

Short method for belt selection

The actual motor horsepower should be used in the formula below to determine the maximum tension that could affect the belt.
To use this method we must have all of the information given in the sample problem below:

Known data

Belt width - $42^{\prime \prime}$
Material - $10^{\prime \prime}$ limestone - 100 pcf 4 ft . drop at load point
Capacity - 1500 tons per hour

Speed - 400 ft . per minute (if unknown, calculate speed as explained on page 29 .
Motor - 100 horsepower
Single pulley drive, lagged and snubbed (210° wrap).
Gravity takeup
Vulcanized splice
Pulley diameters - $24^{\prime \prime}$ head $20^{\prime \prime}$ tail $18^{\prime \prime}$ takeup
Note: assume total gear, belt, or roller chain reduction losses equal 10%. Horsepower to drive pulley therefore equals 0.90 x motor horsepower.

Formula and Application	Source of Information
Effective tension (T_{E}) $\begin{aligned} \mathrm{TE} & =\frac{0.90 \times \text { Motor HP } \times 33000}{\text { Belt Speed }} \\ & =\frac{0.90 \times 100 \times 33000}{400} \\ & =7425 \mathrm{lb} . \end{aligned}$	```Motor HP = 100 Speed = 400 ft. per min.```
$\begin{aligned} & \text { Slack side tension (} \left.T_{2}\right) \\ & \begin{aligned} T_{2} & =K T_{E} \\ & =0.38 \times 7425 \\ & =2822 \mathrm{lb} . \end{aligned} \end{aligned}$	$\mathrm{K}($ Table 2, Pg. 13) $=0.38$
Tight side tension (operating tension) T . $\begin{aligned} T_{1} & =T_{E}+T_{2} \\ & =7435+2822 \\ & =10247 \mathrm{lb} . \end{aligned}$	
Unit operating tension (TU) $\begin{aligned} T u & =\frac{T_{1}}{\text { Belt width }} \\ & =\frac{10247}{42} \\ & =244 \mathrm{lb} \cdot \text { per inch belt width } \end{aligned}$	Belt width (given data) 42"

