ABSTRACT

Ixodes scapularis, commonly referred to as the deer tick, is the vector of Lyme disease and anaplasmosis; both illnesses are endemic to the upper Midwest. Avoidance of I scapularis bites is the primary preventative strategy for both infections. Antibiotic prophylaxis has been demonstrated to prevent Lyme disease, but similar studies have not investigated antibiotic prophylaxis for the prevention of anaplasmosis. Thus, recommendations regarding the management of I scapularis bites are focused on the prevention of Lyme disease.

This paper reviews the prevailing antibiotic prophylaxis recommendation for Lyme disease and the evidence supporting it. Given the additional risk of acquiring anaplasmosis from an I scapularis bite in the upper Midwest, this paper proposes an alternative regimen for antibiotic prophylaxis in this region.

INTRODUCTION

Lyme disease, the most common vector-borne illness in the northern hemisphere, is endemic to much of Wisconsin and Minnesota.1 In these areas, more than 20% of the Ixodes scapularis populations harbor Borrelia burgdorferi, and in many regions I scapularis has expanded its range.2,3 Primary and secondary prevention of Lyme disease assumed greater importance following the withdrawal of the only commercially available vaccine in 2002. I scapularis also transmits Anaplasma phagocytophilum, the bacterial agent of human granulocytic anaplasmosis (HGA), and species of Babesia, red blood cell parasites similar to malaria.2,6 The presenting symptoms and signs of HGA are generally nonspecific and include fever, headache, myalgia, cough, nausea, and abdominal pain; disease severity can range from an asymptomatic infection to death.5,6 Diagnosis is usually based on positive polymerase chain reaction (PCR) or serologic results. PCR is most sensitive, 67% to 90%, in the first week of illness;6 serologic testing looks for a 4-fold rise in IgM or IgG antibody titers between acute and convalescent specimens.6 HGA is usually treated with 10 days of doxycycline.5,6 The acute symptoms of babesiosis include fever, chills, sweats, myalgia, arthralgia, anorexia, nausea, and vomiting. The diagnosis is based on positive blood smears, serology, or PCR. Treatment is with either a combination of quinine and clindamycin or atovaquone and azithromycin.5 Both HGA and babesiosis are endemic to the upper Midwest, and vaccines to prevent either illness are lacking.5,6 The upper Midwest is also seeing increased cases of human monocytic ehrlichiosis (HME), caused by Ehrlichia chaffeensis, and a new Ehrlichia muris-like agent (EML) was recently discovered in Wisconsin and Minnesota.6,7 HME is transmitted by Amblyomma americanum (Lone Star tick);5,6 the vector for EML is unknown.7

Central to the primary prevention of Lyme disease, HGA, and babesiosis is the avoidance of I scapularis bites. The risk of these infections may be reduced by avoiding known tick habitat, wearing appropriate clothing (long-sleeved shirts and pants), the judicious use of insecticides (permethrin) and repellents (DEET), and performing body-wide tick checks to find and promptly remove ticks after spending time in tick environs.5

When those measures fail and an attached tick is found, antimicrobial prophylaxis assumes a greater role in disease prevention. Recommendations regarding antibiotic prophylaxis for Lyme disease have been formulated;4 similar recommendations for the prevention of anaplasmosis or babesiosis have not been made. The purpose of this paper is to review the prevailing recommendation for Lyme disease antibiotic prophylaxis following an I scapularis bite and the evidence supporting it. This paper will also discuss an alternative prophylaxis strategy that addresses the risk of acquiring A phagocytophilum from an I scapularis bite in the upper Midwest.
IDSA Recommendation for Lyme Disease Prophylaxis

The Infectious Diseases Society of America’s (IDSA) guidelines on Lyme disease contain recommendations regarding the management of I. scapularis bites. To prevent the development of Lyme disease following a bite, while avoiding the costs and adverse events associated with prophylactic antibiotics, the 2006 IDSA guidelines recommend a single 200-mg dose of oral doxycycline to prevent Lyme disease. This dose should be given only to patients who meet these, and other, criteria: (1) the involved tick was identified as an adult or nymphal I. scapularis by a reliable source, and the tick attachment time, based on observed engorgement or known time of bite, was greater than 36 hours; and (2) the bite occurred in an area where greater than 20% of the ticks are infected.

