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1 Introduction

What drives differences in educational attainment and labor market success? Research since

Coleman et al. (1966) and Jencks and Brown (1975) indicates that the most of the variation is

attributable to family-level influences associated with parents or to idiosyncratic person level in-

fluences. However, research and introspection suggest that broader environmental factors associ-

ated with neighborhoods, schools, and regions also play a role. Given the prevalence of sorting,

neighborhood-, school-, and regional-level determinants of success could potentially be an im-

portant source of disparities in adult outcomes along the lines of race, ethnicity, family structure,

parental education and parental income.

In this paper, we assess the relative contributions of combined student/family-level influences,

neighborhood influences, school influences, and regional influences to students’ educational attain-

ment and early career wages, building on a vast literature. We consider both observed and unob-

served factors. And we allow the effects of neighborhood, school, and regional influences to depend

upon student characteristics.

Designers of policy interventions often must choose whether to target neighborhoods, schools,

or broader local or regional areas. Policies aimed at reducing the availability of drugs, poverty, crime

and violence, and at improving the physical environment and providing recreational opportunities

are frequently targeted to neighborhoods. The Harlem Children’s Zone, evaluated by Dobbie et

al. (2011) is an example of a community-focused approach aimed at providing a positive social

environment outside of school.

Policies promoting access to good schools take two main forms: policies designed to im-

prove schools directly, such as curriculum reform, increased spending, accountability systems, and

changes in personnel practices, or policies that seek to improve access to good schools by broaden-

ing school choice. These include school busing programs, private school vouchers, open enrollment,

and charter schools.

Similarly, regional policy influences economic development and access to higher education.

The availability of colleges and universities and efforts to stimulate local labor demand may have

important effects on educational attainment and wages.

Policy makers wish to know which policies with which target areas or locations are most ef-

fective, but research has been very slow in providing answers Katz (2015). We focus on the more

modest goal of measuring the overall importance of neighborhoods, schools, and local areas for

adult outcomes. This provides information about where inequality arises, and therefore guidance

about where the most potential progress can be made, even if it does not provide a specific plan for

how to reduce it.

The efficacy of particular policies and the relative importance of neighborhood vs. school. vs.

broader local area inputs more generally is likely to vary across the student population. For ex-

ample, school-level dropout prevention policies may improve outcomes for struggling students but
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negligibly affect more mature or better-supported students, while opening a satellite campus of a

flagship research university may improve attainment primarily for high achieving but low income

students. Such considerations motivate us to work with a model that permits the relative sensitivity

of particular subpopulations to external inputs to vary across external environments (i.e. neighbor-

hoods/schools/local areas).

We are far from the first to consider a model in which individual characteristics interact with

observed and unobserved school and area characteristics. Indeed, the spread of multilevel mixed ef-

fects modeling (aka., hierarchical linear models and random coefficients models) was greatly stim-

ulated by interest in the interplay among the student, classroom, and school factors that determine

educational outcomes.1 We estimate a multilevel mixed effects specification of outcomes in this

paper.

Perhaps the single most difficult challenge in assessing the importance of school and location

for the success of children is that families sort into them. As Durlauf (2004) and Graham (2016)

emphasize, differences in outcomes across neighborhoods, for example, combine the causal effects

of neighborhood with differences across neighborhoods in the observed and unobserved attributes of

children that matter for their outcomes. The same issue arises in assessing schools. The multilevel

modeling literature is mindful of the potential for bias posed by sorting across schools and location,

but has not addressed it.

Our main methodological contribution is to show that, even in the presence of endogenous sort-

ing of individuals to groups, multilevel mixed effects estimates still contain sufficient information

to distinguish among four sources of the variation in outcomes. The sources are individual contri-

butions that are common across groups, group contributions that are common across individuals,

contributions that consist of interactions between student and group inputs, and a set of ambiguous

contributions that either reflect common group inputs or group-averages of individual inputs. We

then show that this decomposition is sufficient to generate meaningful (albeit conservative) answers

to two key questions. How much do the schools and areas we choose for our children matter for their

outcomes? And how much does the importance of schools and locations depend on the students’

and parents’ own inputs?

To address the sorting problem, we build upon Altonji and Mansfield (2016) (hereafter, AM).

