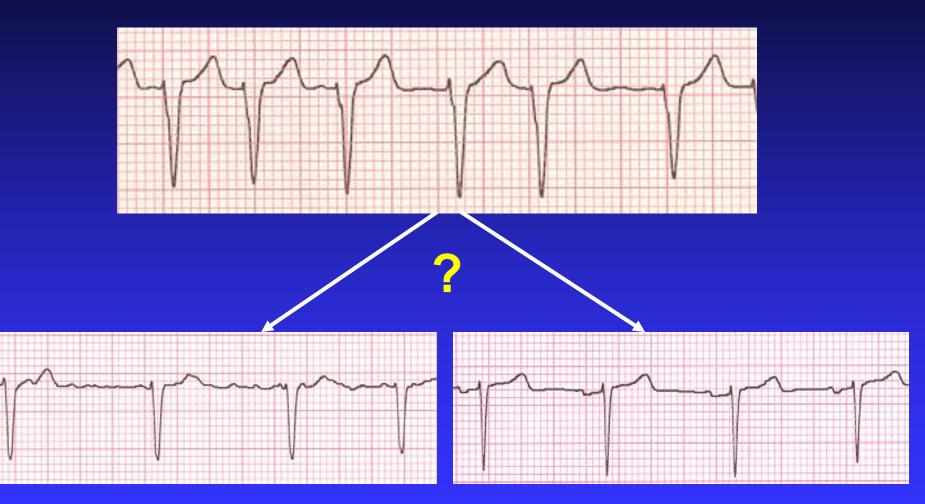


Rate vs Rhythm Post Cabana: Living On A Prayer


Andrea Natale MD

Executive Medical Director, Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, Texas Professor of Medicine, Dell Medical School, Austin, Texas Director of Interventional EP, Scripps Green, San Diego, CA Clinical Professor, Case Western Reserve University, Cleveland, Ohio Consulting Professor, Stanford University, Palo Alto, California

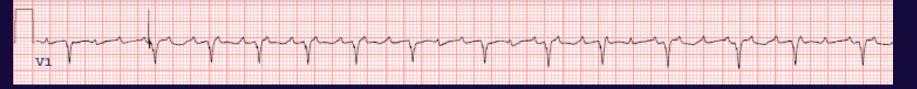
DILEMMMA!!!

RATE CONTROL VS RHYTHM CONTROL

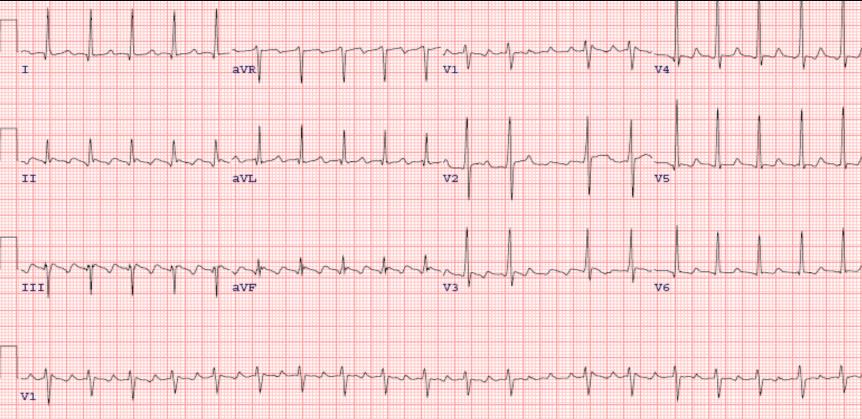
Atrial Fibrillation

Rhythm Control

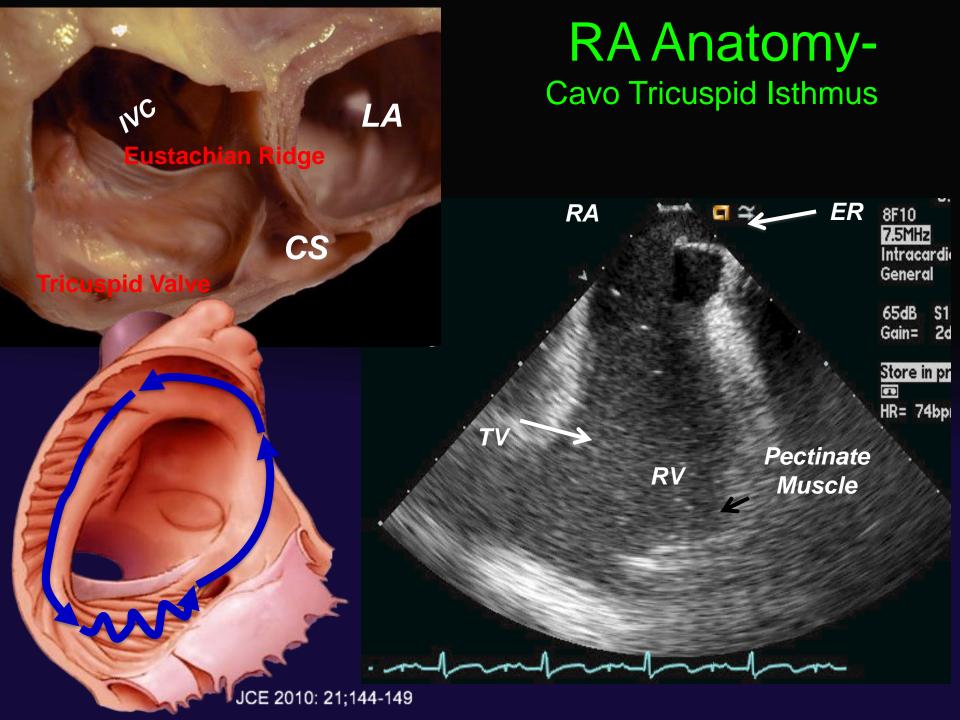
Atrial Fibrillation Patients on Drugs



... After Catheter Ablation


Misdiagnosis of A. fibrillation as A.flutter

- Distinction is critical:
 - -AFI:
 - ablation essentially 100% effective
 - type I AADs proarrhythmic
 - AFib:
 - ablation successful 70-75% (paroxysmal)
 - type I AADs can be helpful
- AF and AFI can coexist
- ECG characteristics are important


organized in V1 (not other leads, common mistake tele)
irregular ventricular response
no relationship between "flutter waves" and QRS

Atrial flutter

flutter waves consistent in all leads
opposite polarity of inferior leads and V1
vontrigular response regular (2:1, 4:1)

• ventricular response regular (2:1, 4:1)

You consider continuing coumadin:

- 1. No coumadin since no risk of other atrial arrhythmias
- 2. Low risk of atrial arrhytmias, so will start ASA
- Afib risk at follow up is between 30-50%, so will consider coumadin based on CHADS2 score

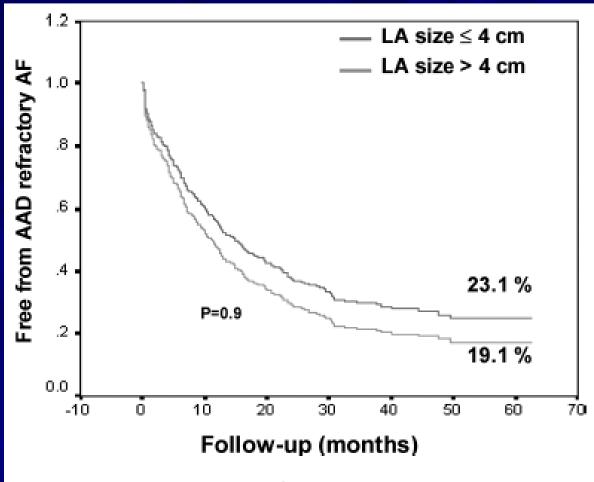
You consider continuing coumadin:

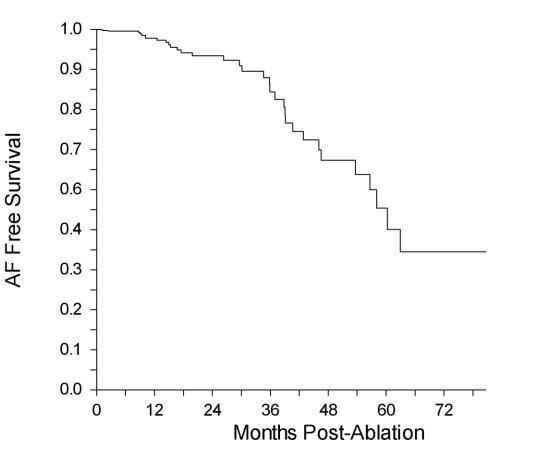
- 1. No coumadin since no risk of other atrial arrhythmias
- 2. Low risk of atrial arrhytmias, so will start ASA
- Afib risk at follow up is between 50-80%, so will consider coumadin based on CHADS2 score

Incidence of Atrial Fibrillation Post-Cavotricuspid Isthmus Ablation in Patients with Typical Atrial Flutter: Left-Atrial Size as an Independent Predictor of **Atrial Fibrillation Recurrence**

> KEITH ELLIS, M.D., OUSSAMA WAZNI, M.D., NASSIR MARROUCHE, M.D., DAVID MARTIN, M.D., MARC GILLINOV, M.D., PATRICK MCCARTHY, M.D., EDUARDO B. SAAD, M.D., MANDEEP BHARGAVA, M.D., ROBERT SCHWEIKERT, M.D., WALID SALIBA, M.D., DIANNA BASH, R.N., ANTONIO ROSSILLO, DEMET ERCIYES, PATRICK TCHOU, M.D., and ANDREA NATALE, M.D.

(J Cardiovasc Electrophysiol, Vol. 18, pp. 799-802, August 2007)




Figure 1. Left-atrial size as a predictor of atrial fibrillation-free interval.

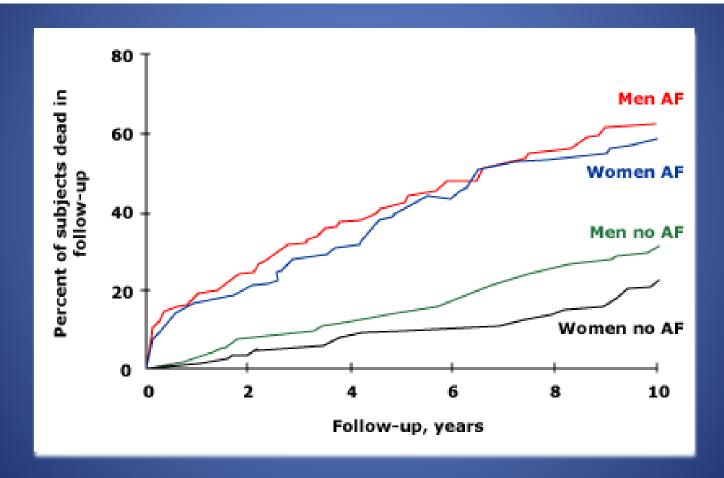
Atrial fibrillation is common after ablation of isolated atrial flutter during long-term follow-up

Jason S. Chinitz, MD, Edward P. Gerstenfeld, MD, Francis E. Marchlinski, MD, David J. Callans, MD

(Heart Rhythm 2007;4:1029 - 1033)

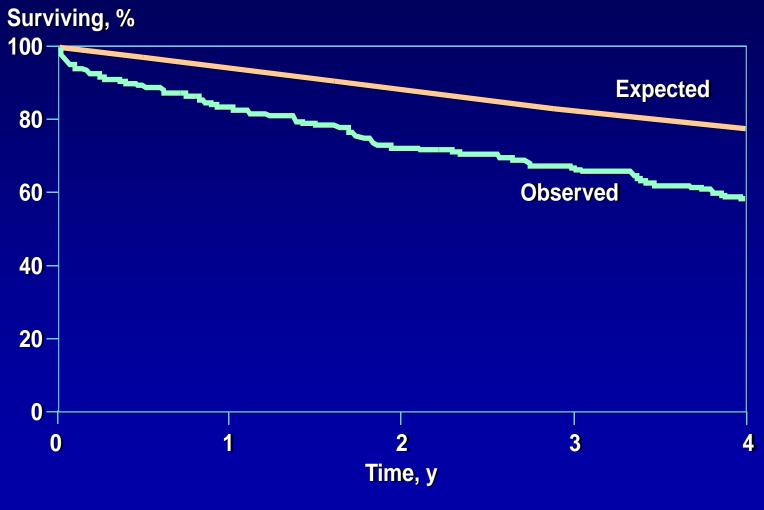
Incidence of AF in long term FU

80 patients with isolated isthmus dependent atrial flutter


50% incidence of AF after mean follow up of 30 months

Chinitz J: Heart Rhythm 2007

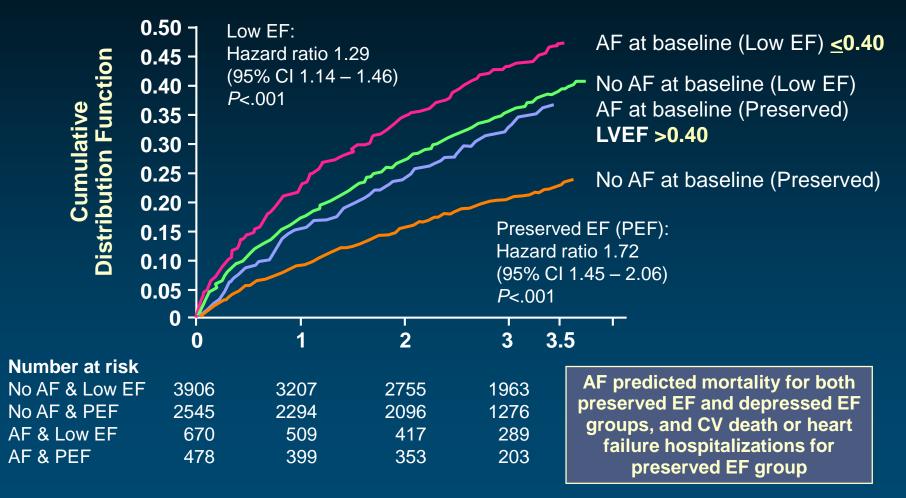
Putting AF into Context.....


Impact of Atrial Fibrillation on the Risk of Death The Framingham Heart Study

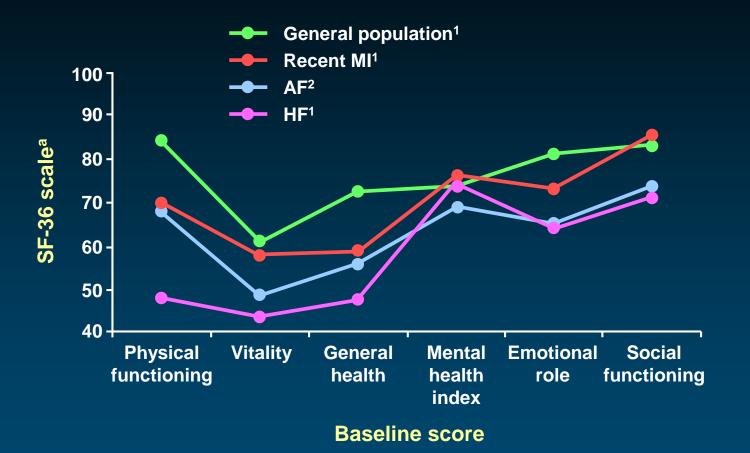
Emelia J. Benjamin, MD, ScM; Philip A. Wolf, MD; Ralph B. D'Agostino, PhD; Halit Silbershatz, PhD; William B. Kannel, MD; Daniel Levy, MD

Circulation. 1998

Observed vs Expected Survival in Patients from Date of Onset of AF to Death or Follow-up: The Olmsted County Study


Keating et al. Am J Cardiol 2005;96:1420-1424

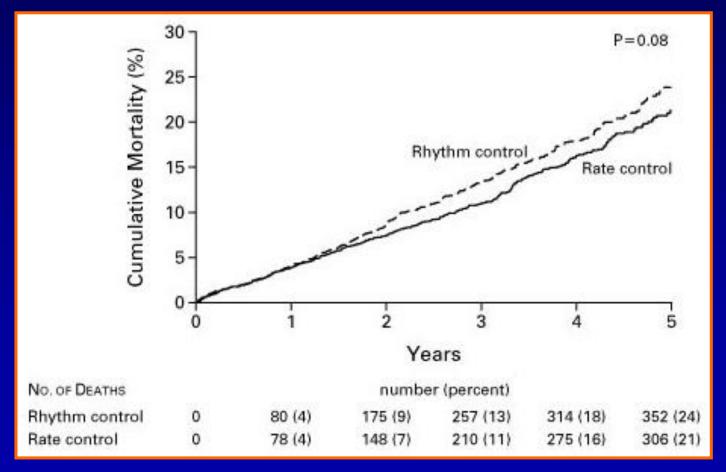
Atrial Fibrillation: Risk of Increased Mortality AVID Registry


- 3762 patients
- Mean follow up: 773 ± 420 days
- 24.4 % had history of AF
- AF was an independent predictor of mortality (relative risk = 1.20, 95% C.I. = 1.03 – 1.40)

AF Is a Marker for Worse Outcomes in Heart Failure: CHARM Program

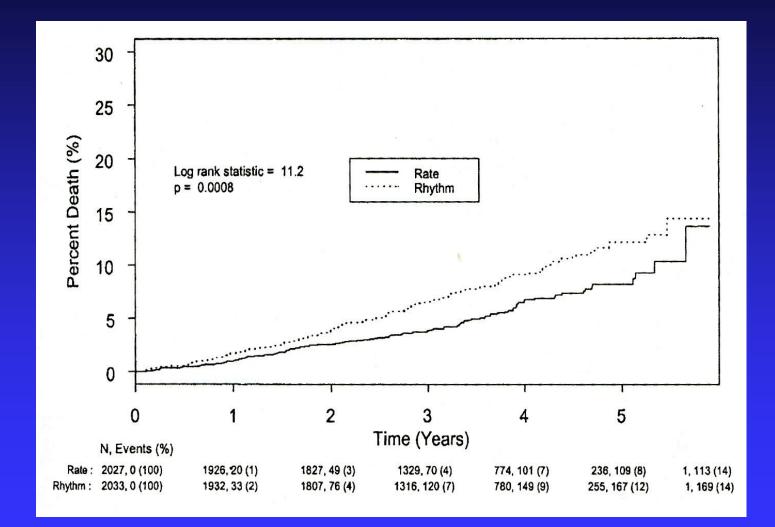
Time to cardiovascular death or heart failure hospitalization

Impact on QoL: AF vs Other CV Illness


^aHigher numbers indicate higher QoL. SF-36 = Medical Outcomes Study Short Form 36.

