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Abstract: Let G be a graph of minimum degree at least 2 with no in-
duced subgraph isomorphic to K1,6. We prove that if G is not isomorphic to
one of eight exceptional graphs, then it is possible to assign two-element
subsets of {1, 2, 3, 4, 5} to the vertices of G in such a way that for every
i ∈ {1, 2, 3, 4, 5} and every vertex v ∈ V (G) the label i is assigned to v or
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one of its neighbors. It follows that G has fractional domatic number at least
5/2. This is motivated by a problem in robotics and generalizes a result of
Fujita, Yamashita, and Kameda who proved that the same conclusion holds
for all 3-regular graphs. C© 2015 Wiley Periodicals, Inc. J. Graph Theory 00: 1–17, 2015
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1. INTRODUCTION

The problem under consideration in this article is motivated by a problem encountered
both in the multiagent robotics and mobile sensor networks domains. Common to both
of these two application areas is a collection of agents that are equipped with sensors of
various types, used for tasks such as environmental modeling, exploration of unknown
terrains, surveillance of remote locations, and the establishment of sensor coverage for the
purpose of event detection. Due to the scale of the multirobot network, the agents have to
act based on locally available information, and under various such distributed coordinated
schemes, for example, [1], the robots interact and communicate with each other in order
to gain the information needed to make informed decisions. These interactions, in turn,
define an information exchange network that allows us to model the agents as vertices and
information exchange channels as edges in a graph. The interagent interactions moreover
allow the agents to complement each others’ resources and capabilities; thus enhancing
the collective functionality of the system. As a result, the underlying network topology of
multirobot networks plays a crucial role in achieving the system level objectives within
the network in a distributed manner.

As an example, consider an application in which a group of robots is deployed at some
remote location for the purpose of environmental monitoring. Each robot needs to obtain
information about s different sensing modalities (e.g., temperature, humidity, barometric
pressure, and so on). However, owing to certain constraints such as power limitations and
hardware footprints, an individual robot can have a maximum of r < s sensors installed
on it. As a result, the robots need to collect data concerning the remaining s − r sensing
modalities from neighboring robots through the information exchange network. In other
words, for every robot v and every type of sensor, either v or one of its neighboring robots
must carry a sensor of that type.

As already stated, the multirobot network can be modeled as a graph G, in which the
vertex set represents robots, and the edges correspond to the interactions among robots.
Typically, a robot may transmit data to other robots lying within a certain Euclidean
distance, say R, away from it. Thus, an edge is formed between nodes v and u whenever
‖v − u‖ ≤ R. This results in an R-disk proximity graph model of the network, which
is the typical model employed when studying multirobot networks. As such, any graph
class under consideration must be rich enough to capture this model for it to be relevant
to robotics. In such a graph, a disk of radius R, which represents the transmission or
interaction range of the node, is associated with every node v that lies at the center of
the disk. An edge exists between v and all such nodes that lie within the disk of u.
R-disk graphs are one of the most frequently used models for the analysis of the network
topology related aspects of multirobot systems, wireless sensor networks, and other ad
hoc networks (e.g., see [5]). R-disk graphs are geometric graphs as the existence of
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edges between vertices depends on the geometric configuration of vertices. However, the
geometric property of such graphs can be translated into a graph-theoretic one. In fact, it
can be shown that R-disk graphs are indeed K1,6-free, and this key observation motivates
the study of K1,6-free graphs in multiagent robotics.

In this article, we study what is the maximum number of sensors that can be accom-
modated in a multirobot network if each robot can have at most two types of sensors. Our
main result states that under some mild conditions, it is possible to assign two distinct
labels to each vertex in a K1,6-free graph such that a set of five distinct labels always exist
in the closed neighborhood of every vertex in G.

The same problem arises in various situations of locating facilities in a network. Let
us assume that every vertex of a graph can access only resources located at neighboring
vertices or at the vertex itself. Now if some resource (such as a file, a printer, or other
service) must be accessible from every vertex of the graph, then copies of that resource
need to be distributed over the network to form a “dominating set.” If every vertex of
the graph has the capacity to accommodate at most r distinct resources, then asking for
the maximum number of resources that can be made available to every vertex of the graph
leads to the same mathematical question as the problem of the previous paragraph.

Let us be more precise now. By a graph we mean a finite, simple, undirected graph;
that is, loops and parallel edges are not allowed. For a vertex v of a graph G, we denote
the set of neighbors of v by N(v), and define N[v], the closed neighborhood of v, to be
N(v) ∪ {v}. Let r ≥ 1 be an integer. Let f be a function that maps the vertices of G to
r-element subsets of some set X . We define R( f ) to be the union of f (v) over all vertices
v of G. Following [4], we say that f is an r-configuration on G if for every x ∈ R( f ) and
every vertex v ∈ V (G) we have x ∈ f (u) for some u ∈ N[v]. We define Dr(G) to be the
maximum of |R( f )| over all r-configurations on G. Thus, given a graph G and integer
r ≥ 1 the problems of the previous two paragraphs ask for the value of Dr(G) .

The parameter D1(G) is known in the literature as the domatic number of G. It
was introduced by Cockayne and Hedetniemi [2] and has since then been the subject
of a large number of publications. Obviously D1(G) is at most the minimum degree
of G plus one, but testing whether D1(G) ≥ k is NP-complete for all k ≥ 3. (Testing
D1(G) ≥ 2 is easy, because D1(G) ≥ 2 if and only if G has no isolated vertex.) A (1 +
o(1)) ln n-approximation algorithm for D1(G) was found by Feige, Halldórsson, Kortsarz,
and Srinivasan [3], who also showed that their approximation factor is essentially best
possible.

Fujita, Yamashita, and Kameda proved in [4] that D2(G) ≥ 5 for all 3-regular graphs.
The purpose of this article is to generalize their result to a larger class of graphs, as
follows. We denote the cycle on n vertices by Cn. By C4 · C4 we mean the graph obtained
from two disjoint cycles on four vertices by identifying a vertex in the first cycle with
a vertex in the second cycle. We denote by G1, G2, G3, and G4 the graphs shown in
Figure 1.

Theorem 1. Let G be a graph of minimum degree at least 2 with no induced subgraph
isomorphic to K1,6. If no component of G is isomorphic to a member of {C4,C7,C4 ·
C4, K2,3, Gi : 1 ≤ i ≤ 4}, then D2(G) ≥ 5.

As stated earlier, the generalization to K1,6-free graphs is of interest in multiagent
robotics, because the class of K1,6-free graphs includes the class of R-disk graphs. For the
sake of brevity, let us define a configuration on a graph G to mean a 2-configuration f with
R( f ) = {1, 2, 3, 4, 5}. Thus, the conclusion of Theorem 1 is equivalent to saying that G
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G1 G2 G3 G4

FIGURE 1. Graphs G1, G2, G3, and G4.

has a configuration. Our proof is algorithmic and gives a polynomial-time algorithm to
find a configuration. We say that a graph G is configurable if it admits a configuration.
Theorem 1 has the following two corollaries.