The above criteria were drawn from what was known about disease transmission. The risk of acquiring Lyme disease from any given bite is related to the duration of tick attachment and the B. burgdorferi infection rate among ticks in the area where the bite occurred. Studies in animal models demonstrate that the risk of disease transmission increases with increasing durations of tick attachment times. In general, attachment times under 24 hours have little chance of transmitting B. burgdorferi; at 60 hours, 50% of infected nymphs will transmit B. burgdorferi. Feeding to repletion (96 hours or more) results in 94% transmission rates. Lyme-endemic areas of the upper Midwest and Northeast are thought to have tick infection rates consistently higher than 20%, and many areas report infection rates above 40%. Thus, if a nymphal tick is allowed to feed for 60 hours in an area where the local tick infection rate is 30%, that particular bite has a 15% chance of transmitting B. burgdorferi to a human host. Ticks transmit A. phagocytophilum in a matter of hours.

The prophylaxis regimen recommended in the 2006 IDSA guidelines is drawn from a study by Nadelman et al. This randomized, placebo-controlled trial reported that administering a single 200-mg dose of oral doxycycline within 72 hours of an I. scapularis bite prevented the development of Lyme disease with a treatment efficacy of 87%.

The risk of adverse effects related to antibiotic prophylaxis was also a factor in the recommendation, presumably favoring the single oral dose doxycycline approach. The guidelines cited 2 earlier prophylaxis trials, noting the placebo groups’ risk of developing Lyme disease was roughly equal to the risk of an antibiotic-associated rash in the treatment groups.

There are several problems with the IDSA recommendations. The application of the required criteria to primary care practices in Wisconsin and Minnesota may be problematic. Medical professionals are encouraged to acquire the ability to identify ticks and assess engorgement, but physicians lack opportunities to do so. The assessment criteria are based on a study that employed a medical entomologist; community physicians are not likely to have, or develop, this level of expertise. External validity is the ability of the cause-and-effects relationships in an experimental study to be generalized to a clinic setting. External validity is “poor” if the study situation differs from the typical clinical situation in ways likely to affect outcomes, as is the case here. Furthermore, bites from ticks damaged or discarded following identification by non-medical personnel would not receive prophylaxis, yet withholding treatment solely on those grounds exposes patients to the risk of infection. In addition, physicians would need to know the current infection rates for various tick populations, but this data is often unavailable and tick infection rates in the same general locale vary significantly from year to year, potentially leading to inaccurate risk assessments.

The antibiotic regimen recommended by the IDSA is based on the single-dose doxycycline trial, but that trial cannot inform physicians regarding Lyme disease prevention. Lyme disease is a multi-systemic illness having both early and late manifestations; patients may be asymptomatic early in the infection only to develop symptoms of late disease after a latent period lasting months to years. The single-dose doxycycline trial employed a 6-week follow-up period, too short a timeframe to allow for the development of late Lyme disease. Thus, the ability of a single 200-mg dose of oral doxycycline to prevent Lyme disease following a tick bite was not demonstrated.

Nor did the study investigate the effectiveness of single-dose oral doxycycline on the prevention of early Lyme disease. Data from the Centers for Disease Control and Prevention indicates that 30% of all Lyme disease patients fail to exhibit an erythema migrans rash in the course of their illness, yet the trial’s primary endpoint was strictly limited to the development of an erythema migrans rash at the bite site. Three study subjects (1 in the doxycycline group and 2 in the placebo group) had clinical and laboratory evidence consistent with early Lyme disease, but because they lacked an erythema migrans, they were not considered “disease positives” when treatment efficacy was calculated.

The trial’s short observation period and narrow disease definition limit the scope of its findings. A single 200-mg dose of oral doxycycline successfully prevented the development of erythema migrans at the bite site, but its ability to prevent all stages of Lyme disease remains unknown.

While the risks of adverse events associated with antibiotic prophylaxis need to be considered, they should not be given undue weight. The risks for developing Lyme disease and an antibiotic-induced rash may be equal but the conditions themselves are not; a simple drug eruption and Lyme disease differ significantly in their potential to harm patients. There is substantial evidence detailing both the outstanding clinical safety of doxycycline, amoxicillin, and cefuroxime (other potential prophylactic agents) and the consequences of late Lyme disease,
which can be quite severe and irreversible.21-26 It is concerning that the guidelines’ developers based their prophylaxis recommendation on the single-dose doxycycline study, knowing it was unable to assess the risks of treatment failure.5

Single-dose doxycycline carries a risk that was not discussed in the original trial or the IDSA guidelines,5,8 namely, the risk of developing seronegative Lyme disease. One subject in the doxycycline arm of the trial developed an erythema migrans but remained seronegative by enzyme-linked immunosorbent assay (ELISA) testing. First described by Dattwyler et al and confirmed by others,27-30 seronegative Lyme disease may be induced by administering insufficient antibiotics early in the course of the infection, thereby altering the immune response and diminishing antibody production such that these patients, though ill, have negative results on serologic testing. This is an important consideration because seronegative patients who remain ill will likely experience treatment delays, which have been associated with poorer outcomes.31,32

The IDSA recommendation on antibiotic prophylaxis does not address the realities of the upper Midwest, namely, the possibility that an I scapularis bite might transmit A phagocytophilum or simultaneously transmit B burgdorferi and A phagocytophilum.2,3,33 In a dual-exposure model, single-dose oral doxycycline was only 20% and 30% effective in preventing infection by B burgdorferi and A phagocytophilum, respectively;34 its effect on serologic testing for HGA is unknown.