1. Ware JE, et al. New England Medical Center Health Survey; 1993.

2. Dorian P, et al. J Am Coll Cardiol. 2000;36(3):1303-1309.


A COMPARISON OF RATE CONTROL AND RHYTHM CONTROL IN PATIENTS WITH ATRIAL FIBRILLATION

The Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) Investigators

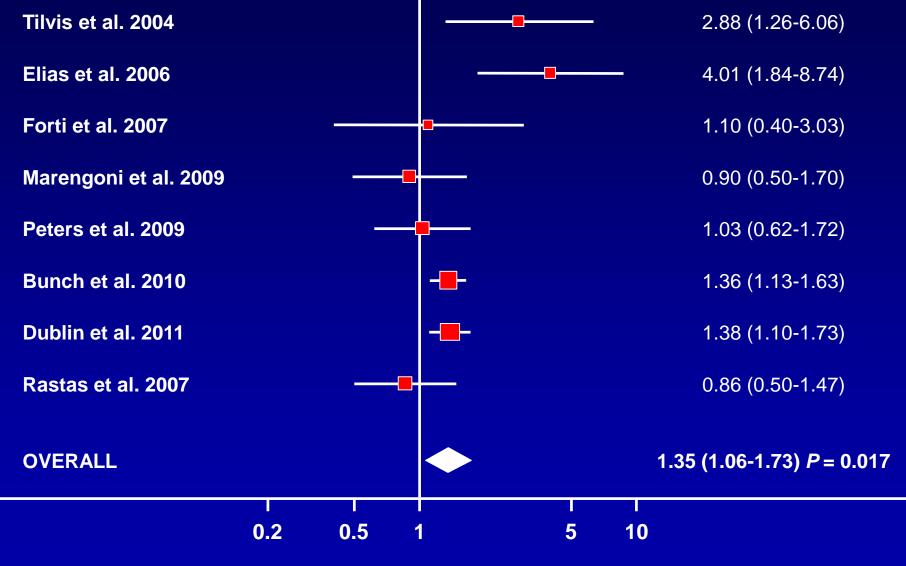
N Engl J Med 2002; 347: 1825-

Cumulative Noncardiovascular Mortality in the Rhythm-control & Rate-control Groups

Steinberg et al. Circ 2004;109:1973-80

Covariates Significantly Associated With Survival HR: 99% **Confidence** Limits *Covariate* P HR Lower Upper 0.0001Age at enrollment* 1.06 1.05 1.0 Sinus rhythm was associate with lower risk of death as was warfarin **Congestive heart failure** 0.0001 1.18 2.09 1.57 0.0001 1.56 Diabetes 1.17 2.07Stroke or transient ischemic attack 0.0001 1.242.331.70Smoking 0.0001 1.78 1.25 2.53Left ventricular dysfunction 0.0065 1.02 1.81 1.36 Mitral regurgitation 0.0043 1.36 1.03 1.80Sinus rhythm 0.720.0001 0.53 0.39 Warfarin use 0.0001 0.50 0.37 0.69 **Digoxin** use 0.0007 1.42 1.09 1.86 Rhythm-control drug use 0.0005 1.491.11 2.01*Per year of age.

The AFFIRM Investigators. Circulation 2004; 109: 1509-13


AF and the risk of Dementia

Study	Year	Design	N. of Pts	AF Diagnosis	Dementia Diagnosis	Follow-Up (years)
Tilvis et al.	2004	Prospective observational including elderly pts in Finland	629	H&P, medical records	MMSE and CDR	5
Elias et al.	2006	Prospective observational (Framingham Offspring Study)	1011	ECG, ECG-H, H&P	Neuropsychological tests approved by a panel of neurologists and neuropsychiatrists	30
Forti et al.	2007	Prospective observational including elderly pts in Italy	431	Н&Р	MMSE and neuropsychological tests	4
Marengoni et al.	2009	Prospective observational including elderly pts participating to the Kungsholmen Project in Sweden	685	H&P, medical records, ICD codes	DSM-III Revised	4
Peters et al.	2009	Prospective observational including elderly pts included in the HYVET trial	3336	Not specified	DSM-IV	1.8
Bunch et al.	2010	Prospective observational including pts receiving care in the Intermountain Healthcare System in US	37025	ICD codes	ICD codes	5
Dublin et al.	2011	Prospective observational including pts receiving care in the Group Health System in US	3045	ICD codes	DSM-IV	6.8
Rastas et al.	2007	Prospective observational including elderly pts in Finland	339	ECG, ECG-H, medical records	DSM-III Revised	3.5

Santangeli, Di Biase, Natale et al., Heart Rhythm 2012

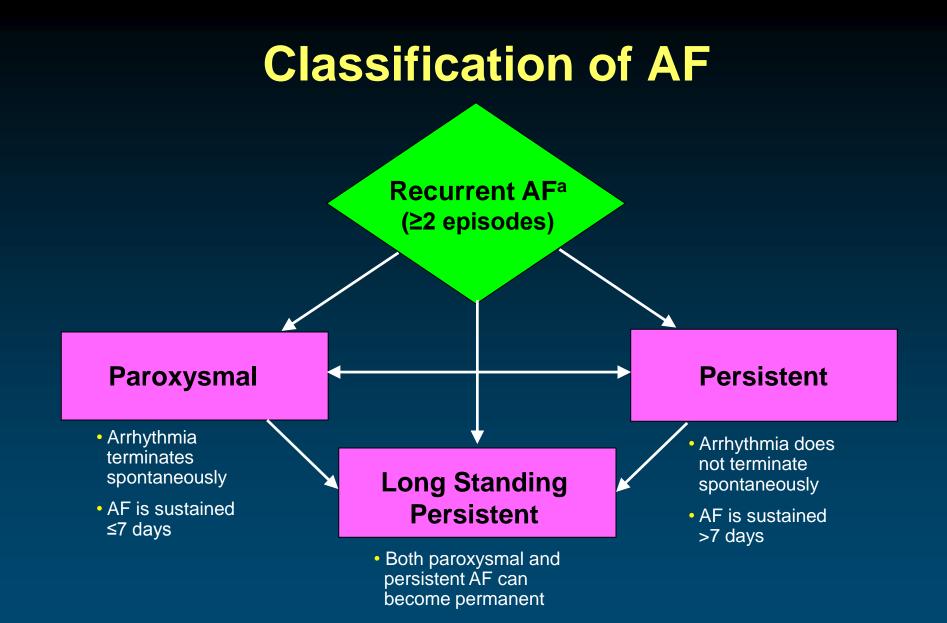
Santangeli, Di Biase, Natale et al., Heart Rhythm 2012

Adjusted HR (95% CI)

Lower dementia risk with AF

Higher dementia risk with AF

AF is a Substantial Cause of Morbidity and Mortality, Increasing the Risk of Stroke, Other Embolic Complications, CHF, and Death

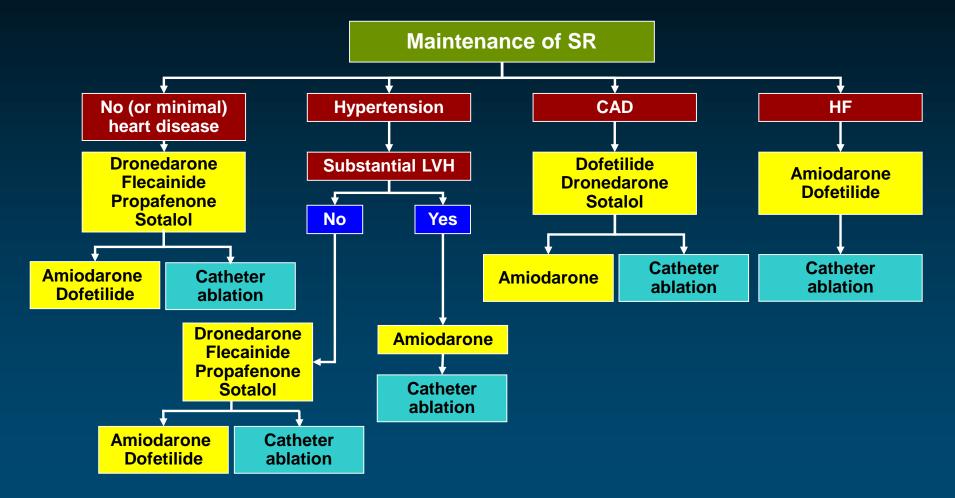


2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society Craig T. January, L. Samuel Wann, Joseph S. Alpert, Hugh Calkins, Joseph C. Cleveland, Jr, Joaquin E. Cigarroa, Jamie B. Conti, Patrick T. Ellinor, Michael D. Ezekowitz, Michael E. Field, Katherine T. Murray, Ralph L. Sacco, William G. Stevenson, Patrick J. Tchou, Cynthia M. Tracy and Clyde W. Yancy

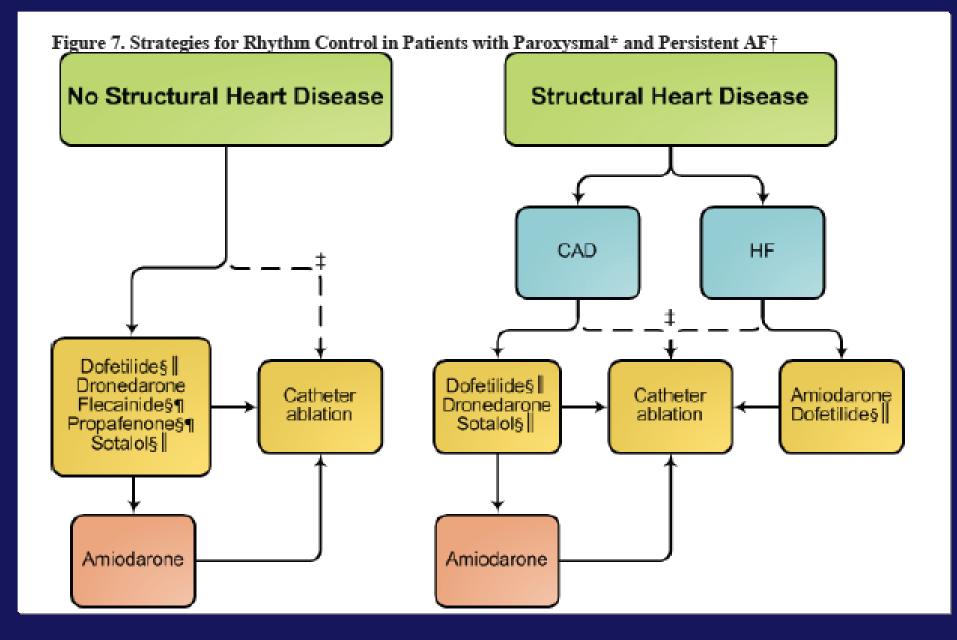
Circulation. published online March 28, 2014; Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Copyright © 2014 American Heart Association, Inc. All rights reserved. Print ISSN: 0009-7322. Online ISSN: 1524-4539

Some of the other major changes in the recommendations include:

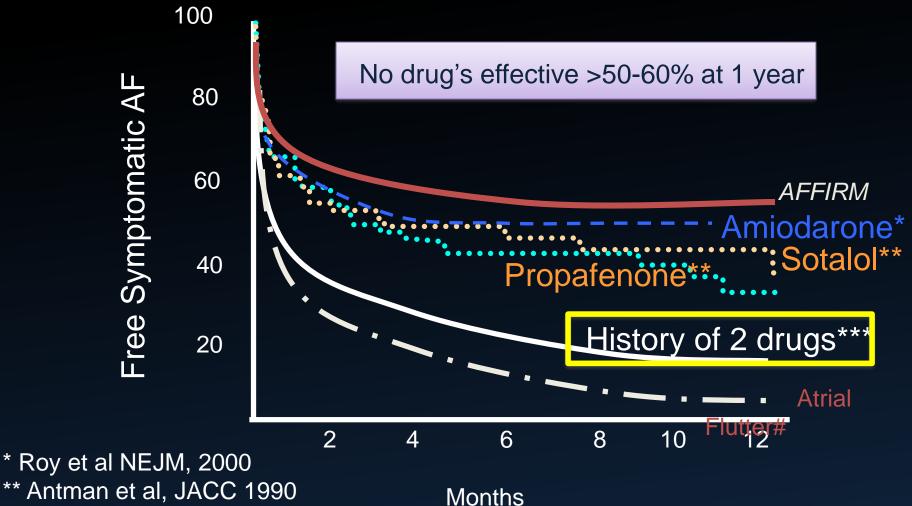
- Greater use of radiofrequency ablation for treating nonvalvular atrial fibrillation. "The efficacy of radiofrequency catheter ablation for maintaining sinus rhythm is superior to current antiarrhythmic drug therapy for maintenance of sinus rhythm in selected patient populations," the authors wrote. "The evidence supporting the efficacy of catheter ablation is strongest for paroxysmal atrial fibrillation in younger patients with little to no structural heart disease and in procedures performed in highly experienced centers." They also consider long standing persistent
- 2) Use of a more comprehensive stroke risk calculator. That means using the CHA2DS2-VASc score instead of the older CHADS2 score. The older score takes into account congestive heart failure, hypertension, diabetes, and prior history of stroke, transient ischemic attack, or thromboembolism, and age 75 or older. The newer score includes those variables plus vascular disease, sex, and an age range from 65 to 74. A reduced role for aspirin based on unconvincing evidence that aspirin reduces stroke risk in patients who already have a low risk.



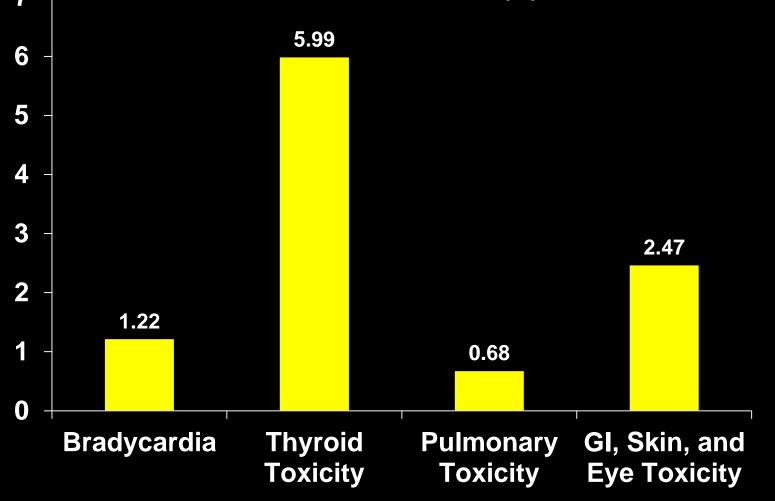
^aTermination with pharmacologic therapy or direct-current cardioversion does not change the designation. Fuster V, et al. *Circulation.* 2006;114(7):e257-e354.