Corollary 2. If G is a connected graph of minimum degree at least 2 with no induced
subgraph isomorphic to K1,6, and G is not isomorphic to a member of {C4,C7,C4 ·
C4, K2,3, Gi : 1 ≤ i ≤ 4}, then for any positive integer r, Dr(G) ≥ 	5r/2
.

Proof. Since G has no isolated vertex, we have D1(G) ≥ 1. Thus G has a 1-
configuration h with R(h) = {1, 2}. By Theorem 1 the graph G has a configuration,
say f . For v ∈ V (G) we define g(v) to be the set of all pairs (i, j), where i ∈ f (v)

and j ∈ {1, 2, . . . , 	r/2
}, and let g ′(v) := g(v) ∪ h(v). If r is even, then g is an r-
configuration with |R(g)| = 5r/2, and if r is odd, then g ′ is an r-configuration with
|R(g′)| = 5(r − 1)/2 + 2 = 	5r/2
, as desired. �

In the context of R-disk graphs, which are widely used to model inter-communication
and information exchange among nodes in multirobot and wireless sensor networks, we
can restate the above result using the fact that R-disk graphs are always K1,6-free, and
can never be isomorphic to K2,3, as shown in [7].

Corollary 3. If G is a connected R-disk graph of minimum degree at least 2, and
G is not isomorphic to a member of {C4,C7,C4 · C4, K2,3, Gi : 1 ≤ i ≤ 4}, then for any
positive integer r, Dr(G) ≥ 	5r/2
.

The fractional domatic number of a graph G, introduced in [6], is the supremum of
a/b such that G has a b-configuration f with |R( f )| = a. This is the optimum of the LP
relaxation of the domatic number problem, and that justifies the name. It follows that the
supremum is attained. Theorem 1 implies that every graph that satisfies the hypotheses
of the theorem has fractional domatic number at least 5/2.

The article is organized as follows. In Section 2, we prove some lemmas about extend-
ing a configuration from a subgraph of a graph. In section 3, we prove the main theorem
under the additional hypothesis that no two vertices of degree at least 3 are adjacent. In
section 4 we prove the main theorem and give two examples that show limitations to
possible extensions.

2. PRELIMINARY LEMMAS

An (α, β)-star is the graph obtained by identifying one end of each of α paths of length 1
and β paths of length 2. In other words, the vertex-set may be labeled {w, xi, y j, z j : 1 ≤
i ≤ α, 1 ≤ j ≤ β} so that the edge-set is {wxi, wyj, y jz j : 1 ≤ i ≤ α, 1 ≤ j ≤ β}. Note
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that an (α, 0)-star is isomorphic to K1,α . We denote by [5]2 the set of all two-element
subsets of {1, 2, 3, 4, 5}. If G is a graph, f : V (G) → [5]2, and v ∈ V (G), then we say
that v is satisfied with respect to f if

⋃
u∈N[v] f (u) = {1, 2, 3, 4, 5}. When there is no

danger of confusion we will omit the reference to f .

Lemma 4. Let v1v2v3v4 be a path of length 3, and f : {v1, v4} → [5]2 with f (v1) ∩
f (v4) nonempty. If a, b ∈ {1, 2, 3, 4, 5} \ f (v1), then f can be extended to {v1, v2, v3, v4}
in such a way that v2 and v3 are satisfied and f (v2) = {a, b}.

Proof. Without loss of generality, f (v1) = {1, 2}, 1 ∈ f (v4), and f (v2) = {a, b} =
{3, 4}. Then, setting f (v3) = {2, 5} completes the proof. �

Lemma 5. Let H and S be disjoint subgraphs of a graph G, and let α, β ≥ 0 be integers
such that either α + 3β ≤ 9 or (α, β) = (1, 3). Let H be configurable and let S be either
a path of length at least two or an (α, β)-star. If every vertex of S of degree 1 is adjacent
to some vertex of H, then the subgraph of G induced by V (H) ∪ V (S) is configurable.

Proof. Let f be a configuration on H. First, suppose that S = v1v2...vk is a path of
length at least 2 (so k ≥ 3), and that the ends of S are adjacent to vertices x and y of H. Note
that x and y may be the same vertex. There are three cases depending on the cardinality of
f (x) ∩ f (y) and three cases depending on the residue of k modulo three. Without loss of
generality we may assume that f (x) = f (y) = {1, 2}, or f (x) = {1, 2} and f (y) = {1, 3},
or f (x) = {1, 2} and f (y) = {3, 4}. Then f can be extended to V (H) ∪ V (S) according
to the following table, where t runs from 1 through 	k/3
 − 1.

k (mod 3) f (x ) f (v3t+1) f (v3t+2) f (v3t+3) f (vk−1) f (vk ) f (y )

0 {1, 2} {1,3} {4,5} {2,3} x x {1,2}
0 {1, 2} {3,4} {1,5} {2,4} x x {1,3}
0 {1, 2} {3,4} {1,5} {1,2} x x {3,4}
1 {1, 2} {3,4} {1,5} {2,5} x {3,4} {1,2}
1 {1, 2} {3,4} {1,5} {2,5} x {3,4} {1,3}
1 {1, 2} {3,5} {1,4} {1,2} x {3,5} {3,4}
2 {1, 2} {3,4} {1,5} {1,2} {3,4} {1,5} {1,2}
2 {1, 2} {3,4} {2,5} {1,2} {3,4} {2,5} {1,3}
2 {1, 2} {3,4} {1,5} {2,4} {1,3} {2,5} {3,4}

Now we assume that S is a (α, β)-star, where α + β ≥ 3, α + 3β ≤ 9, or (α, β) =
(1, 3). Let V (S) = {w, xi, y j, z j : 1 ≤ i ≤ α, 1 ≤ j ≤ β}, E(S) = {wxi, wyj, y jz j : 1 ≤
i ≤ α, 1 ≤ j ≤ β}, and xi is adjacent to ui, where ui is in H, for all 1 ≤ i ≤ α, and
z j is adjacent to v j, where v j is in H, for all 1 ≤ i ≤ β.

We say that ui forbids the set f (ui) and that v j forbids the three 2-element subsets of
[5] − f (v j). We claim that there is an element of [5]2 that is not forbidden by any ui

or v j. Indeed, this is clear if α + 3β ≤ 9. But if β = 3, then the vertices v1, v2, and v3

collectively forbid at most eight sets, and hence the claim holds even when α = 1 and
β = 3. We define f (w) to be an element of [5]2 that is not forbidden by any ui or v j.
Furthermore, if β = 0 and | ⋃α

i=1 f (ui)| ≤ 3, then we choose f (w) disjoint from every
f (ui).
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If β ≥ 1, then we choose f (xi), f (y j), and f (z j) for i = 1, 2, . . . , α and j =
1, 2, . . . , β − 1 in such a way that the vertices xi, y j, and z j are satisfied. Then w sees at
least three values under f since any neighbor of w already assigned a value does not have
the exact same assignment as w. So by Lemma 4 applied to the path wyβzβvβ we can
assign f (yβ ) and f (zβ ) in such a way that yβ, zβ , and w are satisfied. This completes the
case β ≥ 1.