AM work with a fairly standard model of choice of school/neighborhood combinations based upon

willingness to pay for the attributes associated with each choice (air quality, noise, access to trans-

portation, crime, school quality, etc.). They show that the choice model implies a relationship be-

tween school/neighborhood averages of observed student characteristics and averages of unobserved

student characteristics. Consequently, school/neighborhood averages of observed student character-

istics can serve as controls for the averages of unobserved student characteristics that would oth-

erwise bias estimates of the importance of school and neighborhood effects. Our methodological

contribution is to extend AM’s identification results to allow for interactions between student-level
1Garner and Raudenbush (1991) is a good example. The early editions of Goldstein (2011) and Raudenbush and Bryk

(2002) became key references for empirical researchers.
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characteristics and both observed and unobserved group-level (i.e. neighborhood/school/regional)

characteristics.

A precise statement of our theoretical results and the assumptions they require is best postponed

until later in the paper, but they may be summarized as follows. Roughly speaking, we study the

coefficient vector r2 on the interaction between a student characteristic, say mother’s education, and

a set of observed “group” characteristics, where “group” may refer to the neighborhood, the school,

and/or the local area. We maintain the assumptions justifying AM’s control function approach

(reviewed below) and add additional assumptions.2 Under these assumptions, we show that r2 is the

sum of two components. The first is the causal effect of the interaction between mother’s education

and the observed group characteristics. The second is the effect of the interaction between mother’s

education and the part of the contribution of unobserved group characteristics that covaries with

the observed group characteristic, holding student characteristics fixed. The key point is that the

estimates of r2 reflect interactions between the student and the environment and not sorting.

We also study the coefficient r1 on the interaction between a student’s characteristic and both ob-

served and unobserved peer characteristics that matter for the outcome. We show that r1 is the sum

of the causal effects of (1) interactions between the student’s characteristic and observed and unob-

served peer characteristics and (2) interactions between the student’s characteristic and unobserved

school and location characteristics, such as the quality of a principal.

What about the main effects of school and location on student outcomes? We extend AM’s

results and show that even in the presence of endogenous sorting and interactions involving unob-

served school and area characteristics, the coefficient on observed school and area characteristics

(referred to as (G2 below) captures causal effects and is not contaminated by sorting. It picks up

the causal effect of the school and area characteristics plus a second component that reflects their

association with unobserved school and area characteristics that affect outcomes.

Finally, we consider the error components in the model. We show that AM’s result that school

and neighborhood error components are not contaminated by the effects of sorting carries over to

the model with interaction effects, but only under somewhat stronger assumptions. We also justify

a causal interpretation for a random slope coefficient that captures the interaction of an observed

student characteristic with an index of unobserved school and area characteristics.

As in AM’s analysis, the use of school/location averages of observed student characteristics

to control for school/location averages of unobserved characteristics is likely to lead to an under-

statement of the importance of school and neighborhood. The main reason is that by treating the

averages as controls that absorb sorting bias, we are discarding the main effects of peers on out-

comes. A second reason is that the group averages will absorb a portion of the unobserved school

or area components that are uncorrelated with the observed components and are correlated with the

amenities that families sort on. Consequently, our analysis only places a lower bound on the overall

2We delay discussion of the assumptions, but the most important additional one is that the within group covariance
between student characteristics that influence treatment effect heterogeneity (mother’s education in the example) and
other outcome relevant student characteristics do not vary with outcome relevant school and location characteristics.
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importance of school and area factors for student outcomes.

Using the above analysis as the foundation, we present and interpret empirical mixed effects

estimates from two cohort-specific panel surveys, the National Educational Longitudinal Survey

of 1988 (NELS88) and the Educational Longitudinal Survey of 2002 (ELS2002). These data sets

provide a rich set of student characteristics for samples of students from each of a large sample

of schools. Students are followed for several years, which permits investigation of longer run out-

comes such as high school graduation, attendance at a four year college, and attainment of a college

degree. In addition, they contain location of residence and school identifiers. Specifically, NELS88

identifies the ZIP code of residence for students attending the same 8th grade. The ELS2002 data

contain the block group of residence when the student is in 10th grade. Using the ELS data we

experiment with both ZIP code and block group as the definition of “neighborhood”.