Treatment

2011 ACCF/AHA/HRS Focused Update on the Management of AF

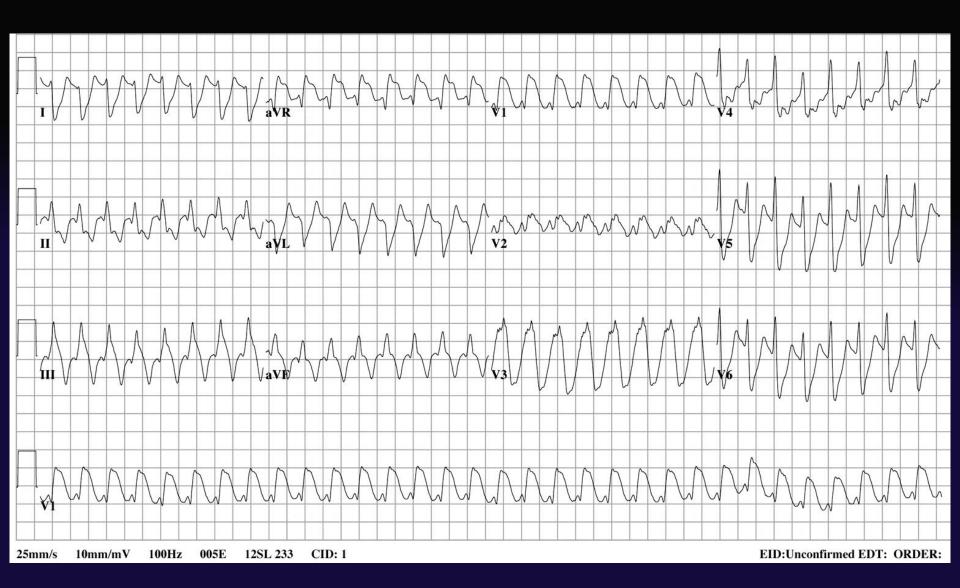

Rhythm Control Therapies to Maintain Sinus Rhythm

Reproduced with permission from Wann LS, et al. *Circulation*. 2011;123(1):104-123.


Atrial Fibrillation Anti Arrhythmic Drugs

*** Antman et al, JACC 199
*** Crijns et al, AJC 1991
Natale et al JACC 2001

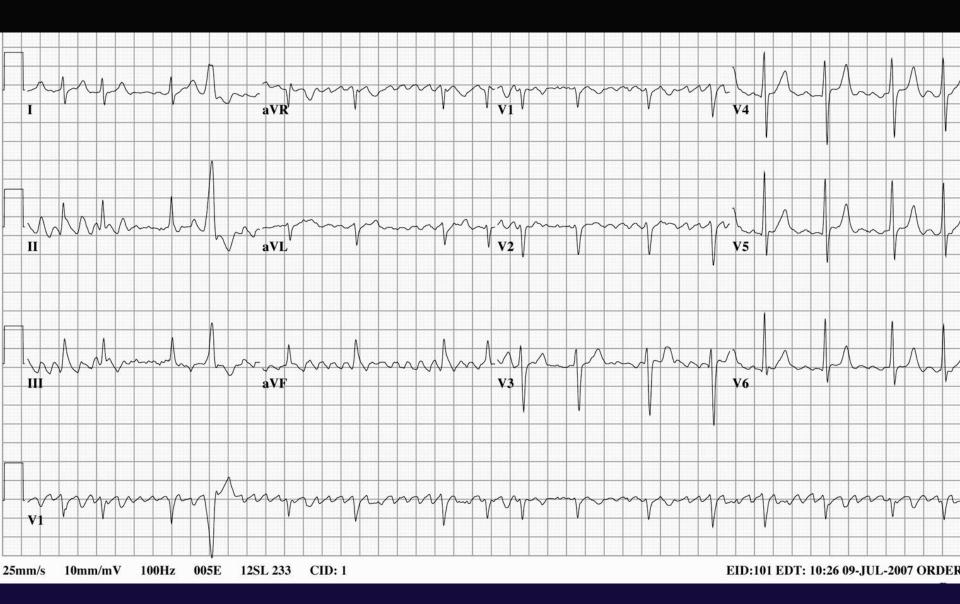
Adverse Effects of Amiodarone Pooled Data from 5 RCTs for the long-term SR maintenance

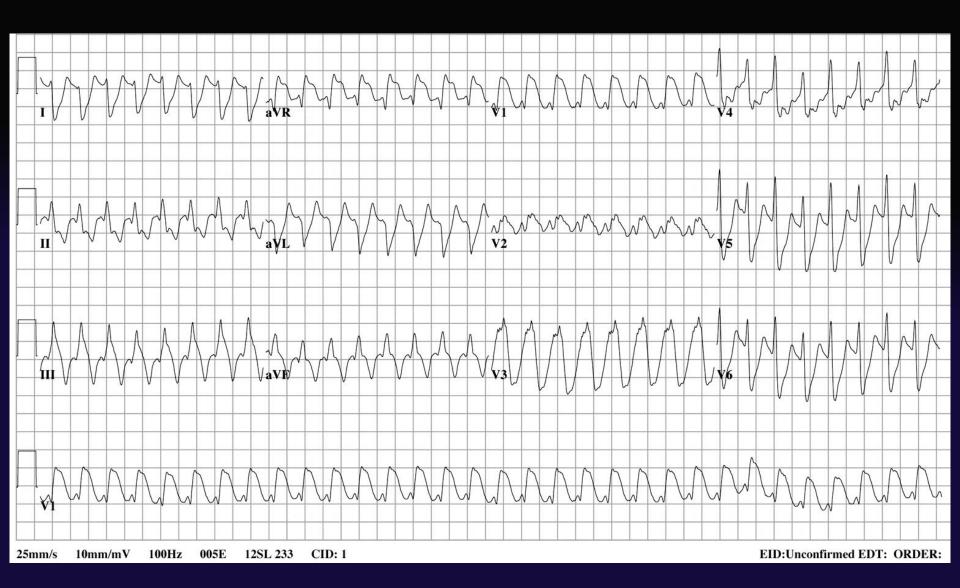

Rate of adverse effects (%)

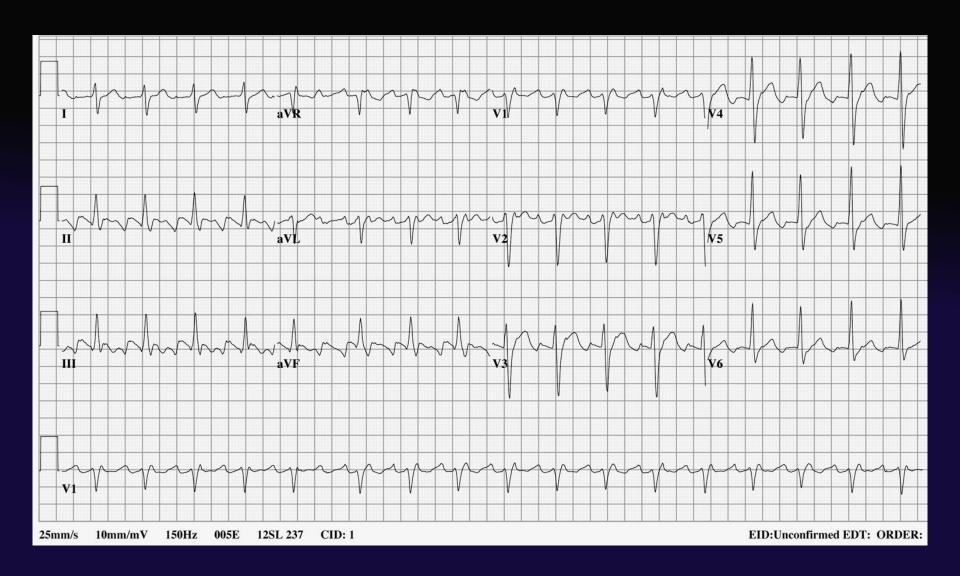
Amiodarone Treatment

- Do not consider young patient for treatment with amiodarone
- On amiodarone check every 6 months thyroid, liver function, and eyes for microdeposit
- Check pulmonary function once a year

A 45 yo man with history of paroxysmal atrial fibrillation was started on flecaiide and presents to ER with near syncope. On arrival a 12 lead ECG is obtained. Patient is hemodinamically stable. The most likely explanation for this clinical arrhytmia is:




A 45 yo man with history of paroxysmal atrial fibrillation was started on flecaiide and presents to ER with near syncope. On arrival a 12 lead ECG is obtained. Patient is hemodinamically stable. The most likely explanation for this clinical arrhytmia is:


- Patient had CAD, was started on a class I AARx and now presents with ventricular tachycardia
- 2. An AV nodal blocker was not prescribed, so you start him on diltiazem
- 3. Patient was non compliant with the AARx and went back into afib

A 45 yo man with history of paroxysmal atrial fibrillation was started on flecaiide and presents to ER with near syncope. On arrival a 12 lead ECG is obtained. Patient is hemodinamically stable. The most likely explanation for this clinical arrhytmia is:

- Patient had CAD, was started on a class I AARx and now presents with ventricular tachycardia
- 2. An AV nodal blocker was not prescribed, so you start him on diltiazem
- 3. Patient was non compliant with the AARx and went back into afib

"Pill in the Pocket"

Candidates

- Recognized acute and recent onset with sporadic events
- No AAD risk markers
- Adequate tolerance (no pulmonary edema, syncope, etc) Test in office setting

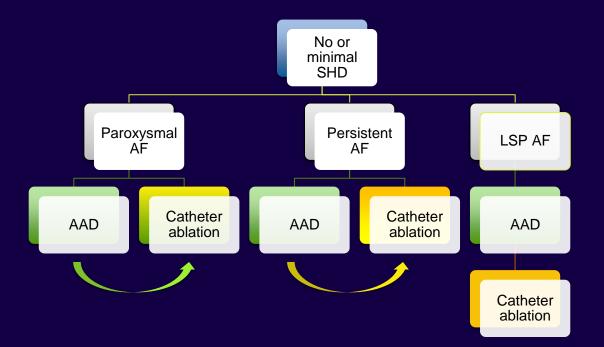
Step 1	Step 2	Step 3
 Rate control (~100 bpm)	 Propafenone 600 mg	 Observe for effect
to prevent 1:1 flutter Short-acting CCB or	(single dose) Flecainide 300 mg	and tolerance
β-blocker	(single dose)	(first episode)

Subsequent events

- Treat at home (convenient and inexpensive)
- Improves QoL, reduces ER visits/hospitalization, costs

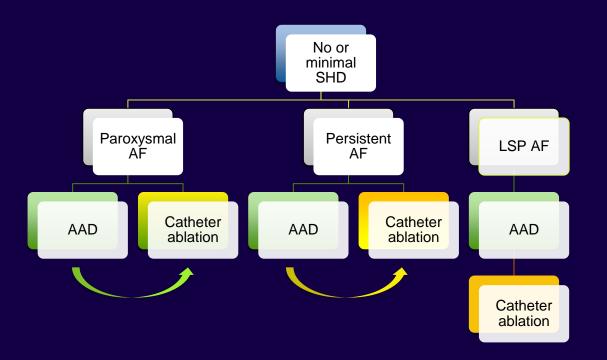
Acute load on chronic therapy

 2 extra "pill in the pocket" dosing regimens have been used to treat breakthrough episodes (max. daily dose vs substitute bolus dose)^a


Alboni P, et al. *N Engl J Med.* 2004;351(23):2384-2391.

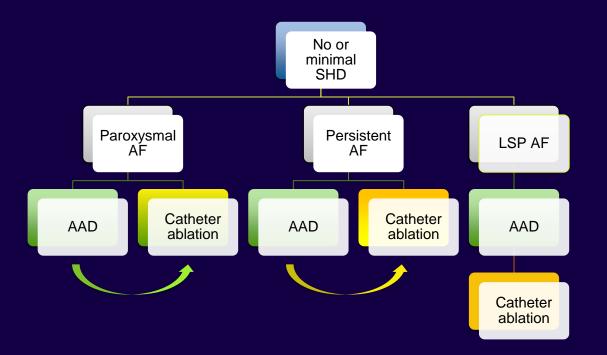
^aReiffel JA. *Pacing Clin Electrophysiol*. 2009;32(8):1073-1084.

Catheter Ablation


AF Catheter Ablation: Initial Considerations

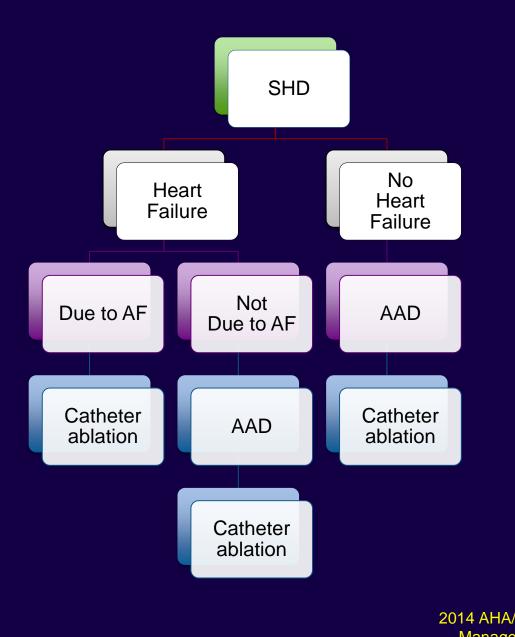
Candidates for ablation

- Symptomatic PAF refractory to ≥ 1 AAD Class I LoE A
- Symptomatic PAF first line therapy Class IIa LoE B


January C et al 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation

- Symptomatic PerAF refractory to ≥ 1 AAD Class IIa LoE A
- Symptomatic PerAF first line therapy Class IIb LoE C

January C et al


2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation J Am Coll Cadiol 2014;64(21):e1–e76

 Symptomatic LSPAF refractory to ≥ 1 AAD Class IIb LoE B

January C et al

2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation

2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial

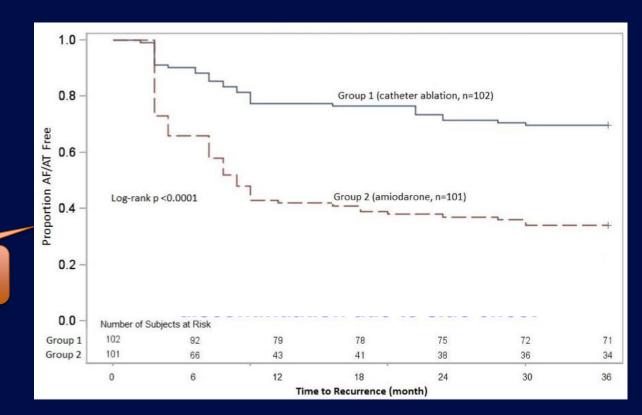
Fibrillation

Ablation vs. Amiodarone for Treatment of Atrial Fibrillation in Patients with Congestive Heart Failure and an Implanted ICD/CRT-D

Persistent AF with symptomatic HF, LVEF \leq 40%, CIED

N = 203

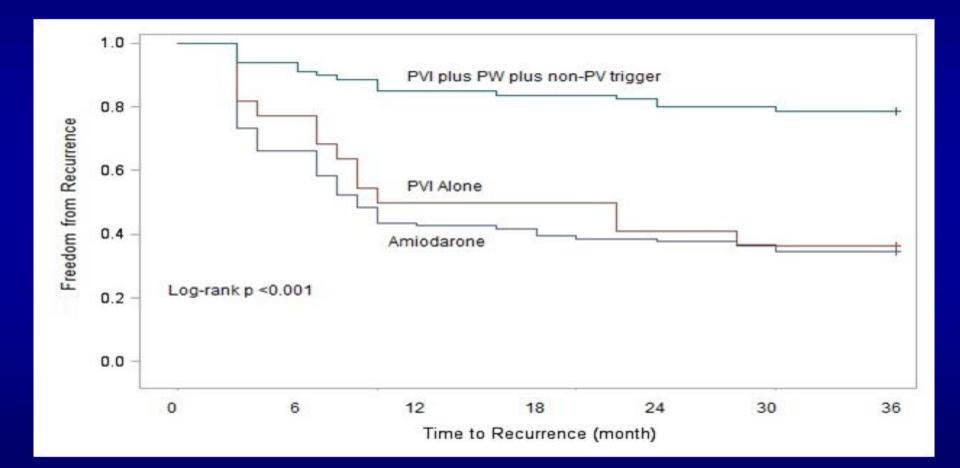
PVAI ± triggers


Amiodarone

Freedom from AT/AF

FU = 24 months Mortality benefit

70 vs 34 %


(p < 0.0001)