So we may assume β = 0. We assign f (xi) for i = 1, 2, . . . , α such that xi is satisfied,
f (xi) ∩ f (w) = ∅, and, if possible, not all f (xi) are the same. Then w is satisfied, unless
the sets f (xi) are all equal, and so from the symmetry we may assume that f (w) = {1, 2}
and f (xi) = {3, 4} for all i = 1, 2, . . . , α. But then the choice of f (xi) implies that
f (ui) ⊆ {1, 2, 5}, contrary to the choice of f (w). �
Lemma 6. Let G be a graph, and let P = xv1v2v3y be a path in G. If x is adjacent to y,
then let H := G\{v1, v2, v3}; otherwise let H be the graph obtained from G\{v1, v2, v3}
by adding the edge xy. If H is configurable, then G is configurable.

Proof. Let f be a configuration on H. We shall extend f to V (G). If f (x) = f (y), say
f (x) = {1, 2}, then H \ xy is also configurable, so we can extend f to V (G) by Lemma
5. So we may assume that f (x) �= f (y); that is, | f (x) ∪ f (y)| ≥ 3. Define g : V (G) →
[5]2 by g(v1) = f (y), g(v3) = f (x), let g(v2) be a 2-element subset of [5]2 containing
{1, 2, 3, 4, 5} \ ( f (x) ∪ f (y)), and let g(v) = f (v) for all v ∈ V (G) \ {v1, v2, v3}. Then
it is clear that g is a configuration on G. �

Let G be a graph and v a vertex of G. Let f be a function mapping V (G) to [5]2 and
c ∈ [5]. Then we say that v is missing c if c �∈ ⋃

u∈N[v] f (u).

Lemma 7. Let H be C4, C7, or a configurable graph, and let u0 be a ver-
tex of H. Let G be a graph, where V (G) = V (H) ∪ {ui, wj : 1 ≤ i ≤ k, 1 ≤ j ≤ m}
and E(G) = E(H) ∪ {uiui+1, ukw1, wjwj+1, wmw1 : 0 ≤ i ≤ k − 1, 1 ≤ j ≤ m − 1} for
some nonnegative integer k and integer m with m ≥ 3. Then G is configurable.

Proof. By Lemma 6 we may assume that k = 0, 1, or 2. Let C be the cycle
w1w2...wmw1. Since H is C4, C7, or a configurable graph, we may satisfy every ver-
tex of H except possibly u0 and u0 is missing at most two colors. So we may assume
f (u0) = {1, 2} and that u0 is missing 3 and 4. Similarly we may choose f on C in such a
way that every vertex of C except possibly w1 is satisfied, and that w1 is missing at most
two colors.

If k = 0 we choose f on C so that f (w1) = {3, 4} and the colors missing at w1 are 1
and 2. If k = 1, we choose f on C so that f (w1) = {2, 5} and the colors missing at w1 are
3 and 4. We set f (u1) = {3, 4}. Finally, if k = 2, we choose f on C so that f (w1) = {2, 3}
and the colors missing at w1 are 1 and 5. We set f (u1) = {3, 4} and f (u2) = {1, 5}. �
Lemma 8. Let H be a configurable graph, and let f be a configuration on G. If G is
obtained from H by either

� adding a vertex v and two edges vx and vy to H, where x, y are vertices of H and
f (x) �= f (y), or

� adding two vertices u and v and three edges xu, uv, and vy to H, where xand y are
vertices of H and f (x) ∩ f (y) �= ∅,

then f can be extended to G.

Proof. This is easy to verify. �

Journal of Graph Theory DOI 10.1002/jgt
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A graph G is said to be obtained from a graph H by attaching a path P if G is obtained
from the disjoint union of H and P by adding two edges v1x and vky, where v1 and vk

are the ends of P, and x and y are vertices of H. A graph G is said to be obtained from
a graph H by adding a path P if G is obtained from the disjoint union of H and P by
identifying one end of P and x and identifying the other end of P and y, where x and y
are distinct vertices of H.

Lemma 9. Let C be a cycle of length of 5 or 6. If G is obtained from C by adding a
path of length 2 or 3 between two nonadjacent vertices in C, then G is configurable.

Proof. Let C = v1v2...vkv1, and P be the path in G \ C where the end of P is adjacent
to vertices u and v of C in G. If C is C5, then we define a function f : V (C) → [5]2 by
f (vi) = {i, i + 3} for each i = 1, 2, 3, 4, 5, where the addition is modulo five. If C is
C6, then define f (v1) = {1, 3}, f (v2) = {2, 4}, f (v3) = {1, 5}, f (v4) = {2, 3}, f (v5) =
{1, 4}, f (v6) = {2, 5}. So f (x) �= f (y) for all distinct vertices x and y in C, and f (x) ∩
f (y) �= ∅ for all nonadjacent two vertices x and y in C. Hence f can be extended to G by
Lemma 8 since P is a path on one or two vertices. �

Lemma 10. Let x and y be vertices of a configurable graph H, let C = v1v2...v5v1

be a cycle of length 5, and let P = u1u2...up and Q = w1w2...wq be paths, where
p, q ∈ {1, 2}. Assume that H,C, P, and Q are pairwise disjoint. If G is the graph with
V (G) = V (H) ∪ V (C) ∪ V (P) ∪ V (Q) and E(G) = E(H) ∪ E(C) ∪ E(P) ∪ E(Q) ∪
{xu1, upv1, yw1, wqv3}, then G is configurable.

Proof. Let f be a configuration on H. We shall extend f to G. If f (x) ∩ f (y)

is nonempty, say 1 ∈ f (x) ∩ f (y), then let a and b are two distinct numbers in
{1, 2, 3, 4, 5} \ ( f (x) ∪ f (y)), and define f (v1) = {1, a} and f (v3) = {1, b}. If f (x) is
disjoint from f (y), say f (x) = {1, 2} and f (y) = {3, 4}, then define f (v1) = {1, 3} and
f (v3) = {1, 4}. Without loss of generality, we may assume that a = 3 and b = 4. Then
we further define f (v2) = {2, 5}, f (v4) = {3, 5}, and f (v5) = {2, 4} so that every vertex
of C is satisfied. By Lemma 8, there is a way to define f on V (P) ∪ V (Q) such that f is
a configuration on G. �

Let us recall that the graph C4 · C4 was defined in Section 1.

Lemma 11. Let G be a graph obtained by attaching a path P = v1v2...vk to a cycle C
with v1 adjacent to x and vk adjacent to y, for some vertices x and y in C, where k ≥ 3. If
G is not isomorphic to C4 · C4 or G1, then G is configurable.

Proof. If x is adjacent to y in C, then G is a cycle with a chord. So G is configurable
when the cycle has length not 4 or 7. It is easy to check that G is configurable when the
cycle has length 4. And since G is not isomorphic to G1, G is also configurable when the
cycle has length 7 by Lemma 9. So we may assume that x is not adjacent to y in C. In
other words, either x equals y, or x and y are nonadjacent.