We restrict attention primarily to interactions between regression indices of student level and

school, neighborhood or commuting zone level variables, but also include a small number of inter-

actions involving particular student characteristics, such as underrepresented minority status. This

is due to a need for parsimony, but also reflects an absence of prior consensus from the literature

about which school and location variables matter most, let alone matter differentially by student

type. Even with a small set of interactions, estimating a non-linear mixed effects model with four

levels places heavy demands on our data, particularly given limited samples of students per block

group and school. Consequently, some of our estimates are imprecise. However, the empirical

approach we demonstrate in this paper could be implemented more richly with the type of linked

administrative data that is currently being developed.

Our estimates of the effects on education outcomes of interactions between observed student

characteristics and either school and area composition (r1 above) or non-compositional direct school

and area characteristics (r2) are typically small and imprecise. They do not provide strong evidence

that the latent variable governing educational attainment depends on the interaction between ob-

served student characteristics and characteristics of the school and commuting zone. We do find

that important differences in treatment effects exist across students, but they are primarily due to

the fact that the probit function that we use to map the latent index into the outcome probability for

binary outcomes naturally features treatment effect heterogeneity. The binary outcomes of students

with characteristics suggesting they are close to the decision margin are more sensitive to the school

and location environment they experience.

We use a version of the model without interaction terms to separately quantify the degree of sort-

ing at the immediate neighborhood, the school and associated broader neighborhood, and the region

(commuting zone) levels and perform variance decompositions of alternative educational attainment

measures as well as log wages at age 25. Our four-level commuting zone, school, neighborhood,

and individual variance decompositions are consistent with prior work based on two level models

featuring individual and school (Coleman et al. (1966), Jencks and Brown (1975), Betts (1995),

Altonji and Mansfield (2011) and Alexander and Morgan (2016)) or individuals and neighborhood

(Solon et al. (2000)) in that they indicate that the individual-level factors dominate. However, our
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decomposition provides further insights about the relative importance of the four levels. For exam-

ple, in ELS for college attendance the within-neighborhood (block group) share is 73 percent, while

the neighborhood share is 2.7 percent, the school share is 14.8 percent, and the commuting zone

share is 9.8 percent. Attaining a 4 year college degree and high school graduation both features a

somewhat larger within-neighborhood component and smaller neighborhood, school and commut-

ing zone shares. Commuting zone accounts for about 7 percent of the variance in wages, and block

group within a school accounts for about 3%. Within a school there is very little clustering at the

zipcode level. We also show that segregation by student quality (defined by an index of character-

istics that promote education and wages) is primarily across schools and commuting zones rather

then within zipcode or block group among schoolmates.

The key product of our empirical analysis uses the multilevel model estimates to measure the

consequences of exposure to a low-quality school versus a high-quality school, and a low-quality

commuting zone versus a high-quality commuting zone. Here we define “quality” narrowly as at-

tributes that contribute to the outcomes we consider (educational attainment or wages). Our main

results concern the “treatment effects” of 10th-to-90th percentile shifts in school quality, in commut-

ing zone quality, and in combined school and commuting zone quality. First, we consider average

effects. We take the average over the student population of the effect of a 10th-to-90th percentile

shift in the combined school/commuting zone environment. Such a shift increases the high school

graduation rate by 8.2 percentage points in NELS88 and by about 5.2 percent in ELS2002 (which

has a higher baseline graduation rate–92%). The value for the school treatment is 6.1 points in

NELS and about 3.2 points in ELS. The values for the 10th-to-90th quantile shift in commuting

zone quality are between 3.8 and 5.5 percentage points.

For college enrollment, the combined school and commuting zone treatment effect is 17.9 per-

centage points for NELS and about 15 for ELS. The values for the school treatment effect are about

13 points, while the values for the commuting zone treatment are 11.4 points for NELS and about

8.5 points for ELS. The effects of the combined treatment, the school treatment and the commuting

zone treatment on attainment of a BA degree are also large in NELS: 11.9, 10.1, and 9.2 percentage

points, respectively. They are smaller in ELS. For wage rates at age 25, the combined school and

commuting zone treatment ranges between 9.3 and 12.9 log points. The values for the school treat-

ment range from 5 to 8.9 points. The values for the commuting zone only treatment range from 6.8

to 11.3 points. Overall, the results suggest that large changes in school and commuting zone inputs

can make a substantial difference for students’ educational attainment and wage rates.