Di Biase L, Natale A et al Circulation 2016

AATAC-AF

Pulmonary Vein Isolation Alone Is Not Superior To Amiodarone for the Treatment Of Persistent Atrial Fibrillation In Patients With Congestive Heart Failure and an Implanted Device: Results From The AATAC Randomized Trial

Di Biase, Natale, et al Circulation 2016

<u>Catheter Ablation versus Standard</u> conventional Treatment in patients with <u>LEft</u> ventricular dysfunction and <u>Atrial Fibrillation</u>

The CASTLE-AF trial

Nassir F. Marrouche and Johannes Brachmann, on behalf the CASTLE AF Investigators

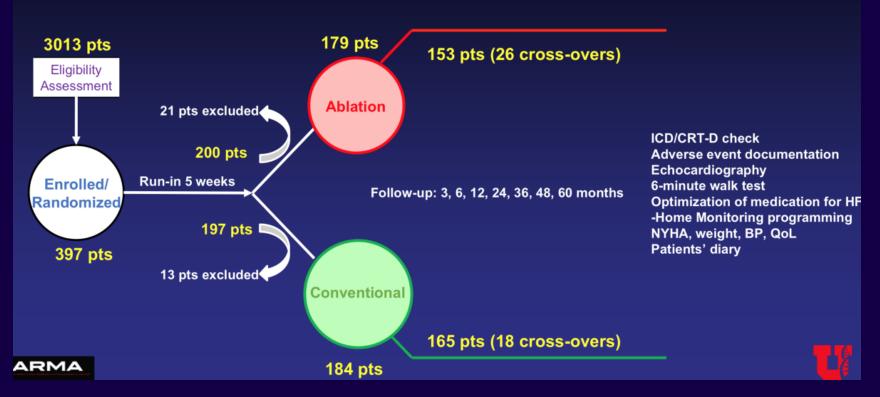
Primary Endpoint

Worsening heart

failure admissions

Secondary Endpoints

- All-cause mortality
- All-cause mortality
- Hospitalization due to worsening of heart failure
- Cerebrovascular accidents Cardiovascular mortality
- Unplanned hospitalization due to cardiovascular reason
- All-cause hospitalization
- Quality of Life: Minnesota Living with Heart Failure and EuroQoL EQ-5D
- Exercise tolerance (6 minutes walk test)
- Number of delivered ICD shocks, and ATPs (appropriate/inappropriate)
- LVEF
- Time to first ICD shock, and time to first ATP
- Number of device detected VT/VF
- AF burden: cumulative duration of AF episodes
- AF free interval: time to first AF recurrence after 3 months blanking period post ablation


Symptomatic paroxysmal or persistent AF

- Failure or intolerance to ≥ 1 or unwillingness to take AAD
- LVEF ≤ 35%
- NYHA class ≥ II
- ICD/CRTD with Home Monitoring[™] capabilities already implanted due to primary or secondary prevention

Primary composite endpoint

- all-cause mortality
- unplanned hospitalization for worsening HF

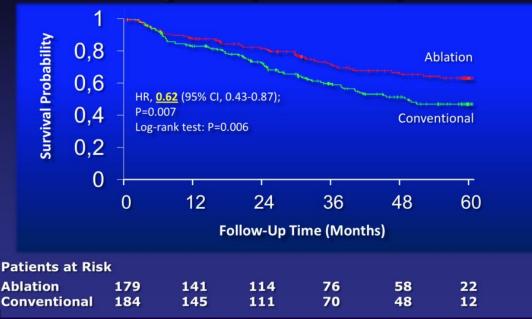
Investigator initiated, Prospective, Multicenter (31 sites, 9 countries),
 CASTLE-AF
 Randomized, Controlled

Conventional RX per 2006 ACC/AHA/ESC guidelines

- rhythm control if possible
- rate control with HR 60-80 at rest and 90-115 during moderate exercise
- OAC

RF

- PVI
- additional lesions per operator choice
- repeat procedure after BP


	Ablation group (179 patients)	Conventional group (184 patients)
[†] Age – years	64 (56-71)	64 (56-73.5)
New York Heart Association class		
l (%)	11	11
II (%)	58	61
III (%)	29	27
IV (%)	2	1
[†] Left ventricular ejection fraction – %	32.5 (25.0-38.0)	31.5 (27.0-37.0)
Current type of atrial fibrillation		
Paroxysmal (%)	30	35
Persistent (%)	41	35
Long-standing persistent (>1-year) (%)	28	30
[§] CRT-D implanted (%)	27	28
[§] ICD implanted (%)	73	72

ACE-inhibitor or ARB – no. (%)	94	91
Beta-blocker – no. (%)	93	95
Diuretic – no. (%)	93	93
Digitalis – no. (%)	18	31
Oral anticoagulant – no. (%)	93	96
Antiarrhythmic drug – no. (%)	32	30
Amiodarone – no. (%)	97	85

Over a median FU of 37.8 months:

composite primary endpoint 28.5% (RF) vs 44.6% (Rx) HR 0.62 (0.43-0.87; P=0.006)
all-cause mortality 13.4% (RF) vs 25% (Rx) HR 0.53 (0.32-0.86; P=0.009)
HF hospitalizations 20.7% vs 35.9% HR 0.49 (0.29-0-84; P = 0.008)

Primary Composite Endpoint

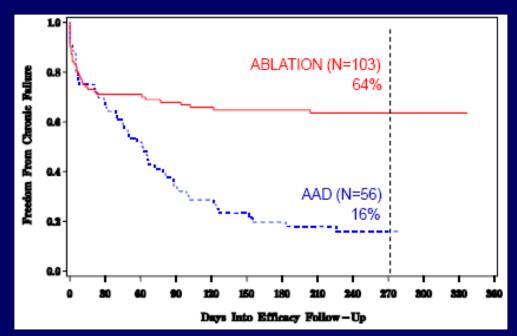
ESC Scientific Sessions 2017. Barcelona, Spain

Patient History

- 67 year old female with highly symptomatic paroxysmal atrial fibrillation who was given amiodarone subsequently discontinued for side effect
- Echo normal, left atrium 3.7
- Mild hypertension no other medical issues

What would you do next?

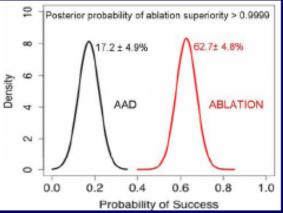
- 1) Give flecainide
- 2) Consider rate control
- 3) AV node ablation
- 4) Pulmonary vein ablation


Recently Completed Study Ablation *vs* **AADs: 1 yr Success**

	AADs	Ablation	2 nd	Still on
Study	Success Rate	Success Rate	Ablation s	AADs
A4	23%	89%	80%	0%
Thermocoo l IDE	17%	63%	13%	7%
STOP-AF	7%	70%	19%	12%
CABANA Pilot	38%	61%	21%	28%

Comparison of Antiarrhythmic Drug Therapy and Radiofrequency Catheter Ablation in Patients with Paroxysmal Atrial Fibrillation: The ThermoCool AF Trial

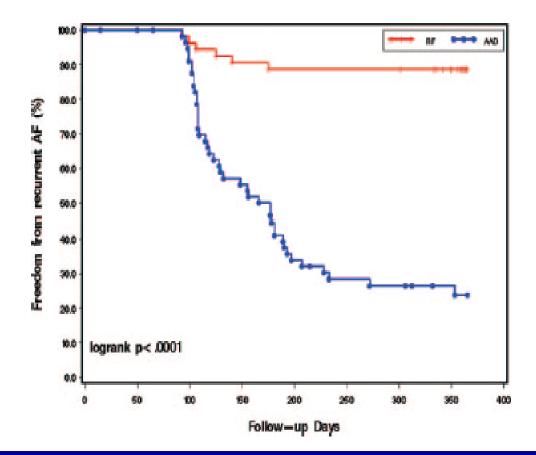
David J Wilber, Loyola Univ Medical Ctr, Maywood, IL; Carlo Pappone, Hosp San Raffaele, Milan, Italy; Petr Neuzil, Na Homolce Hosp, Prague, Czech Republic; Angelo De Paola, Hosp Sao Paulo, Sao Paulo, Brazil; Frank E Marchlinski, Univ of Pennsylvania, Philadelphia, PA; Andrea Natale, Cleveland Clinic Fndn, Cleveland, OH; Laurent Macle, Montreal Heart Inst, Montreal, QC, Canada; Hugh Calkins, Johns Hopkins Hosp, Baltimore, MD; Emile Daoud, Ohio State Univ, Columbus, OH; Burr Hall, Univ of Rochester Medical Center, Rochester, NY

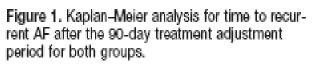

Primary Endpoint Analysis

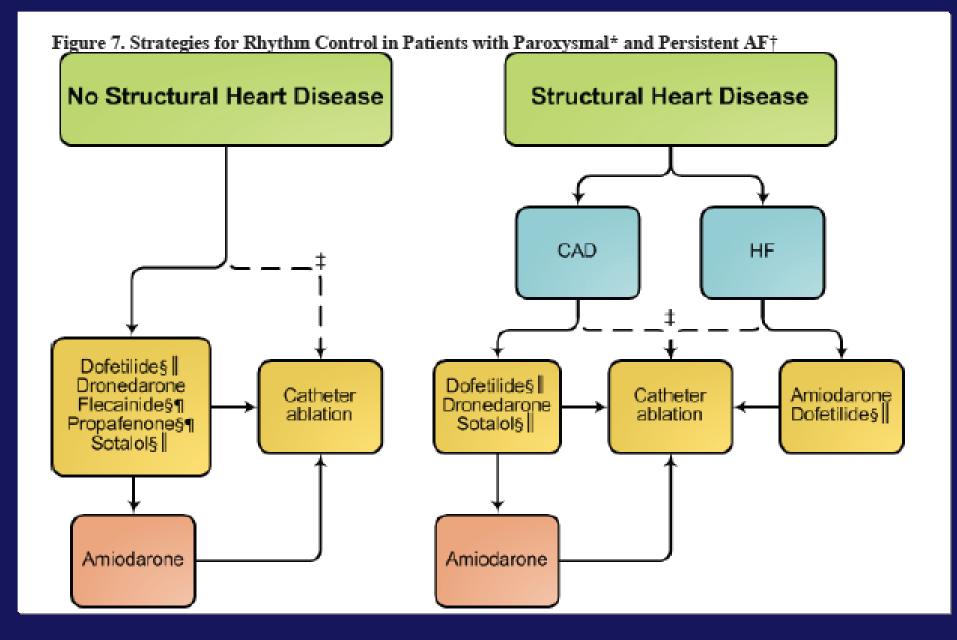
KM curve of time to protocol adjudicated chronic failures by randomization group (n=159), p < 0.001, log rank test

12/36 ablation, and 7/47 AAD protocol adjudicated chronic failures not due to recurrent symptomatic AF

> Bayesian posterior probabilities of outcome




Catheter Ablation Versus Antiarrhythmic Drugs for Atrial Fibrillation


The A4 Study

Pierre Jaïs, MD; Bruno Cauchemez, MD; Laurent Macle, MD; Emile Daoud, MD; Paul Khairy, MD, PhD; Rajesh Subbiah, BSc (Med), MBBS, PhD; Mélèze Hocini, MD; Fabrice Extramiana, MD; Fréderic Sacher, MD; Pierre Bordachar, MD; George Klein, MD; Rukshen Weerasooriya, MBBS; Jacques Clémenty, MD; Michel Haïssaguerre, MD

- Background—The mainstay of treatment for atrial fibrillation (AF) remains pharmacological; however, catheter ablation has increasingly been used over the last decade. The relative merits of each strategy have not been extensively studied.
- *Methods and Results*—We conducted a randomized multicenter comparison of these 2 treatment strategies in patients with paroxysmal AF resistant to at least 1 antiarrhythmic drug. The primary end point was absence of recurrent AF between months 3 and 12, absence of recurrent AF after up to 3 ablation procedures, or changes in antiarrhythmic drugs during the first 3 months. Ablation consisted of pulmonary vein isolation in all cases, whereas additional extrapulmonary vein lesions were at the discretion of the physician. Crossover was permitted at 3 months in case of failure. Echocardiographic data, symptom score, exercise capacity, quality of life, and AF burden were evaluated at 3, 6, and 12 months by the supervising committee. Of 149 eligible patients, 112 (18 women [16%]; age, 51.1±11.1 years) were enrolled and randomized to ablation (n=53) or "new" antiarrhythmic drugs alone or in combination (n=59). Crossover from the antiarrhythmic drugs and ablation groups occurred in 37 (63%) and 5 patients (9%), respectively (*P*=0.0001). At the 1-year follow-up, 13 of 55 patients (23%) and 46 of 52 patients (89%) had no recurrence of AF in the antiarrhythmic drug and ablation groups, respectively (*P*<0.0001). Symptom score, exercise capacity, and quality of life were significantly higher in the ablation group.
- Conclusion—This randomized multicenter study demonstrates the superiority of catheter ablation over antiarrhythmic drugs in patients with AF with regard to maintenance of sinus rhythm and improvement in symptoms, exercise capacity, and quality of life. (Circulation. 2008;118:2498-2505.)

First Line Ablation

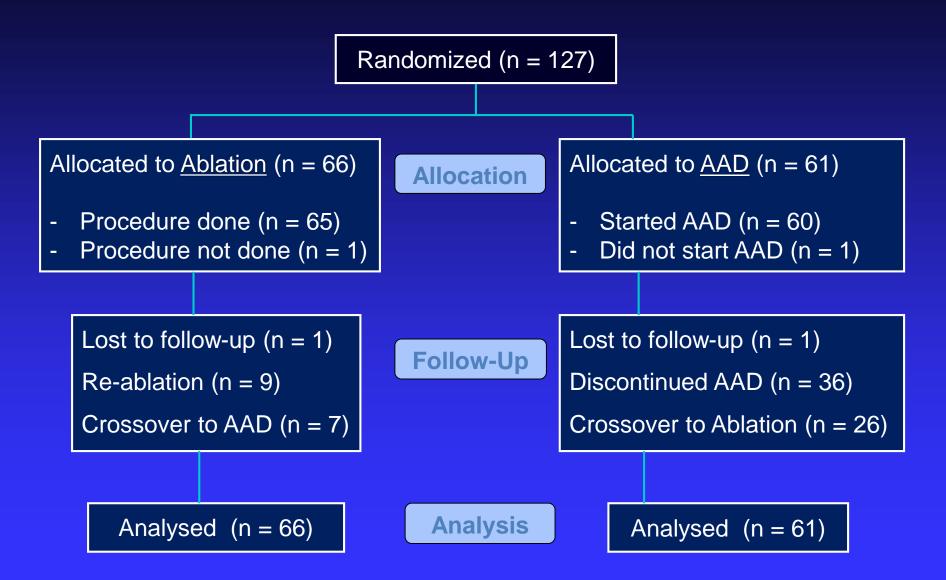
First Line <u>Radiofrequency Ablation versus Antiarrhythmic Drugs for</u> Atrial <u>Fibrillation Treatment: A Multicentre Randomized Trial</u>

Andrea Natale – Carlos A. Morillo

Carlos A. Morillo, Atul Verma, Karl H. Kuck, Girish M. Nair, Jean Champagne, Lawrence Sterns, Heather Beresh, Purnima Rao-Melancini, Stuart J. Connolly and Andrea Natale, on behalf of the RAAFT-2 investigators.

Sponsor: Population Health Research Institute McMaster University and Hamilton Health Sciences

Grant-in-Aid: Biosense Webster Inc., a Johnson & Johnson Co.