If the length of C is not 4 or 7, then this lemma follows directly from Lemma 5. So
we may assume that the length of C = u1u2...u|C|u1 is 4 or 7. Also, we may assume that
3 ≤ k ≤ 5 by Lemma 6. Without loss of generality, we assume that x = u1.

Case 1: C = C4 and x = y. Then k = 4 or 5 since G is not isomorphic to C4 · C4. So G is
isomorphic to the graph obtained by attaching a path of order 3 to C5 or C6, and
hence G is configurable by Lemma 5.

Journal of Graph Theory DOI 10.1002/jgt
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Case 2: C = C4 and x �= y. We may assume that y = u3. If k = 3 or 5, then
u1v1v2...vku3u2u1 is a cycle of length 6 or 8, so it is configurable, and there
is a configuration f on it. Then we can extend f to G by assigning that
f (u3) = f (u1), so G is configurable. If k = 4, then we define a configuration on
G by f (u1) = {1, 2}, f (u2) = {3, 5}, f (u3) = {3, 4}, f (u4) = {2, 5}, f (v1) =
{1, 4}, f (v2) = {3, 5}, f (v3) = {2, 5}, andf (v4) = {1, 4}.

Case 3: C = C7 and x = y. We may assume that x = y = u1. If k = 4 or 5, then G
is isomorphic to the graph obtained by attaching a path of order 6 to C5

or C6, so G is configurable by Lemma 5. If k = 3, then we can define a
configuration on G by f (u1) = {1, 2}, f (u2) = {3, 4}, f (u3) = {1, 5}, f (u4) =
{2, 3}, f (u5) = {1, 4}, f (u6) = {2, 5}, f (u7) = {3, 4}, f (v1) = {1, 5}, f (v2) =
{3, 4}, andf (v3) = {2, 5}.

Case 4: C = C7, x = u1, and y = u6. If k = 3 or 5, then G is isomorphic to the graph ob-
tained by attaching a path of order 4 to C6 or C8, so G is configurable by Lemma
5. If k = 4, then we can define a configuration on G by f (u1) = {1, 2}, f (u2) =
{3, 4}, f (u3) = {3, 5}, f (u4) = {1, 2}, f (u5) = {4, 5}, f (u6) = {3, 4}, f (u7) =
{3, 5}, f (v1) = {1, 5}, f (v2) = {3, 4}, f (v3) = {2, 5}, andf (v4) = {1, 2}.

Case 5: C = C7, x = u1, and y = u5. If k = 4 or 5, then G is isomorphic to the graph
obtained by attaching a path of order 3 to C8 or C9, so G is configurable
by Lemma 5. If k = 4, then we can define a configuration on G by f (u1) =
{1, 2}, f (u2) = {1, 3}, f (u3) = {4, 5}, f (u4) = {2, 3}, f (u5) = {1, 2}, f (u6) =
{4, 5}, f (u7) = {3, 4}, f (v1) = {1, 5}, f (v2) = {3, 4}, and f (v3) = {2, 5}. �

Lemma 12. The graph K2,4 is configurable.

Proof. Let V (K2,4) = {x1, x2, y1, y2, y3, y4}, E(K2,4) = {xiy j : 1 ≤ i ≤ 2, 1 ≤ j ≤
4}. We define a configuration on K2,4 by f (x1) = {1, 2}, f (x2) = {3, 4}, f (y1) =
{3, 5}, f (y2) = {4, 5}, f (y3) = {1, 5}, andf (y4) = {2, 5}. �

Lemma 13. If a graph G is obtained from C4 · C4 or K2,3 by attaching a path, then G
is configurable.

Proof. First, we assume that G obtained from C4 · C4 by attaching a path v1v2...vk,
where v1 is adjacent to x and vk is adjacent to y for some vertices x and y in C4 · C4. We
write the vertex set of C4 · C4 as {u1, u2, u3, v, w1, w2, w3}, where vu1u2u3v and vw1w2w3v
are the two cycles in C4 · C4.

Case 1: x = y. By Lemma 6, we may assume that k = 2, 3, or 4. If x = y = u1,
then G can be obtained from C3 or C5 by consecutively attaching a path of
order 3 when k = 2 or 4, and G has a spanning subgraph that is obtained
from two disjoint C4s by attaching a path of order 2 when k = 4, so G is
configurable by Lemma 5 and Lemma 7. Similarly, G is configurable if
both x and y are u3, w1, or w3. If x = y = v2 and k = 2 or 4, then G can
be obtained from C3 or C5 by consecutively attaching a path of order 3, so
G is configurable by Lemma 5. If x = y = u2 and k = 3, then we define a
configuration on G as f (v) = {3, 4}, f (w1) = {1, 3}, f (w2) = {2, 5}, f (w3) =
{1, 4}, f (u1) = {4, 5}, f (u2) = {1, 2}, f (u3) = {2, 5}, f (v1) = {1, 3}, f (v2) =
{4, 5}, andf (v3) = {2, 3}. Similarly, G is configurable if x = y = w2. If
x = y = v and k = 2 or 4, then G can be obtained from C3 or C5

by consecutively attaching a path of order 3. If x = y = v and k = 3,
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then we define a configuration by f (v) = {1, 2}, f (u1) = {1, 3}, f (u2) =
{4, 5}, f (u3) = {2, 3}, f (v1) = {1, 4}, f (v2) = {3, 5}, f (v3) = {2, 4}, f (w1) =
{1, 5}, f (w2) = {3, 4}, andf (w3) = {2, 5}.

Case 2: x �= y. By Lemma 6, we may assume that k = 0, 1, 2. When k = 0, G is
obtained by adding an edge xy to C4 · C4, and it is easy to show that G
is configurable. When k = 1, x = v, and y = u2, then define a configuration
on G by f (v) = {1, 2}, f (u1) = {4, 5}, f (u2) = {3, 4}, f (u3) = {1, 5}, f (v1) =
{2, 5}, f (w1) = {1, 3}, f (w2) = {4, 5}, and f (w3) = {2, 3}. Similarly, G is con-
figurable if k = 1, x = w1, and y = w3. When k = 1 and x and y are not the case
mentioned above, G has a spanning subgraph that is C8, or it can be obtained
from either C5 by attaching a path, two disjoint C4s by adding an edge, or C5 by
attaching paths of order 1 or 2, so G is configurable by Lemma 5, Lemma 7, and
Lemma 8.
Now, we assume that G obtained from K2,3 by attaching a path v1v2...vk, where v1

is adjacent to x and vk is adjacent to y for some vertices x and y inC4 · C4. We write
V (K2,3) = {u1, u2, w1, w2, w3} and E(K2,3) = {uiwj : i = 1, 2, j = 1, 2, 3}.

Case 3: x = y. By Lemma 6, we may assume that k = 2, 3, 4. Then G has a spanning
subgraph that is obtained from either C3 or C5 by attaching a (3, 0)-star, or
C4 · C4 by attaching a path, or a cycle by attaching a C4, so G is configurable by
Lemma 5, Lemma 7, Case 1, and Case 2.