We also present estimates of school and commuting zone “treatment” effects for particular sub-

populations: blacks, Hispanics, low income families, whites with two resident parents with college

degrees, and students at each percentile of an index of student level variables that predict the out-

comes. As noted above, the dropout rates of subpopulations that tend to be disadvantaged are par-

ticularly sensitive to the external environment, while few students from advantaged subpopulations

are near the margin. For college enrollment and college graduation, superior school and commuting

zone inputs are important for all, but particularly important for students near or above the middle of
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the distribution of student and family background.

Our paper builds on and contributes to several literatures. The model of school and location

choice that we use to address sorting on unobserved student characteristics is essentially that of

AM, although we are more specific about the distinction between neighborhood choice, school

choice, and region.3 AM in turn draw on the rich theoretical and empirical literature on equilibrium

sorting and matching across several fields, including marriage ( Browning et al. (2014)), firms and

workers (Lise et al. (2013), Lindenlaub (2017), Rosen (1974) and Ekeland et al. (2004)), and papers

on sorting across neighborhoods and schools following Tiebout (1956). Particularly noteworthy are

Epple and Platt (1998) and Epple and Sieg (1999). Epple and Sieg (1999) study a model with one

dimension of neighborhood quality and two dimensions of heterogeneity across households–income

and tastes for a public good. In the equilibrium of their model the distributions of income and tastes

both shift with the level of the public good in a location. This implies a mapping between income

in a location and tastes in a location. This is the same type of mapping that exploited here.

Control function approaches appear in number of settings.4 We extend AM’s use of the control

function to outcome models that include interactions of student characteristics with both observed

and unobserved school and area characteristics.

On the empirical side, the literatures on the importance of families, neighborhoods, schools, and

region are each too vast to discuss meaningfully here. We have already mentioned that a number of

papers, like ours, descend from the Coleman Report’s (Coleman et al. (1966)) examination of the

importance of family background, peer characteristics, and school inputs using data with a multi-

level structure similar to the NELS88 and ELS2002.5 They found, in keeping with most subsequent

research, that family background is by far the most important determinant of education success.

Jencks and Brown (1975)), Betts (1995), Altonji and Mansfield (2011) are contributions to the large

literature in economics, sociology, and education that performs variance decompositions separating

the contribution of school- or neighborhood-level factors versus student-level factors for test scores,

educational attainments, and in a few cases wage rates. Focusing on neighborhood, Jencks and

Mayer (1990) provide a comprehensive review of earlier studies from economics and sociology.

They conclude that there is no strong evidence for neighborhood effects. However, some of the

studies they summarize do find effects. More recent reviews include Sampson et al. (2002), Durlauf

(2004), Durlauf and Ioannides (2010), Harding et al. (2011), Sharkey and Faber (2014), and Graham

(2016).6 Many of the papers emphasize that estimates of the impacts of particular characteristics,

such as percent minority, segregation measures, poverty rates, and income per capita on socioeco-

3The multinomial choice formulation that we use to characterize the school/location choice problem with heteroge-
nous preferences is standard in the consumer choice literature, drawing on McFadden (1984), Berry (1994) and many
subsequent papers, including Bayer et al. (2007)’s study of the demand for housing and location.

4Examples include the estimation of firm production functions (e.g., Olley and Pakes (1996), Levinsohn and Petrin
(2003), and Ackerberg et al. (2015)), labor supply functions (e.g., Altonji (1982)), distinguishing between uncertainty and
heterogeneity in earnings (e.g., Cunha et al. (2005)), and even estimating neighborhood effects (Bayer and Ross (2009)).

5See Alexander and Morgan (2016) and Lucas (2016) for a recent discussions of the legacy of the Coleman report and
its influence on subsequent research.

6Kline and Moretti (2014) provide a recent analysis of placed based policies.
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nomic outcomes of children, often by racial group and poverty status, are subject to the problem of

sorting bias. A good example is Card and Rothstein (2007), who carefully address the issue in their

analysis of the effects of segregation on the test score gap between blacks and whites.

