
Lie’s Invariance Condition

Example 1
dy
dx

= y2 + xy3 (1)

Lie’s invariance condition becomes

Yx +
(
Yy − Xx

) (
y2 + xy3

)
− Xy

(
y2 + xy3

)2
= y3 X +

(
2y + 3xy2

)
Y (2)

At this point we will assume a particular form for X and Y. We will try to find a solution
when we choose

X = A(x), Y = B(x)y + C(x) (3)

Substituting (3) into (2) and isolating coefficients with respect to y gives the following
equations

C′ = 0, (4a)

B′ − 2C = 0, (4b)

−A′ − B− 3xC = 0, (4c)

−xA′ − A− 2xB = 0. (4d)

From (4a) we find that C = c, a constant. Substituting into (4b) and solving for B gives

B = 2cx + b (5)

where b is a second constant of integration. Substituting B and C into the two final equa-
tions of (4) gives

−A′ − 5cx− b = 0, (6a)

−xA′ − A− 4cx2 − 2bx = 0. (6b)

Solving the first for A gives

A = −5
2

cx2 − bx + a (7)

where a is also constant. Substituting into the final equation in (6) and expanding gives



7
2

cx2 − a = 0. (8)

Since this must be satisfied for all values of x, then we require that a = 0 and c = 0. Thus,
we obtain the infinitesimals

X = −bx, Y = by. (9)

Example 2
Consider

dy
dx

=
1
x2 +

x2

xy + 1
(10)

Lie’s invariance condition becomes

Yx +
(
Yy − Xx

) ( 1
x2 +

x2

xy + 1

)
− Xy

(
1
x2 +

x2

xy + 1

)2

=
x5y + 2x4 − 2x2y2 − 4xy

x3(xy + 1)2 X +
x3

(xy + 1)2 Y (11)

At this point we will assume a particular form for X and Y. We will try to find a solution
when we choose

X = A(x), Y = B(x)y + C(x) (12)

Substituting (12) into (11) and isolating coefficients with respect to y gives the following
equations

B′ = 0, (13a)

−xA′ + 2x2B′ + x3C′ + 2A + xB = 0, (13b)

−(x5 + 2x)A′ + x2B′ + 2x3C′ − (x4 − 4)A + 2(x5 + x)B = 0, (13c)

−(x + x5)A′ + x3C′ − 2(x4 − 1)A + (x5 + x)B + x6C = 0. (13d)

From (13a) we find that B = b, a constant. Substituting into (13b) and solving for C gives

C =
A
x2 +

b
x
+ c (14)

where c is a second constant of integration. Substituting B and C into the two final equa-
tions of (13) gives

xA′ + A− 2bx− cx2 = 0, (15)

xA′ + A− 2bx = 0 (16)

which gives c = 0 and
A = bx +

a
x

. (17)



where a is also constant. Thus, we obtain the infinitesimals

X = c1x +
c2

x
, Y = c1y +

2c1

x
+

c2

x3 (18)

where we have chosen b = c1 and a = c2.
Now we have the infinitesimals, our next job is to reduce the original ODE to one

that’s separable. As we have a two-parameter family of infinitesimals, we will look at
each one separately.

Case 1 c1 = 1, c2 = 0

In this case X = x and Y = y +
2
x

. Thus, we are require to solve

xrx +

(
y +

2
x

)
ry = 0, xsx +

(
y +

2
x

)
sy = 1. (19)

The solution of each is, respectively

r = R
(

xy + 1
x2

)
, s = ln x + S

(
xy + 1

x2

)
, (20)

where R and S are arbitrary function of their arguments. Here, we will choose simple and
choose

r =
xy + 1

x2 , s = ln x, (21)

or
x = es, y = res + e−s. (22)

Under this change of variables, (10) becomes

ds
dr

= − r
r2 − 1

. (23)

This easily integrates giving

s = −1
2

ln |r2 − 1|+ c, (24)

and via (21) gives

ln |x| = −1
2

ln | (xy + 1)2

x2 − 1|+ c, (25)

or, after some simplification
(xy + 1)2

x2 − x2 = c, (26)

the exact solution of (10).



Case 2 c1 = 0, c2 = 1

In this case X =
1
x

and Y =
1
x3 . Thus, we are require to solve

1
x

rx +
1
x3 ry = 0,

1
x

sx +
1
x3 sy = 1. (27)

The solution of each is, respectively

r = R
(

xy + 1
x

)
, s =

1
2

x2 + S
(

xy + 1
x

)
, (28)

where R and S are arbitrary function of their arguments. Here, we will choose simple and
choose

r =
xy + 1

x
, s =

1
2

x2, (29)

or
x =
√

2s, y = r− 1√
2s

. (30)

Under this change of variables, (10) becomes

ds
dr

= r. (31)

This easily integrates giving

s =
1
2

r2 + c, (32)

and via (29) gives exactly (26).