Case 4: x �= y. By Lemma 6, we may assume that k = 0, 1, 2. If x = u1, y = u2, and
k = 0, then there is a configuration on G defined by f (u1) = {1, 2}, f (u2) =
{3, 4}, f (w1) = f (w2) = f (w3) = {1, 5}. For other cases, G contains a subgraph
that is isomorphic to K2,4 or C6, or it can be obtained from either C3 by attaching
a path of order three, C4 · C4 by adding an edge, C5 or C6 by attaching paths of
order one or two, so G is configurable by Lemma 5, Lemma 8, Lemma 12, Case
1, and Case 2. �

3. A SPECIAL CASE

For a vertex v of a graph G, we denote the degree of v by degG(v).

Lemma 14. For every graph G, there is an orientation of E(G) such that each vertex
v has indegree at least 	degG(v)/2
.

Proof. We proceed by induction on |V (G)| + |E(G)|. The lemma obviously holds
for the null graph. If v is an isolated vertex of G, then the lemma follows by induction
applied to G\v. If there is a vertex v in G of degree 1, then, letting u be the unique
neighbor of v, there is an orientation of G \ uv such that the indegree of each vertex
x is at least 	degG\{uv}(x)/2
 by the induction hypothesis, and then we can obtain a
desired orientation of G by orienting the edge uv from v to u. So we may assume that
G has minimum degree at least 2, and hence G contains a cycle C = v1v2...vkv1. By the
induction hypothesis, there is an orientation of G \ E(C) such that the indegree of each
vertex x is at least 	degG\E(C)/2
, and then we can obtain a desired orientation of G by
orienting the edges of C to form a directed cycle. This completes the proof. �

Note that the proof in Lemma 14 gives a linear-time algorithm to find such an orien-
tation.
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Lemma 15. Let H1 and H2 be graphs, let P be a path with at least one vertex, and let
v1 and v2 be vertices of H1 and H2, respectively. Let G be the graph formed by taking the
disjoint union of H1, H2, and P and identifying the first vertex of P with v1 and the last
vertex of P with v2. Assume that f1 and f2 are functions mapping V (H1) and V (H2) to
[5]2, respectively, and that for i = 1, 2 the function fi satisfies every vertex of Hi except
possibly vi. If | ⋃u∈N(v1) f1(u)| ≥ 4 and | ⋃u∈N(v2) f2(u)| ≥ 3, then G is configurable.

Proof. Let f ′ be the function defined to be f1 on H1 and f2 on H2. Then f ′ is a
configuration for G except possibly on v1 and v2 and P. Suppose |V (P)| ≤ 2. Then we
can permute the colors on f2 so that v1 and v2 are satisfied, so we are done. If |V (P)| = 3,
we may assume f (v1) = {1, 2} and v1 is not missing a number except possibly 3 and
f (v2) = {4, 5} and v2 is not missing a number other than possibly 3 and a number c. Then
we set f (u) = {c, 3} where u is the middle vertex of P. If |V (P)| = 4, we apply Lemma
4. If |V (P)| ≥ 5, we can reduce to one of the previous cases by applying Lemma 6. �
Lemma 16. Let G be a graph and v a vertex of G. If G is isomorphic to C4, then there
exists a function f : V (G) → [5]2 such that v is satisfied and |⋃u∈N[v] f (u)| ≥ 3. If G is
isomorphic to C7,C4 · C4 or K2,3, then there exists a function f : V (G) → [5]2 such that
v is satisfied and | ⋃u∈N[v] f (u)| ≥ 4.

Proof. This is easy to verify. �
We are now ready to prove an important special case of Theorem 1.

Lemma 17. Let G be a connected graph of maximum degree at most 5 and of minimum
degree at least 2 with no two vertices of degree at least 3 adjacent. If G is not C4, C7,
C4 · C4 or K2,3, then G is configurable.

Proof. Let n be the order of G. Suppose that G is a minimum counterexample; that is,
G is not configurable, but H is configurable for every graph H with |V (H)| + |E(H)| <

|V (G)| + |E(G)| that satisfies the conditions of the lemma.
We note first that we may assume G is 2-connected. Otherwise we apply Lemma 15,

noting that each of the forbidden graphs except C4 has the property that for every vertex
v, it admits a function f that satisfies every vertex except v and |⋃u∈N[v] f (u)| = 4 by
Lemma 16. Since both graphs can not be C4 (since C4 · C4 is forbidden and two C4s joined
by a path are prevented by Lemma 7), we are done.

The proof of this lemma is organized as follows. We first prove structure properties of
G in Claims 1–4. And the rest of the proof is dedicated to a construction of a configuration
function of G. It will lead to a contradiction.

Claim 1. G contains no C4s.

Proof of Claim 1. Suppose there is a cycle C = v1v2v3v4v1 of four vertices in G. If
there is only one vertex, say v1, in C of degree at least 3 in G, then it is a cut-vertex that
is impossible.

Hence there are two vertices in C of degree at least 3. We may assume that the two
vertices are v1 and v3. Let G′ = G \ {v2}. If G′ is configurable, then there is a configuration
f on G′, and we can extend f to G by assigning f (v2) = f (v4), contradicting the
assumption that G is not configurable. Note that G′ is a connected graph of maximum
degree at most 5 and of minimum degree at least 2 with no two vertices of degree at
least 3 adjacent. Since |V (G′)| + |E(G′)| < |V (G)| + |E(G)|, G′ is isomorphic to C4, C7,
C4 · C4 or K2,3. If G′ is isomorphic to C4, then G is isomorphic to K2,3. If G′ is isomorphic
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to C7, then G is isomorphic to a graph obtained from C4 by adding a path of length five,
so G is configurable by Lemma 11. If G′ is isomorphic to K2,3, then G is K2,4, and it is
configurable by Lemma 12. So G′ is isomorphic to C4 · C4. Since v4 is a vertex of degree
2 and it is a common neighbor of v1 and v3, we have that either v1 or v3 is the vertex of
degree 4 in C4 · C4. So G can be obtained from adding a path of length 4 to K2,3, so G is
configurable by Lemma 13. �
Claim 2. If P is a path whose ends are of degree at least 3 in G and whose internal
vertices are of degree 2 in G, then the number of internal vertices is at most 2.

Proof of Claim 2. If the number of internal vertices of P is at least four, then consider
the graph H that is obtained from G by replacing three consecutive degree 2 vertices in
P by an edge. If H is configurable, G is also configurable by Lemma 6. So H is C4, C7,
C4 · C4 or K2,3. But in this case, G can be obtained from C4 by attaching a path of order
at least 3, so G is configurable by Lemma 11. If the number of internal vertices of P
is three, then let H ′ be the graph obtained from P by deleting all internal vertices of P.
Again, G is configurable by Lemma 5 if H ′ is configurable. So H ′ is C4, C7, C4 · C4 or
K2,3. However, G is configurable by Lemma 11 and Lemma 13 in this case. �
Claim 3. There are no induced (α, β)-stars S in G, where α + β ≥ 3, and α + 3β ≤ 9
or (α, β) = (1, 3), such that G \ S has minimum degree at least 2.