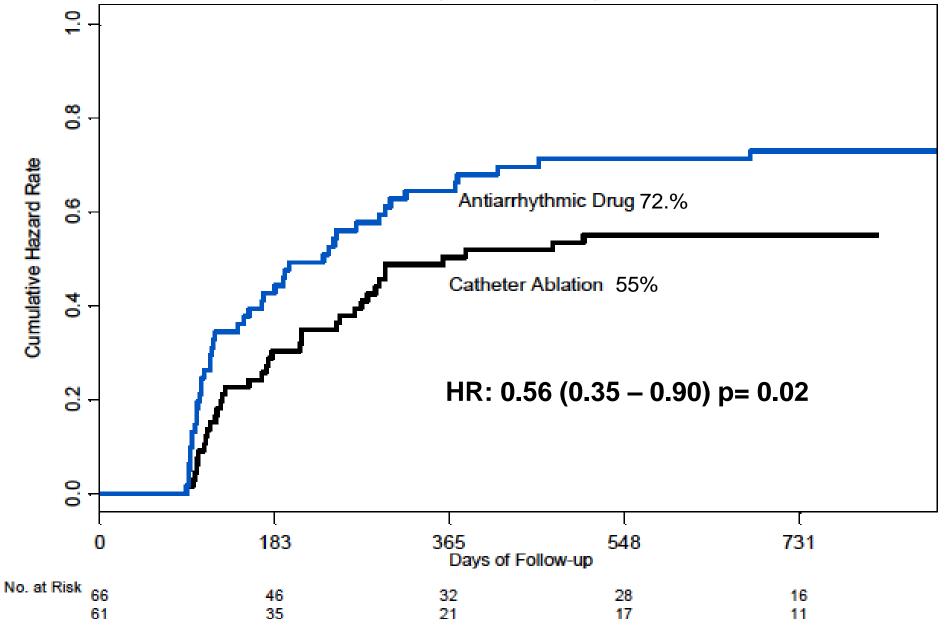


Population Health Research

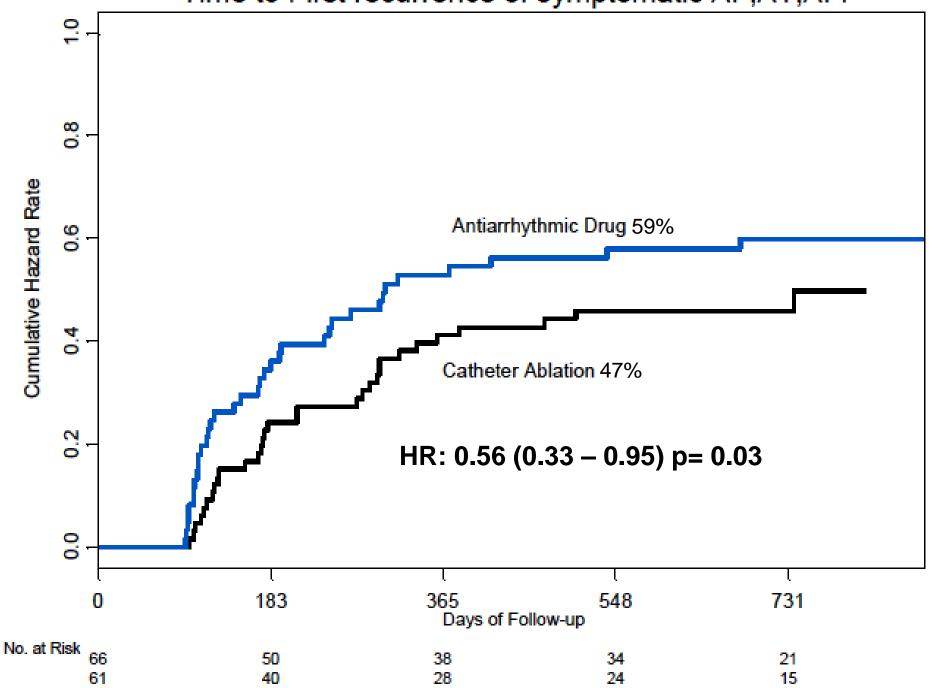
Primary Study Objective

To assess whether catheter-based pulmonary vein isolation is superior to antiarrhythmic drugs as **first line therapy** in patients with symptomatic paroxysmal recurrent atrial fibrillation, not previously treated with therapeutic doses of antiarrhythmic drugs.

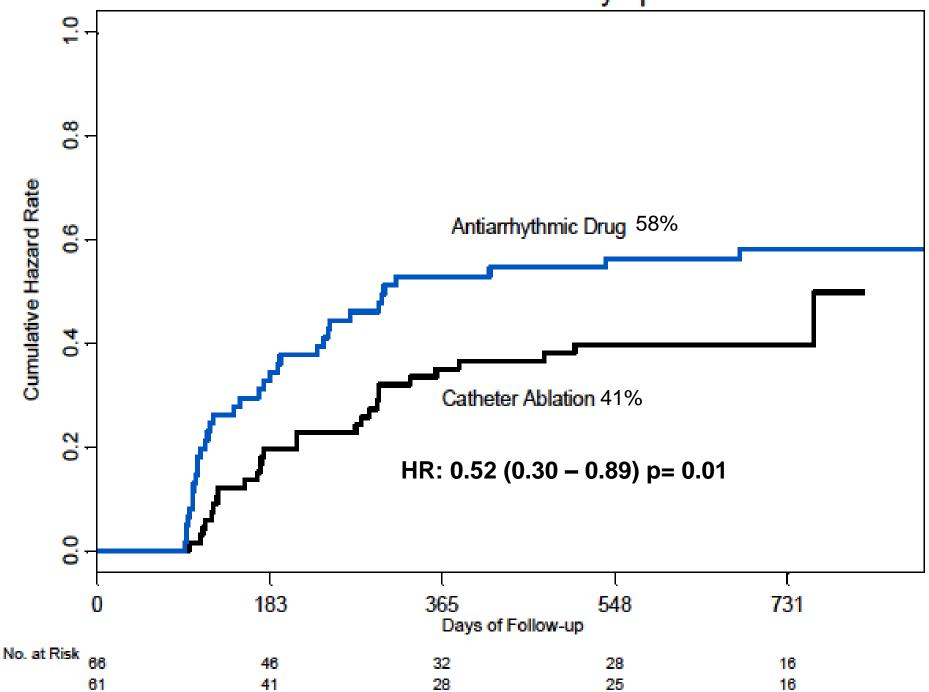
RAAFT Study – Patient Flow



Baseline Characteristics


	PV Catheter Ablation	Antiarrhythmic Drug
Age, mean (SD)	56.3 (9.3)	54.3 (11.7)
Gender, Male	77.3%	73.8%
Paroxysmal AF	86.4%	88.5%
Persistent AF	13.6%	11.5%
Number of AF episodes past 6 months, mean (SD)	47.7 (97.9)	33 (48.7)
4 to 11 episodes in past 6 months	42.4%	44.3%
11 to 89 episodes in past 6 months	30.3%	31.1%
Previous Electrical Cardioversion	33.3%	52.5%

Primary Efficacy Outcome


Time to First recurrence of symptomatic/asymptomatic AF/AT/AFI

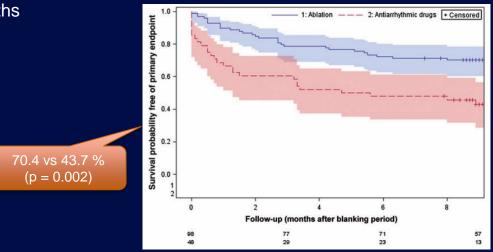
Time to First recurrence of symptomatic AF,AT,AFI

Time to First recurrence of symptomatic AF

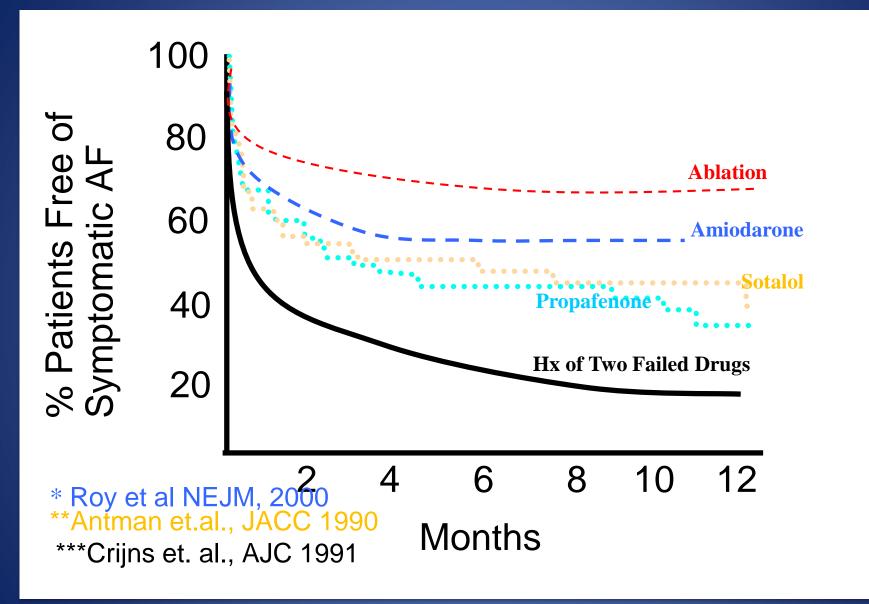
Primary Safety Endpoint

Time to First Occurence		
Ablation Group	AAD Group	
Death (0)	Death (0)	
Cardiac Tamponade (6.2%)	Torsade de pointes (0)	
Severe pulmonary vein stenosis <u>></u> 70% (1.5%)	Bradycardia leading to pacemaker insertion (0)	
Atrio-esophageal fistula (0)	Syncope (3.3%)	
Thromboembolism (Stroke, Non-CNS Embolism. (0)	QRS duration prolongation > 50% of baseline QRS duration (0)	
Vascular complications (arterial pseudoaneurysm , arteriovenous fistula and hematoma leading to transfusion (0)	1:1 Atrial flutter (1.6%)	
Phrenic nerve injury (0)	Any other significant adverse events that lead to ADT discontinuation. (14.3%)	
Cluster : 7.7%	Cluster: 19.7%	

Persistent Atrial Fibrillation


Catheter ablation vs. antiarrhythmic drug treatment of persistent atrial fibrillation: a multicentre, randomized, controlled trial (SARA study)

Symptomatic persistent AF


N = 146PVAI (circumferential) ± lines (LA), CFAE

Freedom from AT/AF

FU = 12 months

Mont et al. Eur Heart J. 2014;35:501-7

Roy et al. NEJM. 2000. Antman et al. JACC 1990. Crijns et al. AJC 1991

Catheter ABlation vs **AN**tiarrhythmic **Drug Therapy in Atrial Fibrillation** (CABANA) Trial

Douglas L. Packer MD, Kerry L. Lee PhD, Daniel B. Mark MD, MPH, Richard A. Robb PhD for the CABANA Investigators

Mayo Clinic Rochester Duke Clinical Research Institute National Heart, Lung, and Blood Institute

Purpose of CABANA

Compare Ablation to state-of-the-art drug therapy for patients with new onset / undertreated AF

Primary Endpoint

 All-cause mortality, disabling stroke, serious bleeding, or cardiac arrest

Major Secondary Endpoints

- All-cause mortality
- Death (all-cause) or cardiovascular hospitalization

CABANA Trial Design

R

1:1

Enroll patients with *new* onset or under-treated paroxysmaly persistent, or longstanding persistent AF who *warrant therapy*

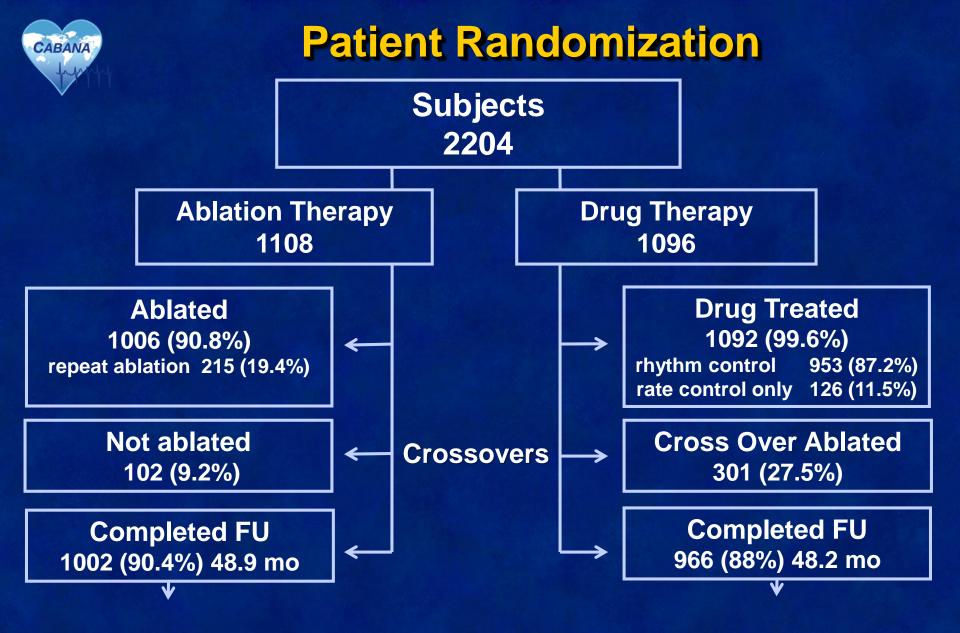
Key Inclusion Criteria • ≥65 years of age

- <65 years of age with ≥1 **CVA/CV** risk factor
- Eligible for ablation and
- ≥2 rhythm or rate control drugs

No Exclusion Criteria Identified

MAYO CLINIC

Unical Research Institute NIF


National Heart, Lung

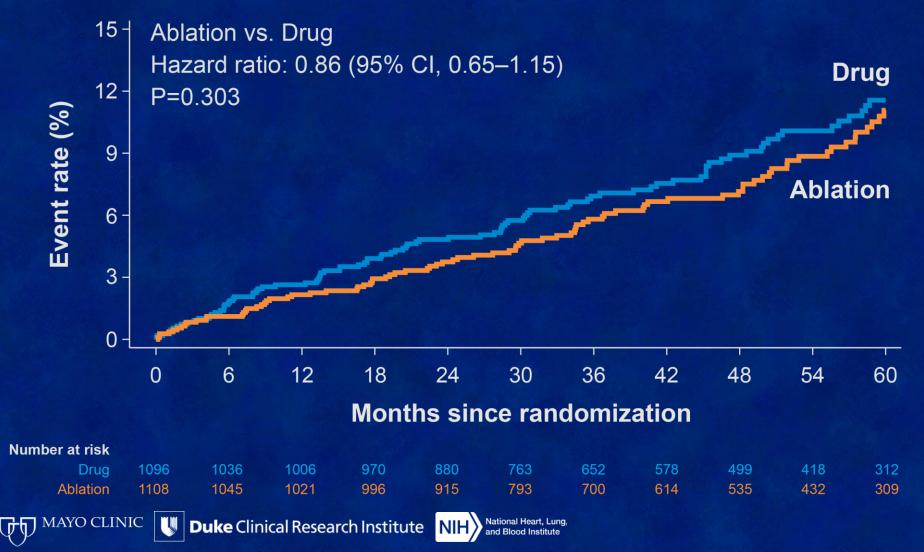
Ablation Therapy (1108)**Primary ablation:** • PVI/WACA **Ancillary ablation:** Linear lesions • CFAE

