Solidworks/2014
 3D Modelling Tutorial

L3

35

SOLIDWORKS

3D; Helix, Swept Cut, Extrude, Fillet, Variable Fillet, Chamfer 2D; Polygon, Modify dimension, Line, Helix

- Start a new Part file and sketch a 12 mm diameter circle using the circle tool in 'Sketch'
- Access the 'features toolbar'
- Extrude by 20 mm using 'Extruded Boss'
- Confirm with the green tick

Why? - To create a M12 bolt the diameter must be 6 mm to begin with before cutting the thread into the material. This can be altered depending on the size required.

- Access the 'features toolbar' and select 'Curves' then 'helix/spiral'
- Select the top of the cylinder to sketch the circle
- Using the 'circle tool' draw a circle which snaps onto the outside of the cylinder to match the diameter
- Exit sketch

Why? - The 'Helix/spiral' tool defines a 3D path despite having no real depth making it technically a 'sketch'. Further 3D sketches can be created from the features toolbar

- In the left 'feature menu' set the parameters as follows;
- $\mathbf{1 . 2 5 m m}$ pitch depth (pitch of M6 bolt)
- 16 Revolutions
- $\mathbf{3 6 0}{ }^{\circ}$ Start angle
- Clockwise spiral
- Confirm with the green tick

Why? - The pitch of a M12 thread is 1.25 mm . This can be adjusted for varying bolt sizes along with the revolutions. If the helix travels the wrong way down the cylinder 'reverse direction'

- Select the vertical work plane that the end of the 'helix' meets
- Click 'Sketch' and use CTRL + 8 to bring the workspace view 'normal to'
- Create the sketch shown using the 'line tool' and the 'smart dimension tool'
- Ensure the sketch snaps to the edge of the cylinder
- Use the 'Mirror' tool to improve accuracy and save time

Why? - This tooth shaped profile will form the thread for the M12 bolt. Depending on the size of bolt this can be altered however it is meant as a rough estimate in terms of dimensions.

- Access the 'features toolbar' and select 'Swept Cut'
- Select the profile as the 'sketch' completed above and in the 'path' box select the helix
- If the preview matches the one shown then confirm the feature with the green tick

Why? - A swept cut can be used for many different design elements such as a lip on a casing or a slot cut out. As with a 'Swept Boss' it requires a profile and a path

- Select the top face of the cylinder and click 'Sketch'
- Sketch a circle to with a 6 mm radius to match the top of the cylinder
- Extruded boss by 1.25 mm
- Confirm with the green tick

Why? - A bolt tends to have a relief before the head of the bolt which allows the thread to be machined in the machining process. This is simulated with a short extrude

Mr Billington © 2014
Why? - A variable radius can great complex geometry by varying the radius along a set edge

- Access the sketch menu and select the base of the thread
- Click 'sketch'
- Bring the view 'normal to' using CTRL +8
- Copy the base circle using the circle tool
- Extrude the circle by 0.5 mm
- Confirm with the green tick

Why? - This extrusion is a rough estimate and can be changed depending on design. It will form the chamfered end of the bolt that allows it to be lined up with the corresponding thread

- Fillet the joining edge of the extrusion by 0.2 mm
- This will not follow around the whole circumference of the side due to the thread creating a 3D helix
- Confirm with the green tick

Why? - It is rare that a perfectly formed 90° corner is made on any model and good practice to apply a slight fillet to enhance the models realism

- Complete the model with a final 'Chamfer' feature
- Select the base edge and set the 'distance' to 0.4 mm
- This will remove the sharp edge from the end of the bolt and replicate the finish seen in real world bolts
- If you have time you can try to develop a corresponding M12 nut using the same techniques
- They can then be assembled together to test using the 'Screw thread' mate option

Why? - Although a bolt is not something which would be CAD modelled as they are uniform and standardized it introduces new skills in Solidworks