Proof of Claim 3. Suppose there is an induced (α, β)-star S, where α + β ≥ 3,
and α + 3β ≤ 9 or (α, β) = (1, 3), such that G \ S has minimum degree at least 2.
Subject to this constraint, assume that α + β is as small as possible. Let G′ = G \ S, and
M1, M2, ..., Mk be components of G′. If every component of G′ is configurable, then G
is configurable by Lemma 5. So there is a component of G′ that is not configurable, and
hence this component is isomorphic to C4, C7, C4 · C4 or K2,3 by the minimality of G.
But G contains no C4s by Claim 1, so the component is isomorphic to C7. Without loss
of generality, we may assume that M1 is isomorphic to C7 and write M1 = v1v2...v7v1.

If M1 contains exactly one vertex of degree at least 3 in G, then G is configurable by
Lemma 7, a contradiction. If M1 contains exactly two vertices of degree at least 3 in G,
then there is a path of length at least 4 whose ends are of degree at least 3 in G and
whose internal vertices are of degree 2 in G, contradicting Claim 2. Hence there are three
vertices in M1 of degree at least 3 in G, and we may assume that they are v1, v3, and v5.
Furthermore, if all v1, v3, and v5 have degree at least 4 in G, then α + β ≥ 6. Since
α + 3β ≤ 9, we have that β ≤ 1 and G contains a C4, contradicting Claim 1. So at least
one of v1, v3, and v5, say x, has degree 3 in G. Note that there is an (α, β)-star with center
x and α + β = 3 such that the graph obtained from G by deleting this (α, β)-star is still
of minimum degree at least 2, so S must also have that α + β = 3 by the minimality
of α + β. So G′ is C7 as α + β = 3. In other words, (α, β) = (0, 3), (1, 2), (2, 1), or
(3, 0).

If (α, β) = (3, 0), then G can be obtained from C6 by attaching a (2, 1)-star, so
G is configurable by Lemma 5. So this is not a (3, 0)-star. If (α, β) = (0, 3), then
G is configurable since it can be obtained from C8 by attaching a (1, 2)-star. If
(α, β) = (1, 2), then G is configurable since G can be obtained from C8 by attaching
either a (2, 1)-star or (3, 0)-star. So (α, β) = (2, 1). Let V (S) = {a, b, c, d1, d2} and
E(S) = {ab, ac, ad1, d1d2}. If d2 is adjacent to v1 or v5, then G is configurable since it
can be obtained from C6 by attaching a (1, 2)-star. So d2 is adjacent to v3. Hence there is
a configuration on G defined as f (v1) = {1, 2}, f (v2) = {4, 5}, f (v3) = {1, 3}, f (v4) =
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{4, 5}, f (v5) = {1, 2}, f (v6) = {3, 4}, f (v7) = {3, 5}, f (a) = {1, 3}, f (b) = f (c) =
{4, 5}, f (d1) = {2, 5}, and f (d2) = {2, 4}. This proves Claim 3. �
Claim 4. G contains no C6 with exactly two vertices of degree at least 3 that are
diagonally opposite on the cycle.

Proof of Claim 4. Let C = v1v2...v6v1 be a cycle of order 6 with v1 and v4 the two
vertices of degree at least 3 in G. Since G has no adjacent vertices whose degrees are at
least 3, v5 and v6 have degree 2 in G. Let G′ be the graph obtained by deleting v5 and v6

from G, so G′ is a graph of minimum degree at least 2, maximum degree at most 5, and
there are no adjacent vertices whose degrees are at least 3. If G′ is not configurable, then
G′ is C4, C7, C4 · C4 or K2,3 by the minimality of G. However, G contains no C4s, so G′

is C7 and it contains at most two vertices whose degrees in G are at least 3. Hence, there
is a path of order at least 5 whose internal vertices are of degree 2, which contradicts to
Claim 2. Consequently, G′ is configurable and there is a configuration f on G′, and we
can extend f to G by defining f (v5) = f (v3) and f (v6) = f (v2). �

We now construct a configuration on G. Construct a graph H as follows: the vertices
of H are the vertices of degree at least 3 in G, and xy is an edge in H if x and y have a
common neighbor in G.

Claim 5. The maximum degree of H is at most 2.

Proof of Claim 5. Suppose there is a vertex x of degree at least 3 in H. Let x1, x2, ..., xk

be the vertices of degree at least 3 such that there exist x-xi paths of length 2 or 3. Then
the internal vertices of those x-xi paths together with x form an (α, β)-star S with α ≥ 3.
On the other hand, α + β is at most 5 since G is of maximum degree at most 5. So S is
an (α, β)-star with α + 3β ≤ 9. By Claim 3, G \ S is not of minimum degree at least 2.
So the degree of xi in G \ S is at most one, for some i = 1, 2, ..., k. Since G contains no
C4s and C6 with exactly two diagonal vertices of degree at least 3 in G, the degree of xi is
exactly 3. So there is an (α′, β ′)-star S′ centered at xi with α′ + 3β ′ ≤ 9 such that G \ S′

is of minimum degree 2 since α ≥ 3, which contradicts Claim 3. Hence, the maximum
degree of H is at most 2. �

By Claim 5, H is a disjoint union of isolated vertices, paths, and cycles. Let H2 be the
graph obtained by adding edges xy to H for each pair of two vertices x and y that have
distance exactly two between them in H, and then deleting multiple edges and loops. So
H2 has maximum degree at most 4. Let H ′ be the graph that is obtained by deleting an
edge that is in H2 but not in H from each component of H2 isomorphic to K5. Hence, H ′ is
4-colorable by Brooks’ theorem. Let c : V (H ′) → {1, 2, 3, 4} be a proper 4-coloring of
H ′ such that c(v) = 1 for each isolated vertex v in H. Note that H2 contains a component
that is isomorphic to K5 if and only if the component in H is isomorphic to C5.

Define a function f : V (H) → [5]2 as f (v) = {c(v), 5} for every vertex v in H. LetU be
the set of vertices u such that u is a common neighbor of two vertices of degree at least 3 in
G. Since no two vertices of degree at least 3 are adjacent, every vertex inU is of degree 2 in
G. Now, we shall extend f toV (H) ∪ U by defining f (u) = {1, 2, 3, 4, 5} \ ( f (x) ∪ f (y))

for each vertex u in U , where x and y are the two neighbors of u in G. Note that if
x and y are the two neighbors of a vertex u in U , then c(x) �= c(y) since H ′ contains all
edges in H, so | f (x) ∪ f (y)| = 3, and f is well-defined on V (H) ∪ U . It is clear that⋃

w∈N[u] f (u) = {1, 2, 3, 4, 5} for each u ∈ U . Furthermore, if v is a vertex with degree
at least 2 in H, and v is not in a component of H isomorphic to C5, then neighbors of v in
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H receive different colors under c, so u is satisfied. Similarly, for each component of H
that is isomorphic to C5, there is a vertex w such that | ⋃u∈N[w]∩(V (H)∪U ) f (u)| = 4 and
each other vertex is satisfied.