Anticoagulation

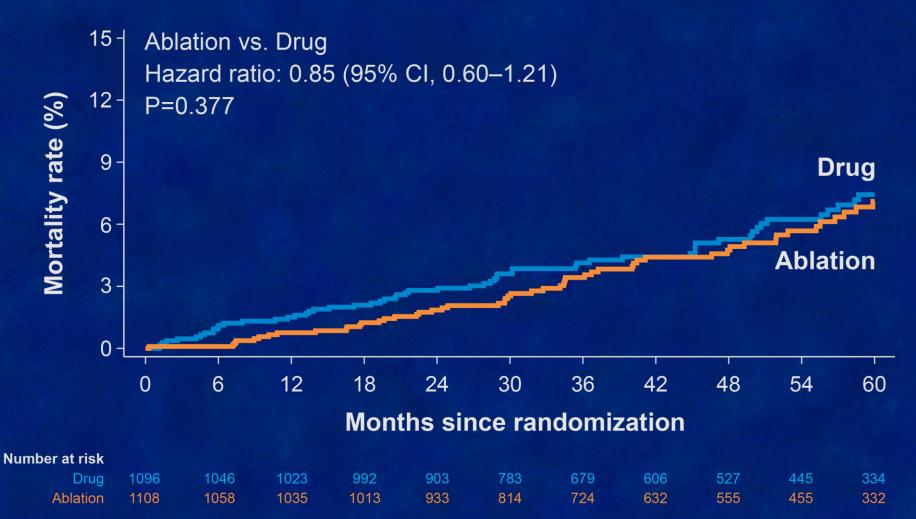
Drug Therapy (1096)Rate Control or

- Rhythm Control
- Anticoagulation

ᡗᢧ᠋᠋


GD MAYO CLINIC

Arrhythmia History in CABANA

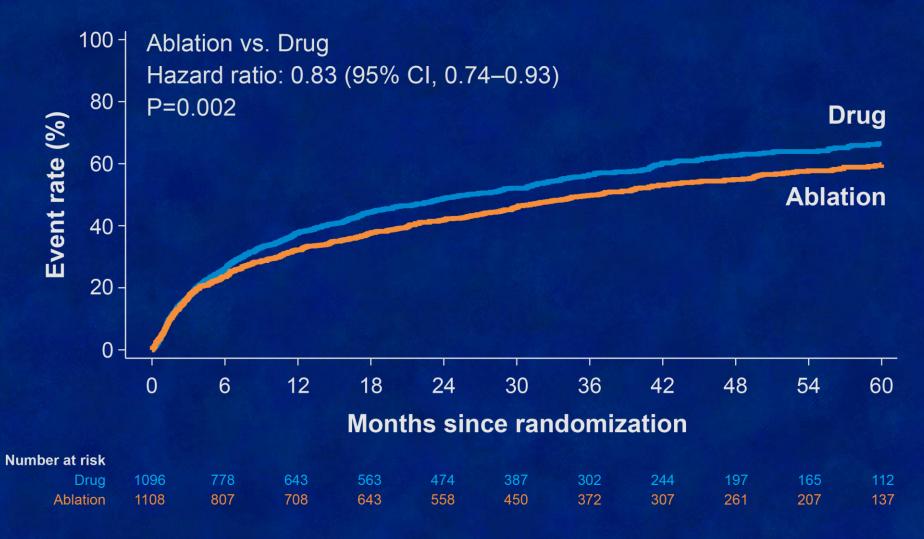

AF Type	Ablation	Drug Therapy
Paroxysmal	42.4%	43.5%
Persistent	47.3%	47.3%
Longstanding Persistent	10.3%	9.2%
Years since onset of AF [Median (Q1,Q3)]	1.1 (0.3, 4.1	1.1 (0.3, 3.9)
CCS Severity of AF		
Class 0-1	34.6%	26.7%
Class 2	31.8%	32.4%
Class 3-4	43.5%	41.0%
Prior hospitalization for AF	40.6%	38.8%

Primary Endpoint (Death, Disabling Stroke, Serious Bleeding, or Cardiac Arrest) (ITT)

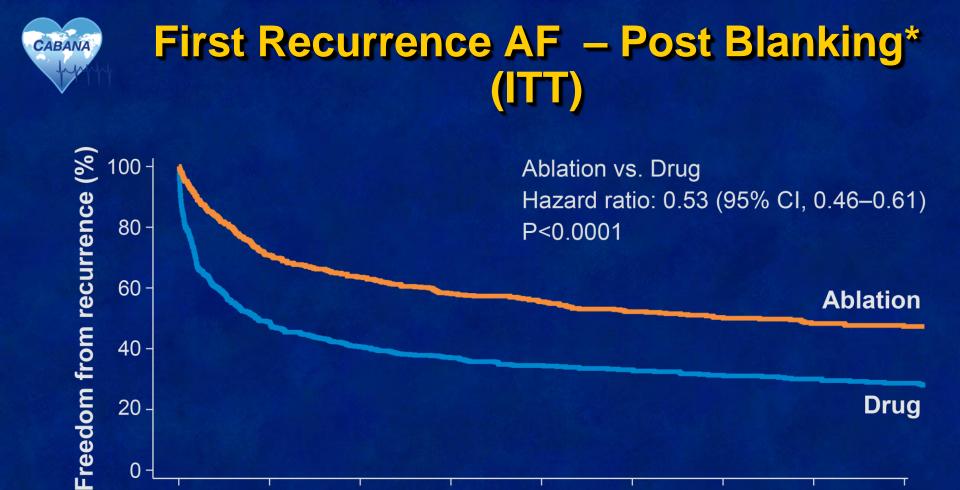
Estimates of All-Cause Mortality Risk (ITT)

Duke Clinical Research Institute NIH

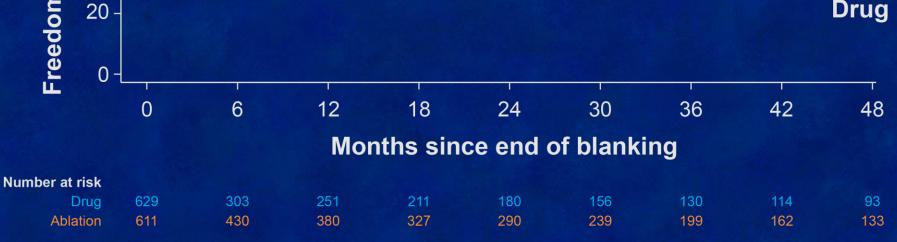
ᡗᠯ᠋ᡏ


AYO CLINIC

National Heart, Lung, and Blood Institute


ᡗᢆᢧᡦ

All-Cause Mortality or Cardiovascular Hospitalization (ITT)


AYO CLINIC 🔰 Duke Clinical Research Institute NIH

National Heart, Lung, and Blood Institute

Ablation

ᠿ᠋ᡕ MAYO CLINIC

40

Duke Clinical Research Institute

National Heart, Lung NIH

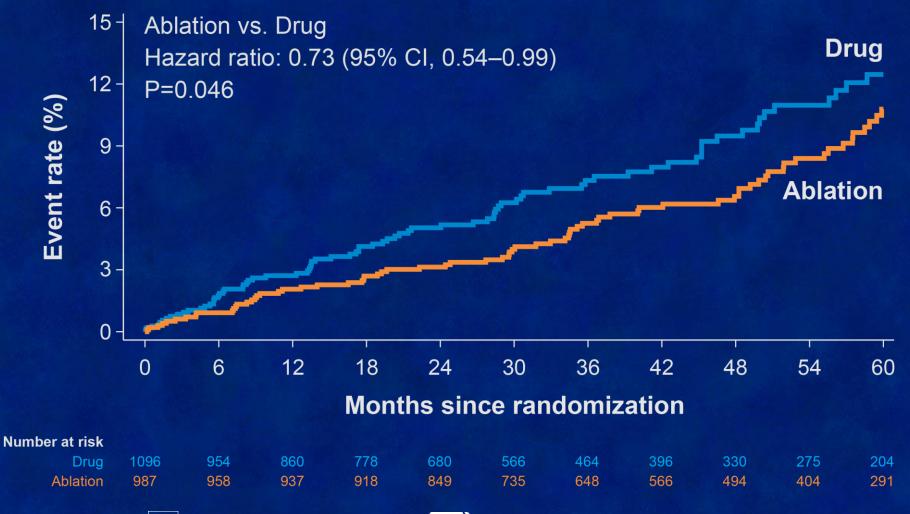
*Using CABANA Monitors

 \mathbf{G}

MAYO CLINIC

Primary and Secondary Outcomes (Treatment Received)*

	Ablation (N = 1307)	Drug (N = 897)	Hazard Ratio (95% CI)	P- Value
Primary Outcome	92 (7.0%)	98 (10.9%)	0.67 (0.50, 0.89)	0.006
Secondary Outcomes All-cause mortality Death or CV hospitalization	58 (4.4%) 538 (41.2%)	67 (7.5%) 672 (74.9%)	0.60 (0.42, 0.86) 0.83 (0.74, 0.94)	0.005 0.002


Unical Research Institute NIH

H National He and Blood I

ᡗᢧ᠋

Primary Endpoint (Death, Disabling Stroke, Serious Bleeding, or Cardiac Arrest (Per Protocol)

AYO CLINIC 🛛 🖤 Duke C

Duke Clinical Research Institute NIH National Heart, Lung and Blood Institute

Primary Endpoint Sub-group Analysis

All-Cause Mortality, Disabling Stroke, Serious Bleeding, Cardiac Arrest (Per Protocol

Group	Interaction P-Value	N	Hazard Ratio	95% CI	
All Subjects	and the second	2083	0.73	0.54, 0.99	⊢ ∎–
Age < 65 years old ≥ 65 and < 75 years old ≥ 75 years old	0.029	725 1069 289	0.41 0.67 1.54	0.20, 0.85 0.45, 1.01 0.77, 3.08	← ■ ■_
Sex Male Female	0.159	1311 772	0.62 0.99	0.42, 0.91 0.58, 1.68	
Minority status White Minority*	0.040	1883 200	0.84 0.32	0.60, 1.17 0.13, 0.75	⊢ ∎+1
AF type Paroxysmal Persistent Long-standing persistent	0.719	897 983 202	0.65 0.74 1.03	0.39, 1.08 0.49, 1.14 0.37, 2.86	
Years since onset of AF ≤ 1 year > 1 year	0.643	1000 1066	0.69 0.80	0.46, 1.04 0.50, 1.30	┝╼╾┥
Hypertension Absent Present	0.805	403 1679	0.66 0.74	0.30, 1.49 0.53, 1.04	
Hypertension with LVH Absent Present	0.919	1108 561	0.69 0.67	0.45, 1.05 0.36, 1.22	
Sleep apnea Absent Present	0.350	1598 484	0.80 0.58	0.55, 1.16 0.32, 1.03	
BMI < 30 ≥ 30	0.710	1003 1051	0.69 0.77	0.44, 1.06 0.50, 1.20	┝╼╼┤ ┝╼╌┤
CHADS-VASc score ≤ 2 > 2	0.928	907 1176	0.75 0.72	0.42, 1.32 0.50, 1.05	┠──■┼┥ ┠───┤
History of congestive heart failure No Yes	0.147	1772 309	0.84 0.51	0.59, 1.22 0.28, 0.91	
Baseline NYHA class No heart failure or Class I ≥ Class II	0.198	1327 740	0.89 0.59	0.58, 1.36 0.37, 0.93	
non-white race					0.25 0.5 1 2

* *Minority=Hispanic or Latino or non-white race*

The MAYO CLINIC

NIH National Heart, Lung, and Blood Institute

Ablation	
Better	

Drug

Better

Adverse Events in CABANA

V	Ablation		
	n = 1006		Pts Receiving Drug
Event	n (%)*		n = 1092
Catheter Insertion	39 (3.9)	Event	n (%)*
Hematoma	23 (2.3)	Hyper- or hypothyroidism	17 (1.6)
Pseudo aneurysm	11 (1.1)	Hypotension	3 (0.3)
Atrial venous fistula	4 (0.4)	Major proarrhythmic event (VT,VF)	9 (0.8)
Pneumothorax	1 (0.1)	Torsades des pointes	0
Sepsis	1 (0.1)	Atrial proarrhythmic event	1 (0.1)
DVT	0	Heart failure	0
Pulmonary embolus	0	Allergic reaction	7 (0.6)
Catheter Manipulation Within the Heart	34 (3.4)	Gastrointestinal abnormality	3 (0.3)
Pericardial effusion not requiring intervention	22 (2.2)	Moderate or severe diarrhea	0
Cardiac tamponade with perforation	8 (0.8)	Liver injury/failure	3 (0.3)
TIA	3 (0.3)	Pulmonary toxicity	1 (0.1)
Coronary occlusion	0	Blindness	0
Myocardial infarction	1 (0.1)	Kidney damage	0
Complete heart block	0	Renal failure	0
Valvular damage	0	Severe headache	0
Ablation-related Events	18 (1.8)		
Severe pericardial chest pain	11 (1.1)	* n (%) = number (percent) of patients who repo	orted drug-related adverse event.
Esophageal ulcer	5 (0.5)	Percent is calculated among all patients that	
Pulmonary Vein Stenosis > 75%	1 (0.1)		
Phrenic nerve injury	1 (0.1)		
Atrial esophageal fistula	0		
Medication-related Events	0		
Heparin induced bleeding	0		

Quality of Life in the <u>Catheter Ablation Versus</u> Antiarrhythmic Drug Therapy for Atrial **Fibrillation (CABANA) Trial**

Daniel B. Mark, MD, MPH

Professor of Medicine Vice Chief for Academic Affairs, **Cardiology Division Duke University Medical Center Director, Outcomes Research Duke Clinical Research Institute**

Financial Disclosures


Consulting CeleCor

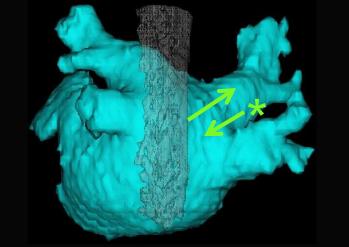
Research Grants NHLBI Eli Lilly & Company AstraZeneca **Oxygen Therapeutics**

Co-Investigators/QOL

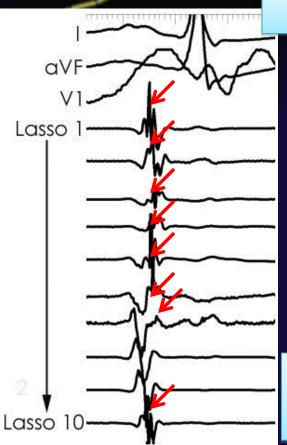
Team

Kevin Anstrom Shubin Sheng **Jonathan Piccini Yves Rosenberg** Khaula Baloch **Melanie Daniels Tristram Bahnson** J. David Knight **Jeanne Poole** Kerry Lee August 26, 2018 Douglas Packer

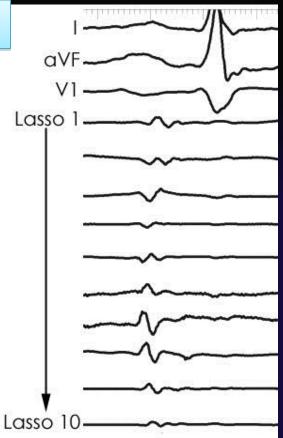

AFEQT Overall Score: Intention-to-Treat Analysis


	* 1º endpoint	<u>م</u>
Interval		(
Baseline		-(
3 Month		3
12 Month*		5
24 Month		4
36 Month	——————————————————————————————————————	2
48 Month	——————————————————————————————————————	3
60 Month		2
All		3

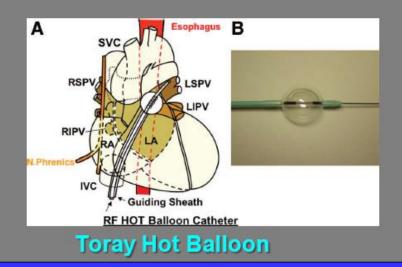
Adj Mean Diff Abl minus Drug Tx 95% CI) 0.2 (-1.9 to 1.5) 3.0 (1.3 to 4.7) 5.3 (3.7 to 6.9) 4.3 (2.7 to 6.0) 2.5 (0.8 to 4.1) 3.0 (1.1 to 4.9) 2.6 (0.3 to 4.8) 3.4 (2.1 to 4.8)

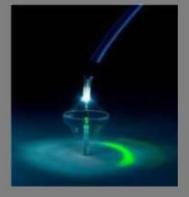

 \rightarrow

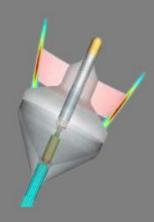
End Point Of Ablation



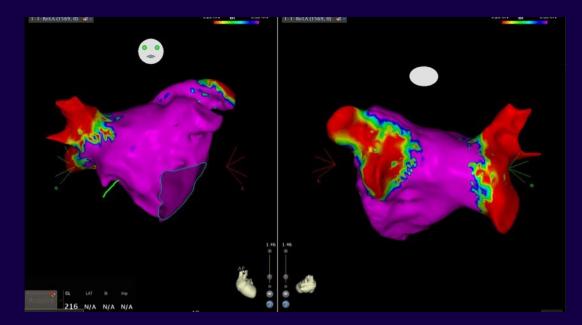
Endpoint: Entrance + Exit block

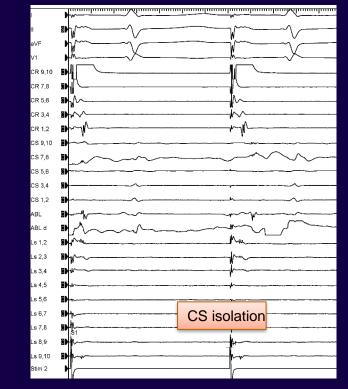

Pulmonary Vein Electrical Isolation


Current Status of Balloon Based Ablation Tools: where do they fit?

