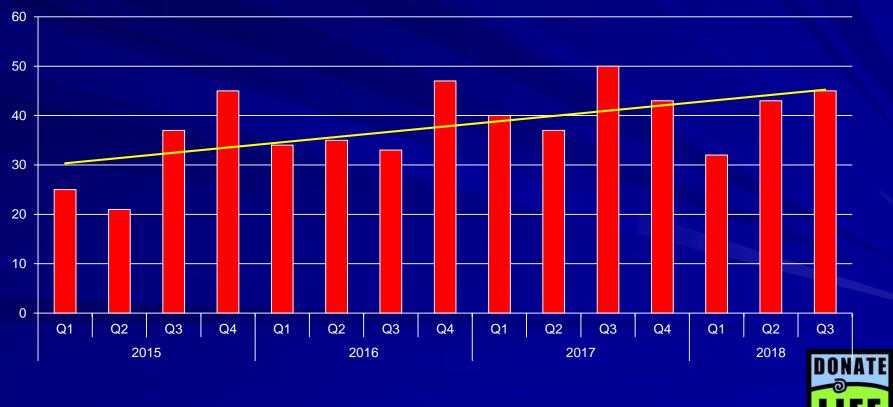
- Brain death declaration
 - AL: 2 physicians required
 - Cause of brain death must be known
 - If unknown further testing should be undertaken
 - If unknown, prudent to allow 6-12 hours between exams
 - No confounding meds
 - Testing for levels of meds in system
 - 3.5 5 half lives for medication clearance
 - Temp— > 36.5
 - SBP adequate— >100mmHg

- Brain death declaration
 - Family present helps—having family present has been shown to increase the consent rate
 - Improves understanding and acceptance
 - Allows them ability to visualize absence of function
 - Talk them thru the testing
 - Educate about spinal reflexes
 - Explain the steps of the exam

- Brain death declaration
 - Corneal: no blink in response to stimuli
 - Pupil: no constriction with light
 - Doll's Eye: brain death, eyes move with nose. Non-brain dead, the eyes move opposite of direction of head turn/stay fixed on ceiling
 - Gag: No gag with pharyngeal stimulation
 - Cough: No cough with deep suctioning

- Brain death declaration
 - Occulovestibular—there is no fast-twitch eye movement with temp stimulation of vestibule
 - 50cc in each ear
 - Head of bed 30 degrees
 - COWS
 - Watch for response up to 1 minute per ear

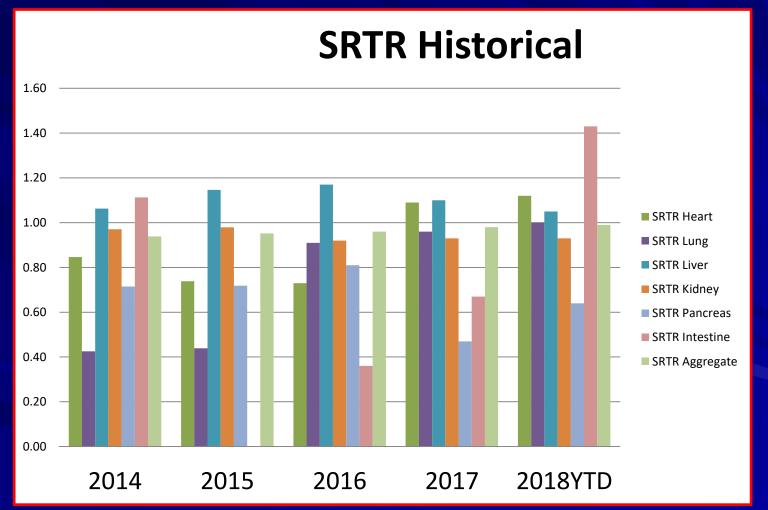
- Brain death declaration
 - Apnea:
 - Disconnect from vent; tubing with O2 flow distal in trachea
 - Serial ABG to eval for increase in CO2 by 20
 - Absence of any attempt for breath
 - Keys:
 - Hemodynamic support in place/avail
 - If hypovolemia, 500-1000cc prior to exam
 - Preoxygenate 5-10 min
 - Tube size


Donor Management and Successes

- Exciting time at Legacy of Hope
 - Referrals on increase
 - Conversion has been increasing
 - Opportunities to standardize brain death declaration
 - Opportunities to talk around the state