Let W be the set of vertices w that are not satisfied. So each vertex in W is either an
isolated vertex in H, an end of a maximal path in H, or a vertex in a component of H that
is isomorphic to C5. Let X = {w ∈ W : w is an isolated vertex in H}, and let Y be the set
W \ X . Notice that |⋃u∈N[w]∩(V (H)∪U ) f (u)| = 4 when w is in Y . Now, construct a graph
L, where V (L) is equal to V (H), and two vertices x and y in L are adjacent if there is a
x-y path of length 3 in G. Note that since no vertices of degree at least 3 are adjacent, the
internal vertices of every x-y path of length 3 in G are of degree 2 for each xy ∈ E(L).

Claim 6. If w is in X, then the degree of w in L is at least 4. If w is in Y , then the degree
of w in L is at least 2.

Proof of Claim 6. Let w be a vertex in X ∪ Y . Let x1, x2, ..., xk be vertices of
degree at least 3 in G such that there are w-xi paths in G of length two or three for each
i = 1, 2, ..., k. Then the internal vertices of those w-xi paths together with w form an
(α, β)-star S.

Suppose w ∈ X . Then α = 0 and there is at most one path between w and each xi

since otherwise we violate Claim 4. But then G\S has minimum degree 2, so by Claim
3, β ≥ 4, so the degree of w in L is at least 4.

Suppose w ∈ Y and that β ≤ 1. If w was not in a C5 in H, then α = 1, so the degree
of w is only 2. So we must have that w was in a C5 in H, so α = 2. Removing S must
create a vertex of degree 1 by Claim 3, say x1. So x1 must have degree 3 and be part of a
5-cycle D in G with w. Since w is in a C5 in H, G must have that x1 has a path of length
2 to another vertex of degree at least 3 in G and that the graph H ′ obtained from G by
removing D and the two degree 2 vertices that are adjacent to vertices of D is connected
and of minimum degree 2. If H ′ is configurable, then by Lemma 10, G would be as well,
so H ′ must be C7, which is impossible since it has at least one degree 3 vertex since G
has at least five degree 3 vertices since w is in a C5 in H. �

By Lemma 14, L then has an orientation in which each vertex of X has indegree at
least 2 and every vertex in Y has indegree at least 1. We use this to extend f to satisfy
every vertex in G. Each edge in L corresponds to a path of length 3, x, v1, v2, y in G
(where x is the tail of the edge in L). For each of these paths, let a and b be two colors not
in

⋃
u∈N(x) f (u) (if that many colors exist, otherwise arbitrarily add colors not in f (x)).

Then assign f (v1) = (a, b) and f (v2) as given by Lemma 4.
Clearly at the end of this process, each vertex of degree 2 is satisfied. Each vertex not

in X or Y was already satisfied. Each vertex in X was the tail of two edges in L, so it sees
up to four new colors, and so is certainly satisfied. Each vertex in Y was only missing at
most two colors, but was the tail of at least one edge in L, so it is now satisfied. �

4. MAIN THEOREM

We now prove Theorem 1, which we restate in equivalent form.

Theorem 18. If G is a connected graph of minimum degree at least 2 with no induced
subgraph isomorphic to K1,6, and G is not isomorphic to a member of {C4,C7,C4 ·
C4, K2,3, Gi : 1 ≤ i ≤ 4}, then G is configurable.
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Proof. We first prove the theorem for graphs on at most six vertices. It is easy to see
that the theorem holds if |V (G)| ≤ 4, so we assume that 5 ≤ |V (G)| ≤ 6. If G contains
C6, then C6 is a spanning subgraph of G. Since C6 is configurable, G is configurable. So
we may assume that G does not contain C6. If G contains C5, then G contains a spanning
subgraph that is obtained from C5 by attaching a path on one vertex. Since G does not
contain C6, G is configurable by Lemma 9. Hence, we may assume that the longest cycle
in G has length at most 4.

Assume that G contains C4. Since |V (G)| ≤ 6, G is 2-edge-connected. So G contains
a spanning subgraph that can be obtained from C4 by consecutively attaching paths. If
the first path we attached contains two vertices, then since G has no cycle of length
greater than 4, G contains a spanning subgraph that can be obtained from a triangle by
attaching a path on three vertices and hence is configurable by Lemma 11. If the first
path we attached has only one vertex, then since G does not contain C5, G contains a
spanning subgraph that can be obtained from a triangle by attaching two paths on one
vertex to different vertices or from K2,3 by attaching a path on one vertex, so we are done
by Lemmas 8 and 13.

Therefore, we may assume that every cycle in G is a triangle. If G is 2-edge-connected,
then G can be obtained from C3 by attaching a path on two vertices and hence is
configurable by Lemma 8. If G is not 2-edge-connected, then G contains two disjoint
triangles as a spanning subgraph, and hence G is configurable. This proves that the
theorem holds for graphs on at most six vertices.

We now proceed by induction on |V (G)| + |E(G)|. We have shown the theorem holds
for graphs on at most six vertices, so we may assume that the order of G is at least 7.

Suppose there is a vertex v of degree 2 in G such that v is in a C4 = vabcv with
degree of b also two. Note that Gi contains a spanning cycle of length 7 for 1 ≤ i ≤ 4.
Suppose that the degree of a is also 2. If c is not of degree 3, then G is obtained by
attaching a path on three vertices to a configurable graph or an exceptional graph, so G
is configurable by Lemmas 5, 11, and 13. If c is of degree 3, then G is obtained from a
C4 and a graph by attaching a path, where the ends of the path are adjacent to vertices in
different components. Then G is configurable by Lemmas 7 and 15. So we may assume
that a and c have degree at least 3.

So we consider G \ v. If it has a configuration f , then G is configurable since we may
extend f to V (G) by assigning f (v) = f (b). As the order of G is at least 7, G \ v is not
configurable only if G \ v is C4 · C4 or contains a spanning cycle of length 7. However,
it is not hard to see that if G \ v is C4 · C4 or contains a spanning cycle of length 7, then
G contains a spanning subgraph that can be obtained either from C4 · C4 by attaching a
path on one vertex or from C4 by attaching a path on four vertices, so G is configurable
by Lemmas 11 and 13. Hence we may assume that no 4-cycle has two vertices of degree
2 opposite one another.

Suppose there were three vertices x, y, and z in G such that x, y, and z form a triangle
in G and the degrees of y and z were exactly 2. Assume that x is not of degree 3. By the
induction hypothesis, Lemma 8 and Lemma 13, G is configurable if G \ {y, z} is not C4

or contains C7 as a spanning subgraph. But if G \ {y, z} is C4 or contains C7 as a spanning
subgraph, then G contains a spanning subgraph that can be obtained from C3 by attaching
a path with order at least 3, so G is still configurable by Lemma 11. Similarly, if x is of
degree 3, then G is configurable by Lemma 15. Hence, we may assume that G has no
triangles with two vertices of degree 3.
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Let G′ be a spanning subgraph of G such that the minimum degree of G′ is at least 2
and G′ satisfies the following:

1. |E(G′)| is as small as possible;
2. Subject to that, the number of triangles in G′ is as small as possible; and
3. Subject to that, the number of components in G′ that are isomorphic to C4 · C4 or

K2,3 is as small as possible.