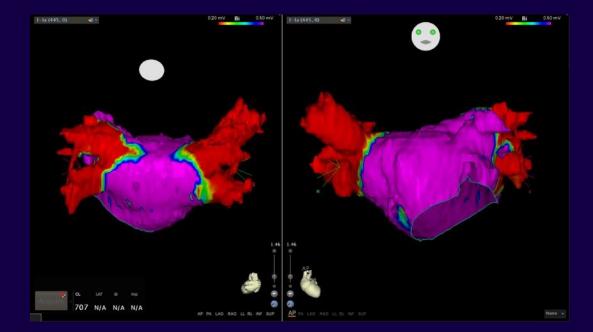

Arctic Front Cryoballoon

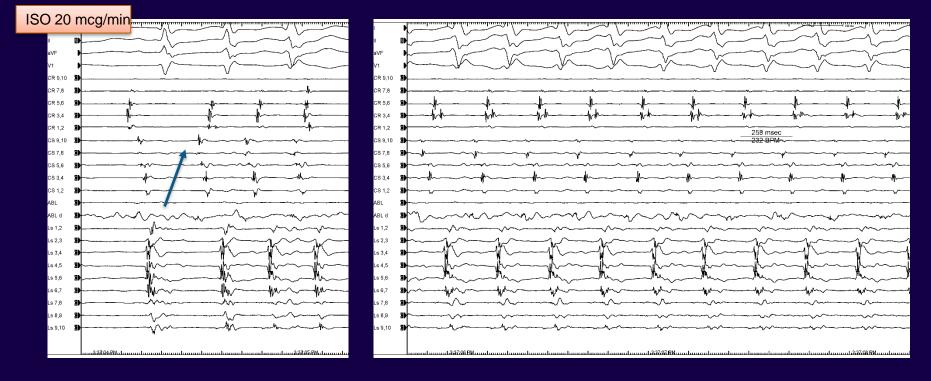
Laser Balloon




HIFU Balloon

Ideal Patients


- Paroxysmal AF
- Short episode duration (4 to 8 hours)
- Minimal Structural heart problem
- No co-morbidity


- 63 yo M
- drug refractory PAF
- 2 previous cryoablations
- late recurrence

- 67 yo M
- drug refractory PrAF
- 1 previous cryoablation
- recurrence

PULMONARY VEIN ANTRUM ISOLATION IN PATIENTS WITH PAROXYSMAL ATRIAL FIBRILLATION: MORE THAN A DECADE OF FOLLOW-UP

Natale et al. Circ Arrhyth 2016

Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin (TX) California Pacific Medical Center, San Francisco (CA)

Original Article

Pulmonary Vein Antrum Isolation in Patients With Paroxysmal Atrial Fibrillation More Than a Decade of Follow-Up

Yalçın Gökoğlan, MD; Sanghamitra Mohanty, MD, MS, FHRS; Mahmut F. Güneş, MD; Chintan Trivedi, MD, MPH; Pasquale Santangeli, MD; Carola Gianni, MD; Issa K. Asfour, BS; Rong Bai, MD, FHRS; J. David Burkhardt, MD, FHRS; Rodney Horton, MD, FHRS; Javier Sanchez, MD; Steven Hao, MD; Richard Hongo, MD; Salwa Beheiry, RN; Luigi Di Biase, MD, PhD, FHRS; Andrea Natale, MD, FHRS, FESC

Background—We report the outcome of pulmonary vein (PV) antrum isolation in paroxysmal atrial fibrillation (AF) patients over more than a decade of follow-up.

Methods and Results—A total of 513 paroxysmal AF patients (age 54±11 years, 73% males) undergoing catheter ablation at our institutions were included in this analysis. PV antrum isolation extended to the posterior wall between PVs plus empirical isolation of the superior vena cava was performed in all. Non-PV triggers were targeted during repeat procedure(s). Follow-up was performed quarterly for the first year and every 6 to 9 months thereafter. The outcome of this study was freedom from recurrent AF/atrial tachycardia. At 12 years, single-procedure arrhythmia-free survival was achieved in 58.7% of patients. Overall, the rate of recurrent arrhythmia (AF/atrial tachycardia) was 21% at 1 year, 11% between 1 and 3 years, 4% between 3 and 6 years, and 5.3% between 6 and 12 years. Repeat procedure was performed in 74% of patients. Reconnection in the PV antrum was found in 31% of patients after a single procedure arrhythmia after ≥2 procedures. Non-PV triggers were found and targeted in all patients presenting with recurrent arrhythmia after ≥2 procedures. At 12 years, after multiple procedures, freedom from recurrent AF/atrial tachycardia was achieved in 87%.

Conclusions—In patients with paroxysmal AF undergoing extended PV antrum isolation, the rate of late recurrence is lower than what previously reported with segmental or less extensive antral isolation. However, over more than a decade of follow-up, nearly 14% of patients developed recurrence because of new non-PV triggers. (Circ Arrhythm Electrophysiol. 2016;9:e003660. DOI: 10.1161/CIRCEP.115.003660.)

Key Words: atrial fibrillation
non-PV triggers
paroxysmal AF
pulmonary vein isolation
recurrence

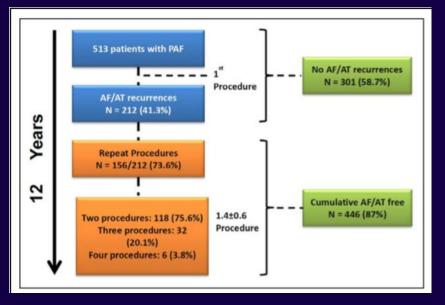
A trial fibrillation (AF) is the most common sustained arrhythmia associated with a variety of adverse outcomes, including death, stroke, heart failure, reduced quality of life, and increased rate of hospitalizations.¹ Because the initial observation of pulmonary veins (PV) triggering AF was described by Haissaguerre et al² in 1998, significant advances have been made in the catheter-based treatment of AF. Today, pulmonary vein antrum isolation (PVAI) is the cornerstone of catheter-based therapies in symptomatic, drug-resistant paroxysmal AF (PAF) patients.

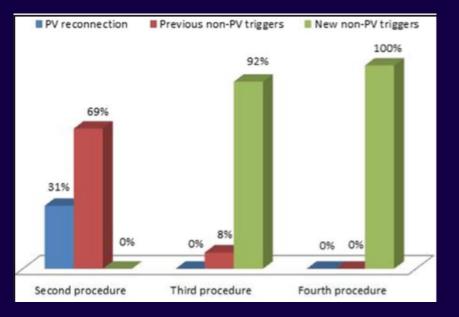
See Editorial by Kumar and Michaud

Long-term arrhythmia-free survival after AF ablation is important and highly desirable because this would have beneficial effects on patient prognosis, clinical decision-making process, and economic policies. Long-term success is defined as freedom from AF/atrial flutter (AFL)/atrial tachycardia (AT) recurrences after the 3-month blanking period through a minimum of 36-month follow-up from the date of the ablation procedure in the absence of Class I and III antiarthythmic drug (AAD) therapy according to the latest guidelines.³ Several published reports have provided information on the outcomes of AF ablation.⁴⁻²⁰ A meta-analysis evaluating studies reporting >3 years of outcome after catheter ablation (CA) found that nearly 80% multiprocedure success rates can be achieved in patients with PAF.²¹

Few series have reported long-term outcomes of AF ablation over 5 years.⁴⁶⁻¹⁰¹²⁻¹⁶ However, data on long-term follow-up of PVAI are limited, which would provide valuable information regarding the efficacy and safety of CA and necessity of repeat procedures. Therefore, we sought to assess the outcome of PVAI in patients with PAF over a follow-up period of more than a decade.

Received October 8, 2015; accepted March 1, 2016.

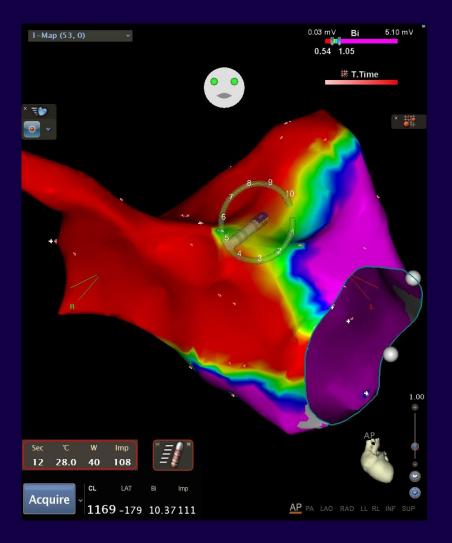

For the author affiliations, please see the Appendix section.

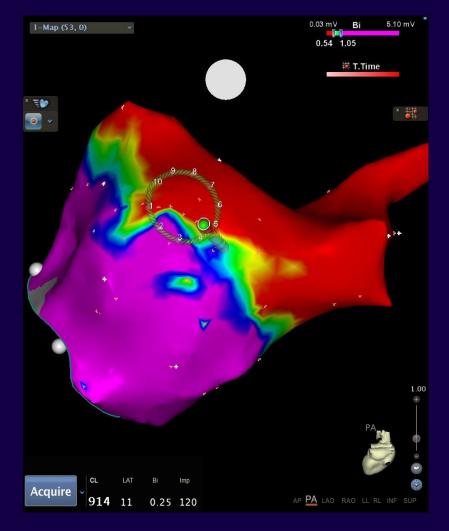

Correspondence to Andrea Natale, MD, Texas Cardiac Arrhythmia Institute, St David's Medical Center, 3000 N IH-35, Suite 720, Austin, TX 78705. E-mail dr.natale@gmail.com

^{© 2016} American Heart Association, Inc.

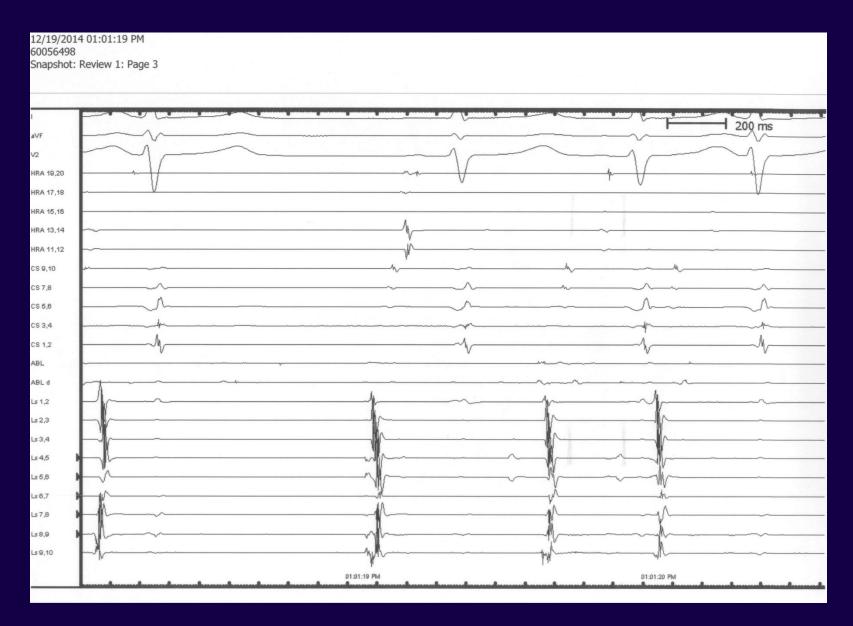
Circ Arrhythm Electrophysiol is available at http://circep.ahajournals.org

Variable	Number of Patients (N=513)
Demographics	
Male	374 (73%)
Age	54.4±10.6
BMI, kg/m ²	28.0±5.2
BMI ≥30 kg/m²	176 (34.3)
Duration of AF	48 (24, 80.5)
Comorbidities	
Hypertension	180 (35.1)
Diabetes mellitus	41 (8.0)
Dyslipidemia	228 (44.4)
CAD	85 (16.6)
History of Stroke/TIA	13 (2.5)
COPD	8 (1.6)
Sleep apnea	37 (7.2)
Preprocedure echo parameters	
LAD, cm	4.3±0.6
LVEF, %	54.4±7.6
Procedural parameters	
Procedure time, min	137.3±55.5
Fluoroscopic time, min	43.7±21.5
Radiofrequency time, min	57.1±24.3
Presence of scar	125 (24.4%)
Cardioversion during the procedure	64 (12.5%)
Baseline INR	1.9±0.5

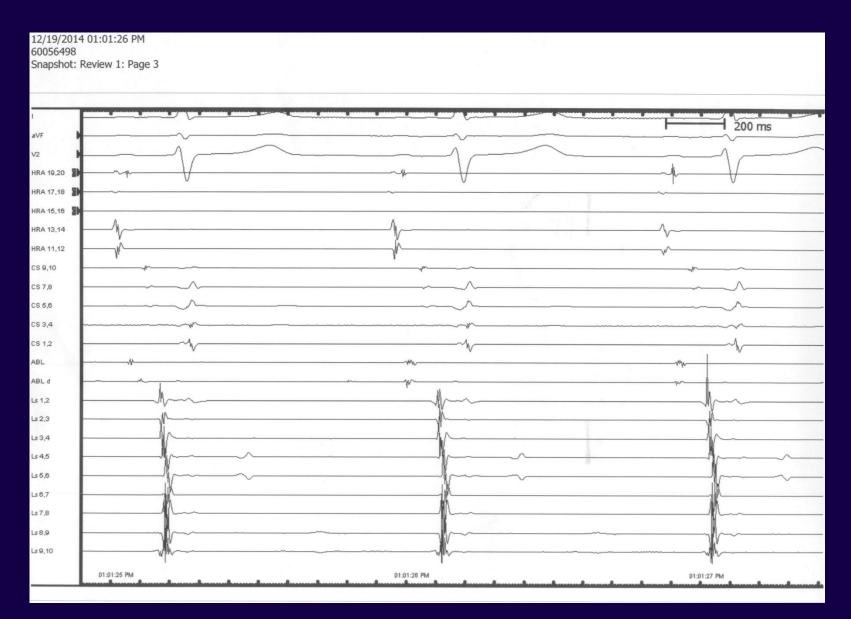


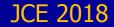

Circ Arrhythm Electrophysiol 2016;9:e003660

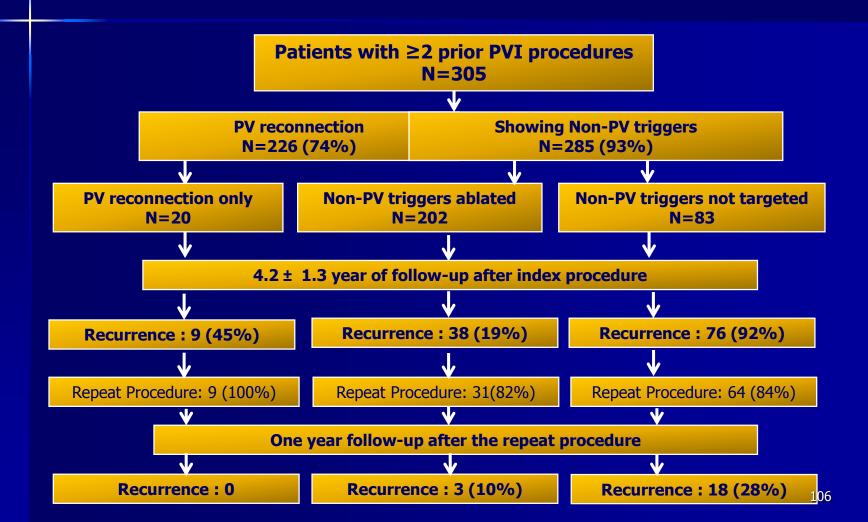
Patient History


Female patient now 84 year old who had and ablation for paroxysmal atrial fibrillation 12 years ago and did well till a few months ago when she experienced recurrences of atrial arrhythmias requiring cardioversion
 She was considered for a repeat procedure