In summary, the IDSA recommendation for antibiotic prophylaxis of I scapularis bites using single-dose doxycycline may not be appropriate for use in the upper Midwest because: (1) it mandates clinical criteria that may be difficult to meet; (2) it is based on a poorly designed trial that was unable to demonstrate treatment effectiveness for Lyme disease prevention but did document the development of seronegative Lyme disease when treatment failed; (3) it assessed risk by comparing the number of adverse events from antibiotics to the number of treatment failures instead of discussing the relative significance each risk poses for a patient’s health; and (4) the effects and effectiveness of this strategy on the diagnosis and treatment of patients with anaplasmosis alone is unknown, while the ineffectiveness of this approach for dual-exposure has been demonstrated in animal models.

An Alternative Recommendation for the Management of Ixodes Scapularis Bites

Given that the rate of B burgdorferi-infected ticks in the upper Midwest is high,2,3 that physicians may be unable to determine attachment times based on tick engorgement, and that the optimum regimens for the prophylaxis of Lyme disease and anaplasmosis are unknown, physicians may offer doxycycline 100-mg twice daily for 10 to 20 days to patients with I scapularis bites.

The evidence supporting this recommendation is limited, and the duration of treatment is deductive. The absence of prophylaxis trials for anaplasmosis and the limited understanding of the mechanisms underlying Lyme disease latency and persistence introduce significant uncertainties. Three prospective trials on Lyme disease prophylaxis, using 10 days of antibiotic therapy, were unable to demonstrate treatment efficacy.35-37 Thus, the shorter end of the duration range simply represents an accepted duration of treatment for HGA and the minimum treatment duration for early Lyme disease.5,6

Justification for 20 days of treatment comes from animal studies of prophylaxis. A sustained-release, injectable form of doxycycline, with measurable plasma levels for 19 days, was 100% effective for preventing Lyme disease alone. In a dual-exposure model, this regimen was also 100% effective for preventing B burgdorferi and A phagocytophilum infections.34,38

Doxycycline is the preferred antibiotic in appropriate patient populations because amoxicillin and cefuroxime are not effective for HGA.6 However, given their effectiveness in early Lyme disease and contraindications for the use of doxycycline in children and pregnant women, amoxicillin and cefuroxime may be appropriate alternatives in some circumstances. However, patients would require continued observation to detect a potential A phagocytophilum infection.29,39,40 Recommending 10 to 20 days of antibiotics for an I scapularis bite creates an increased risk for adverse events, especially for those patients who have multiple bites in a single season;8 the increased risk may make this approach appear excessive to some. Taking doxycycline with food and administering probiotics should reduce or eliminate many of the minor adverse effects (nausea, vomiting, abdominal pain, and diarrhea) encountered in the single-dose doxycycline trial.41

CONCLUSION

Lyme disease and anaplasmosis are significant and endemic illnesses in the upper Midwest. Antibiotic prophylaxis is an appropriate response to I scapularis bites in this region.2-6 The differences between the alternative and IDSA recommendations for the management of tick bites reflect the uncertainty of clinical practice when the evidence is scant or absent and the limited usefulness of generalized guidelines in specific clinical situations.42 While some physicians may prefer to follow the IDSA recommendation on prophylaxis, others may accept the increased risk of adverse events to gain improved efficacy and, therefore, will wish to follow the alternative recommendation. In keeping with the American Medical Association principles of informed consent and patient autonomy,43,44 physicians should fully explain each prophylaxis strategy and consider the patient’s goals and values before making their selection.
Acknowledgments: The author would like to thank Bea Szantyr, MD, and Ralph Magnusson, MD, for their assistance.

Funding/Support: None declared.

Financial Disclosures: Dr Maloney is owner of Partnership for Healing and Health, Ltd, a provider of accredited continuing medical education on Lyme disease. Dr Szantyr has received honoraria for professional education lectures on Lyme disease and related tick-borne disorders.

REFERENCES
41. Medical Letter. 2007; 49(1267):66-68.