We shall prove the following claim. Note that by the minimality of E(G′), there are
no two vertices of degree at least 3 adjacent to one another.

Claim 1. The maximum degree of G′ is at most 5.

Proof of Claim 1. Suppose that there is a vertex v of degree at least 6 in G′. As
G is K1,6-free, there are two vertices x and y adjacent to v in G′ with x adjacent to y in
G. Since the degree of v is at least 3, x and y must have degree 2 in G′. If xy �∈ E(G′),
then the graph obtained by deleting xv and yv from G′ and then adding xy into G′ is still
a spanning subgraph of G with minimum degree at least 2, but it has fewer edges. So
xy ∈ E(G′), in other words, v, x, and y form a triangle in G′. Since x, y, and v form a
triangle in G and the degree of v is at least 3, at least one of x and y has degree at least 3
in G. We may assume that the degree of x in G is at least 3, and u is a neighbor of x in G
other than y and v. As xy and vx ∈ E(G′) and the degree of x is 2 in G′, xu �∈ E(G′). So
the graph obtained by deleting xv and adding xu has the same number of edges but it has
fewer triangles than G′, a contradiction. �

Since every component of G′ is a connected graph of minimum degree at least 2 and
of maximum degree at most 5, and no vertices of degree at least 3 in G′ are adjacent to
one another, every component of G′ is configurable except those that are isomorphic to
C4, C7, C4 · C4, or K2,3 by Lemma 17. Also, it follows by a simple case checking that if a
graph not containing C7 as a spanning subgraph contains C4, C4 · C4 or K2,3 as a spanning
subgraph but not as an induced subgraph, then it is also configurable.

Now, we show that G is configurable. If |V (G)| = 7 but G is not configurable, then G
contains C7 as a spanning subgraph. We denote the C7 by v0v2...v6. If there exists i with
0 ≤ i ≤ 6 such that vivi+2 is an edge, where the index is computed modulo seven, then
G contains a spanning subgraph that can be obtained from C3 by adding a path on four
vertices, so G is configurable by Lemma 11. Since G is not C7 or G1, G contains at least
nine edges. If there exists i with 0 ≤ i ≤ 6 such that vivi+3 and vi+1vi+5 are edges of G,
then G is configurable by Lemma 9. So G contains G2 or G3 as a subgraph but not an
induced subgraph since G is not G2 or G3. In addition, adding an edge to G2 or G3 makes
it configurable unless it creates G4. But adding an edge to G4 makes it configurable. This
proves that G is configurable if G contains at most seven vertices. So we may assume
that G has at least eight vertices.

Let H be a maximal configurable subgraph of G induced by a union of components
of G′. Suppose that H is empty. Since G contains at least eight vertices, G′ contains at
least two components. Let H1 and H2 be two components of G′ adjacent in G and vi be a
vertex of Hi adjacent in G to H3−i for i = 1, 2. By Lemma 16, for each C4,C7,C4 · C4,

and K2,3, and for each of its vertices v, there exists a function f mapping the vertices to
[5]2 satisfying every vertex except possibly v, and v is missing at most two colors. Let
f1, f2 be such a function defined on V (H1) and V (H2), respectively, such that v1 and v2

are the only vertices missing some colors. Therefore, we can permute the colors in f1

Journal of Graph Theory DOI 10.1002/jgt



16 JOURNAL OF GRAPH THEORY

FIGURE 2. A complete graph K5. H ′ is obtained by replacing every edge
xy ∈ E (K5), by disjoint paths xuxyy and xvxvyy . H is obtained from H ′, by

deleting va and vb, from two distinct vertices a and b. Note that every vertex of H
that belongs to the original K5 has degree 8, except a and b that have degree 7.

and f2 such that fi(vi) contains the colors which v3−i missed for i = 1, 2. This proves
that the subgraph of G induced by V (H1) ∪ V (H2) is configurable, so H is not empty.

If H �= G, then let C be a component of G′ disjoint from H but adjacent in G to H.
By Lemma 16, for every v ∈ V (C), there exists a function f mapping the vertices to [5]2

satisfying every vertex except possibly v, and v is missing at most two colors. Therefore,
the subgraph of G induced by V (H) ∪ V (C) is configurable by Lemma 15, contradicting
the maximality of H. This proves that H = G and G is configurable. �

Note that our proof gives a polynomial-time algorithm to find a configuration of an
n-vertex graph G if G is a K1,6-free graph of minimum degree at least 2, and no component
of G is isomorphic to C4, C7, C4 · C4, or K2,3.

Now we shall show that the hypothesis that G be K1,6-free cannot be replaced by
assuming that G be K1,9-free. We do so by exhibiting infinitely many examples that
contain no induced K1,9 but are not configurable. Let H ′ be the graph obtained from
K5 by replacing each edge xy by two internally disjoint paths xuxyy and xvxvyy, and H
be the graph obtained from H ′ by deleting va and vb, where a and b are two distinct
vertices in the original K5. So the maximum degree of H is 8, and there are exactly two
vertices that have degree 7. See Figure 2. Suppose that H is configurable and f is a
configuration on H. If x and y are distinct vertices in the original K5, then f (x) �= f (y)

for otherwise
⋃

z∈N[uxy] f (z) �= {1, 2, 3, 4, 5}, and f (x) ∩ f (y) is nonempty for otherwise
⋃

z∈N[vx] f (z) or
⋃

z∈N[vy] f (z) is not {1, 2, 3, 4, 5}. But if S is a subset of [5]2 such that
every two members of S have a nonempty intersection, then the size of S is at most 4,
so f (a) = f (b). However, this implies

⋃
w∈N[uab] f (w) �= {1, 2, 3, 4, 5}, a contradiction.

Hence, H is not configurable. For any positive integer k, let H1, H2, ..., Hk be graphs,
where each of them is isomorphic to H, and ai, bi are the two vertices of degree 7 of Hi

for each i = 1, 2, ..., k. Let G be the graph obtained from H1 ∪ H2 ∪ · · · ∪ Hk by adding
the edges biai+1 for all i = 1, 2, ..., k − 1 and bka1, so G is of maximum degree 8 but not
configurable.

On the other hand, one might ask whether we can get rid of the assumption about
forbidden subgraphs by assuming the minimum degree is large. However, the following
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examples show that for every integer k > 0, there is a graph G with minimum degree k
that is not configurable. Let n = 10k − 9, let B be a set of size n, and let A be the set of
all k-element subsets of B. Let G be the graph with vertex-set A ∪ B in which a vertex
S ∈ A is adjacent to each of its elements.

By the pigeon-hole principle, there is a set S in A such that f (b) are the same
for all b ∈ S. But this implies that |⋃v∈N[S] f (v)| ≤ 4, a contradiction. So G is not
configurable.
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