CASE 1 Voltage Map

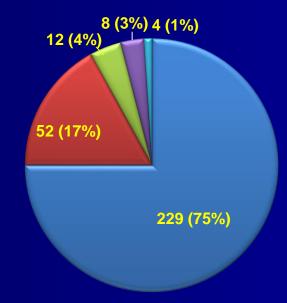


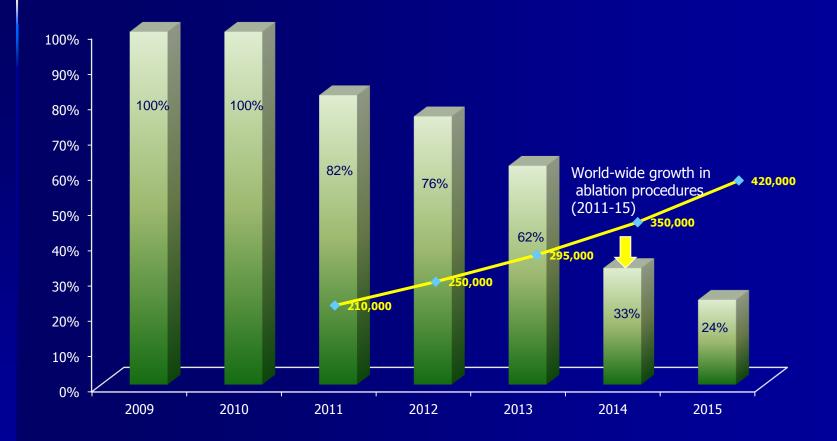



Groups With Higher Prevalence of Non PV Triggers

- Severe left atrial scarring
- Non paroxysmal AF
- Females
- Sleep apnea/obesity
- LV dysfunction
- Valve surgery
- Hypertrophic Cardiomyopathy
- Older Age

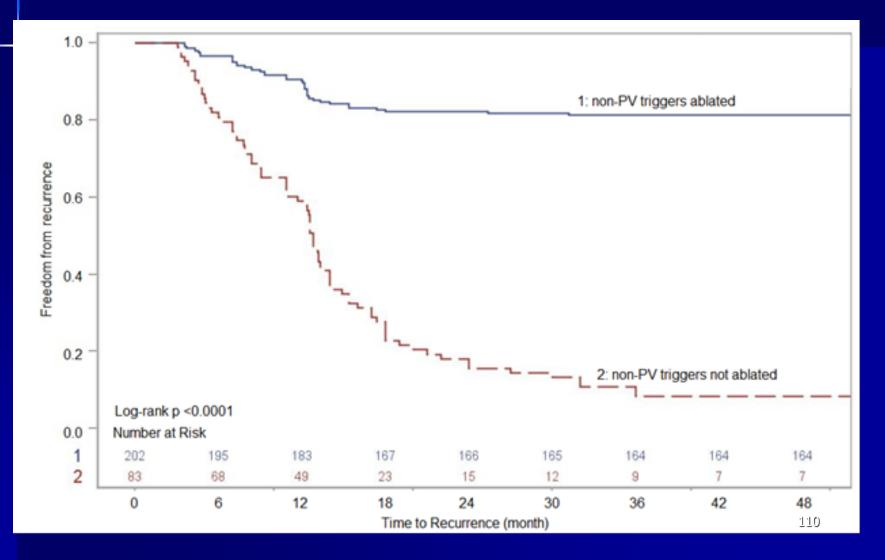
Procedural findings and ablation outcome in patients with atrial fibrillation referred after two or more failed catheter ablations

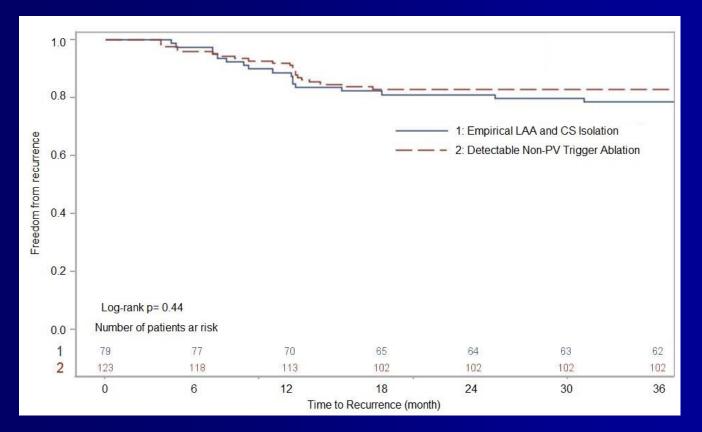

Study Design:


Study Population:

N = 305 Number of prior procedures: 2.4±0.8

■ 3rd proc ■ 4th proc ■ 5th proc ■ 6th proc ■ 7th proc

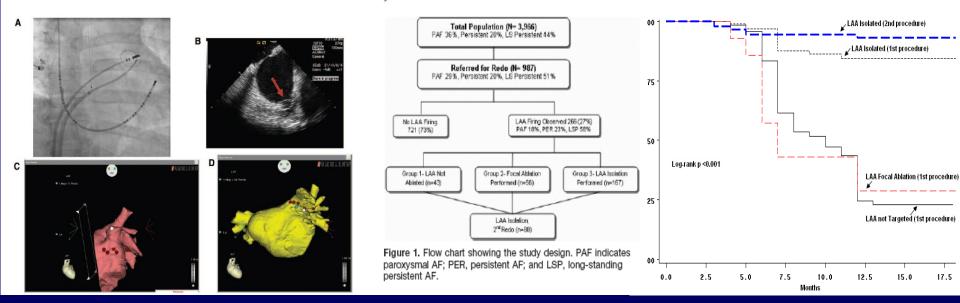

Incidence of PV Reconnection:


Index Procedure (n=305):

PV reconnection: 226 Non-PV triggers detected: 285 – Non-PV Trigger Ablated=202: PV reconnection: 123 Empirical LAA CS Isolation: 79 - Non-PV Triggers Not Ablated=83: All had PV reconnection Infrequent PACs

KM Curve Showing Recurrence-free Survival after the Index Procedure

KM curve showing freedom from recurrence (off-AAD) in patients undergoing Empirical LAA and CS Isolation and Ablation of Detectable Non-PV at the index procedure.


Kaplan-Meier curve showing freedom from recurrence (off-AAD) in patients undergoing Empirical LAA and CS Isolation (n=79) and Ablation of Detectable Non-PV (n=123) at the index procedure. Sixty-two of 79 (78%) and 102 of 123 (83%) were successful off-AAD respectively.

Outcomes In Long Standing Persistent Patients

Left Atrial Appendage : An Underrecognized Trigger Site of Atrial Fibrillation Luigi Di Biase, J. David Burkhardt, Prasant Mohanty, Javier Sanchez, Sanghamitra Mohanty, Rodney Horton, G. Joseph Gallinghouse, Shane M. Bailey, Jason D. Zagrodzky, Pasquale Santangeli, Steven Hao, Richard Hongo, Salwa Beheiry, Sakis Themistoclakis, Aldo Bonso, Antonio Rossillo, Andrea Corrado, Antonio Raviele, Amin Al-Ahmad, Paul Wang, Jennifer E. Cummings, Robert A. Schweikert, Gemma Pelargonio, Antonio Dello Russo, Michela Casella, Pietro Santarelli, William R. Lewis and Andrea Natale

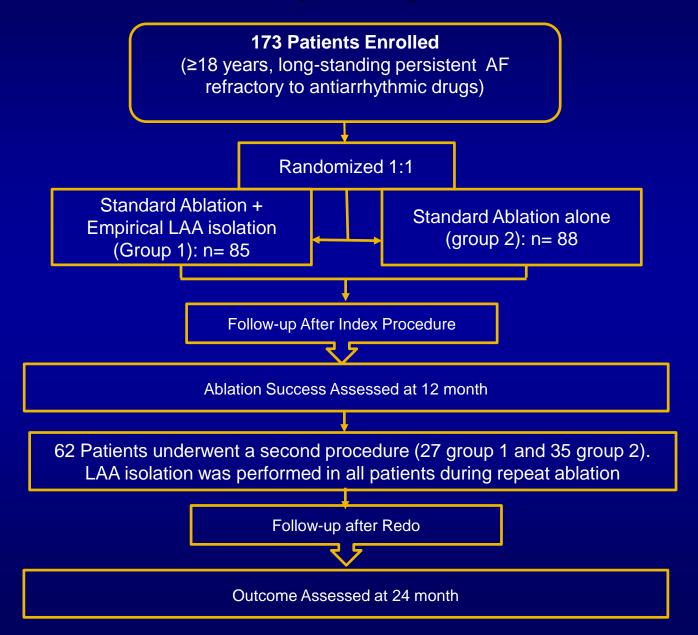
Di Biase, Natale A, et al. Circulation. 2010;122:109-118.

Effect of Empirical Left Atrial Appendage Isolation on Long-term Procedure Outcome in Patients with Long-standing Persistent AF undergoing Ablation: Results from the <u>BELIEF</u> Randomized Trial ClinicalTrials.gov Identifier: <u>NCT01362738</u>

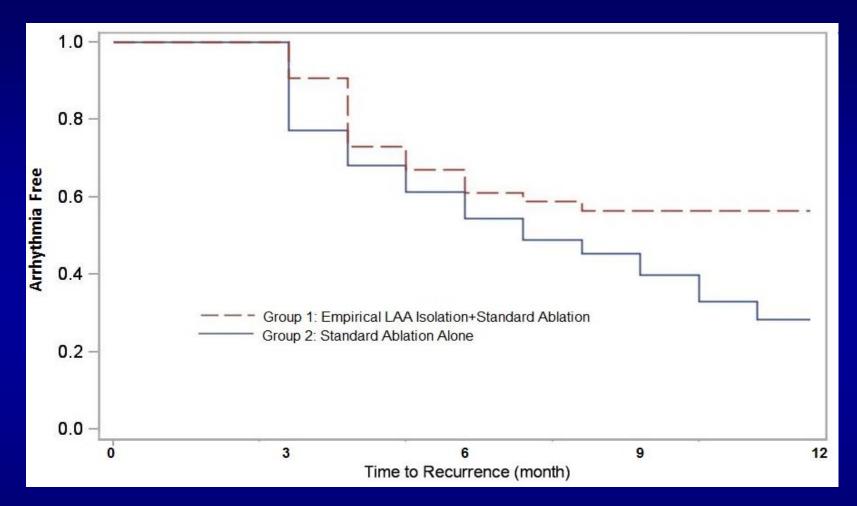
Luigi Di Biase, J. David Burkhardt, MD, Prasant Mohanty, Sanghamitra Mohanty, , Javier E. Sanchez, Chintan Trivedi, Mahmut Güneş, Yalçın Gökoğlan, Carola Gianni, Rodney P. Horton, G. Joseph Gallinghouse, Shane Bailey, Jason D. Zagrodzky, Steven C. Hao, Richard H. Hongo, Salwa Beheiry, Pasquale Santangeli, Michela Casella, Antonio Dello Russo, Amin Al-Ahmad, Patrick Hranitzky, Dhanujaya R. Lakkireddy, Claudio Tondo, Andrea Natale.

Texas Cardiac Arrhythmia Institute at St. David's Medical Center, Austin, Texas, USA;

California Pacific Medical Center, San Francisco, California, USA;


University of Kansas, Kansas City, USA;

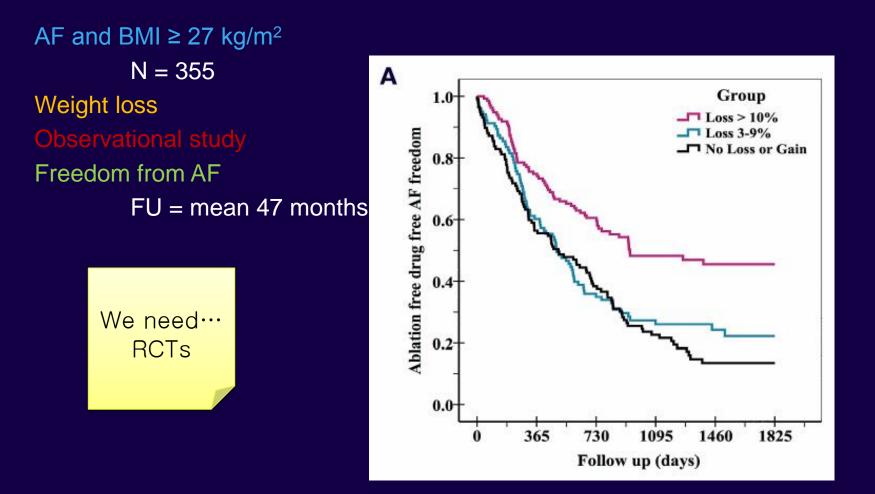
Cardiac Arrhythmia Research Centre, Centro Cardiologico Monzino IRCCS, Milan, Italy;


Di Biase, Natale et al JACC 2017

Di Biase, Natale et al ESC 2015

Study Design

Kaplan–Meier curves: single procedure success rate



At the 12 month follow-up, 48(56%) in group 1 and 25 (28%) in group 2 were recurrence-free off-AAD after a single procedure. (Log-rank p=0.001, unadjusted HR 1.92 [1.3 to 2.9]).

Di Biase, Natale et al JACC 2017

Long-Term Effect of Goal Directed Weight Management in an Atrial Fibrillation Cohort: A Long-term Follow-Up StudY

LEGACY AF

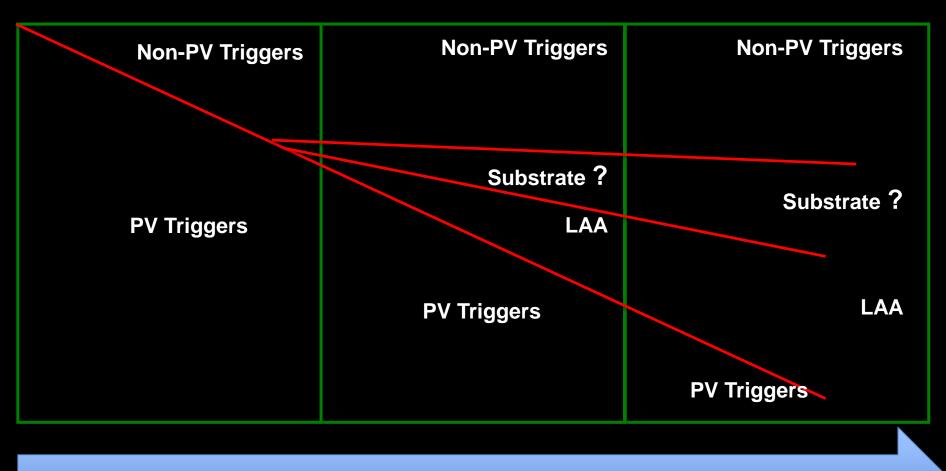
Pathak et al. J Am Coll Cardiol. 2015; epub ahead of print

Worldwide Survey on the Methods, Efficacy, and Safety of Catheter Ablation for Human Atrial Fibrillation

TABLE 4. Major Complications		
Complication Type	No. of Patients	% of Patients
For all types of procedures (n=8745 patients)		
Periprocedural death	4	0.05
Tamponade	107	1.22
Sepsis, abscesses, or endocarditis	1	0.01
Pneumothorax	2	0.02
Hemothorax	14	0.16
Permanent diaphragmatic paralysis	10	0.11
Femoral pseudoaneurysm	47	0.53
Arterovenous fistulae	37	0.42
Valve damage	1	0.01
Aortic dissection	3	0.03
For procedures involving left atrial ablation (n=7154 patients)		
Stroke	20	0.28
Transient ischemic attack	47	0.66
PV stenosis		
No. with $>$ 50% stenosis		
Acute	23	0.32
Chronic	94	1.31
No. with closure		
Acute	2	0.03
Chronic	15	0.21
Patients with symptoms		
Acute	з	0.04
Chronic	41	0.57
Patients undergoing intervention		
Percutaneous	51	0.71
Surgical	2	0.03
Grand total	524	5.9

With drugs, the overall discontinuation rate due to adverse events range from 11 to 18% (mortality ranged from 4 to 7%).

524


59

Cappato, Circulation 2005

Complication rate: 3,9% Deaths: 0,1%

Cappato, 2008

Relative contribution of different ablation targets in the AF disease continuum

Persistent

Paroxysmal

Long-standing persistent

"I have tremor cordis on me: my heart dances; but not for joy; not joy" The Winter's Tale, 1610, William Shakespeare

ATRIAL FIBRILLATION

AF management: Final Considerations

- Based on the present evidences, in patients who have failed one drug, ablation could be the next therapeutic step (class I, level of evidence A)
- In selected patients ablation could be consider as first line therapy (class IIa, level of evidence B)

Conclusion of the CABANA Trial

 Ablation did not produce a significant reduction in the primary endpoint and all-cause mortality.

CABANA

- The results were affected by cross-overs in both directions and lower than expected event rates.
- Ablation significantly reduced mortality or CV hospitalization by 17% compared to drug therapy.
- There also was a significant 47% reduction in recurrent AF with ablation compared to drug therapy.
- A 33% reduction in the primary endpoint and 40% mortality risk reduction was present when patients actually *underwent* ablation *(treatment received)*.
- Ablation is an acceptable treatment strategy for treating AF with low adverse event rates even in higher risk patients.

CRIFF