Donor Management and Success

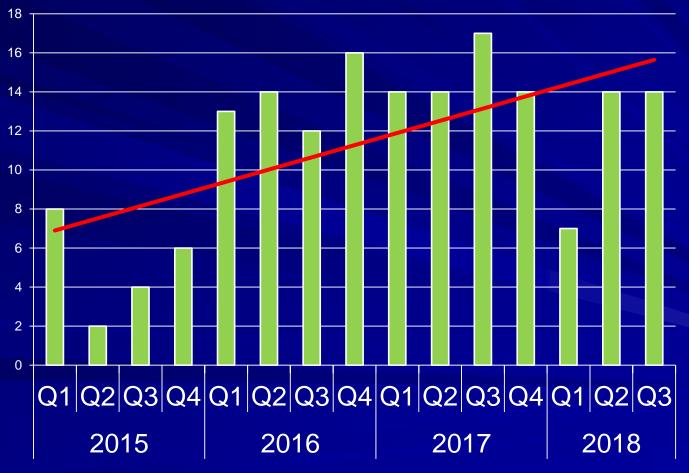
Organ Donors – 4 Year Comparison



Donor Management and Success

Organs Transplanted - 4-Year 160 Comparison 140 120 100 80 60 40 20 0 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 2015 2016 2017 2018 DONA

DONATE


Donor Management and Success

- Started in 2015, SRTR 0.3 for lungs
 - Only used 30% of lungs predicted to be able to use
- 2016 2017: lungs increased for 19 used to 56 used
- SRTR for this year > 1 for lungs

- Challenges faced:
 - Edema—neurogenic and cardiogenic
 - Plugging
 - Aspiration
 - Trauma
- Means to Overcome challenges:
 - Slow the flow:
 - Law of LaPlace
 - Early and frequent bronchoscopies

- Means to overcome challenges
 - Prone positioning
 - Optimal PEEP to maintain alveoli open
 - Anti-Inflammation regimen
 - Accurate In/Out balance for timing of diuresis

- Cardiac
 - SRTR 0.72 in 2015
 - In 2017 pursued our cardiac recruitment
 - 2017- 2018, more than doubled number of hearts
 - For 2019, cardiac SRTR approx 1.2

Cardiac

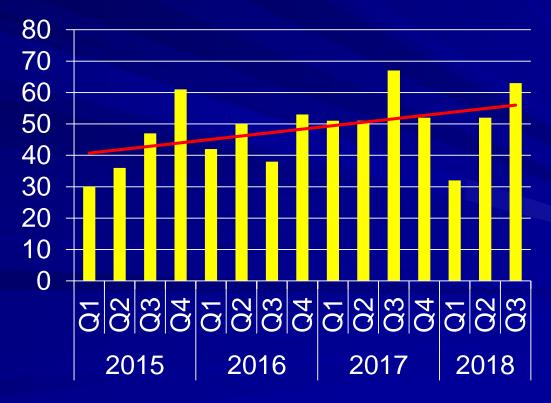
- Cardiac
 - Challenges Faced:
 - CADz
 - LVH
 - Dysfunction: EF 20-35%
 - Males 18-30 and females > 50
 - Neurogenic Myocardial stunning
 - Reverse Takotsubo pattern
 - Catechol driven process

Cardiac

- In 2017, initiated an estrogen regimen along with our other hormone replacement
 - Steroids
 - Insulin / Glucose
 - Thyroid replacement
 - Estrogen
 - Optimize volume status

Liver

- Very good utilization rate
 - Aggressive centers in this region
- Challenges to organ utilization
 - Hep C
 - Fatty liver / cirrhosis
 - Hypernatremia
 - Reperfusion injury



Liver

- Means to overcome challenges
 - Hep C treatment
 - Hypernatremia
 - Hypotonic fluid
 - Vasopressin to prevent DI
 - Reperfusion injury
 - Dextrose containing fluid
 - Most donors NPO last few days
 - Glycogen depleted
 - Cells have no glucose reserve →develop acidosis

Renal

 Despite increasing number of kidneys placed last few years, trend lower than other organs

- Renal
 - Challenges to organ utilization
 - ATN
 - Hypotension experienced by donors
 - Code time
 - Contrast from imaging
 - Hypovolemia due to DI
 - Microthrombosis in setting of GSW head

Renal

- Means to overcome challenges
 - Can't reverse ATN, but need to prevent further insults
 - Hypothermia protocol
 - Niemann, NEJM, 2015
 - Study ended early due to benefit in hypothermia group
 - Decrease delayed graft function $39\% \rightarrow 28\%$
 - Dopamine
 - Am J of Transplantation 2004, improved 1 year graft function
 - Am J of Transplantion 2017

Renal

- Means to overcome the challenges
 - Microthrombosis
 - Pulled data of early 2018—cases we missed kidneys, many had microthrombosis present (even 13 yo)
 - Most had breach blood brain barrier
 - Most with parameters of DIC
 - Began Heparin protocol—flat rate (500u/hr)
 - Breached blood brain barrier
 - Sudden drops in platelet
 - Elevated DIC labs

Extending the Gift of the Donor

- The need is great—You can help
 - Increase referral
 - Improve usable organs
 - Good care helps
 - CBIG's
 - Improve family consent
 - Present for brain death exam
 - Don't pre-approach
 - Improve organ function
 - Understanding physiology, better support the donor

Extending the Gift of the Donor

Questions