Duncan and Murnane (2011) contains several recent papers on school and/or neighborhood ef-

fects, with references to the literature. Meghir et al. (2011) discuss alternative approaches to esti-

mating school fixed effects and the effects of particular school inputs, and highlight the problem of

endogenous selection of schools and neighborhoods, among other econometric issues.

There is also a small but growing experimental or quasi-experimental literature that attempts to

measure neighborhood or school effects. Oreopoulos (2003) and Jacob (2004) use quasi-random

assignment of neighborhood in the wake of housing project closings to estimate the magnitude of

neighborhood effects on student outcomes. They obtain small estimates, in contrast to Chyn (2016).

A number of authors, including Kling et al. (2007), use the Moving to Opportunity experiment to

study effects of growing up in a low poverty neighborhood. Most of the work finds small effects.

However, Chetty et al. (2016) revisit the MTO experiment using Internal Revenue Service data on

young adult outcomes, including earnings, college attendance, and single parenthood. They find

substantial effects for children who move before age 13 but not for older children. Their treatment-

on-the-treated estimates indicate that children who move to a lower poverty neighborhood when

they are under age 13 experience large gains in annual income in their mid-twenties, while those

who move after age 13 experience no gain or a loss.

Using a sibling differences approach that also exploits high quality data from tax records, Chetty

and Hendren (2015) identify county-level and commuting zone level neighborhood effects on earn-

ings that are larger than but qualitatively consistent with our results. Aaronson (1998) finds substan-

tial effects of the census tract-level poverty rate and high school dropout rate on dropout rates and

years of education using a sibling differences design and PSID data.7

Bergman (2016) finds that a lottery based opportunity to transfer from a predominantly minority

school district to a high income predominantly white district increases college enrollment by 10

percentage points. Deming et al. (2014) exploit randomized lottery outcomes from the school choice

plan in the Charlotte-Mecklenburg district and find large effects of attending a chosen public school

on high school graduation, college enrollment, and college completion for students coming from

low quality urban schools. Angrist et al. (2016) also use admissions lotteries. They find positive

effects of attending a Boston charter high school on performance on both high and low stakes and on

attendance at four-year colleges relative to two-year colleges. On the other hand, Cullen et al. (2006)

use a similar identification strategy with lotteries in Chicago Public Schools and do not find an effect

on the high school graduation probability. Dobbie et al. (2011) is a rare quasi-experimental attempt

to distinguish neighborhood effects from school effects. They find that the Harlem Children’s Zone

has little effect on test scores, while Promise Academy Charter schools have large effects that do

not vary with residence in the zone.

7Using a sibling difference design, Altonji and Dunn (1996) find that teacher salaries and teacher/student ratios (con-
sidered separately) increase wage rates.
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The paper continues in Section 2 which presents the model of location and school choice and

AM’s control function result. Section 3 presents the model of outcomes used in the paper. Section 4

specifies the estimating equation used in the paper and establishes key identification results relating

slope parameters and error terms of the estimating equation to the parameters of the underlying pro-

duction function. Section 5 discusses the data and variables used in the study. Section 6 presents the

estimation methodology. Section 7 presents the model estimates and the variance decompositions

that are derived from them. Section 8 presents lower bound estimates of treatment effects of shifts

in school and commuting zone quality, both on average and for particular subpopulations. Section

9 concludes.

2 A Multinomial Model of School and Location Choice and Sorting

In this section we present AM’s model of how families choose school systems and associated

neighborhoods, recasted slightly to more explicitly consider neighborhood, school, and labor market

area.8 The presentation draws very heavily on AM, with small sections verbatim. We repeat some

of the discussion here so that the assumptions required for identification of the main effects of school

and location characteristics as well as their interactions with student characteristics (not considered

in AM) will be clear. Throughout the paper, matrices, vectors, and matrix or vector valued functions

are in bold. The “prime” symbol denotes matrix or vector transposes.

Parents choose a neighborhood n from the set N of neighborhoods. Due to attendance bound-

aries and travel costs, the choice of n then restricts the choice of school s to the subset S (n) of the

full set S . Since neighborhoods are embedded in labor market areas, the choice of neighborhood

also implicitly involves the choice of a commuting zone c. In our main specification we assume

parents choose among all available (n,s) pairs.

We use a money-metric representation of the expected utility that the parents of student i receive

from choosing school/neighborhood s, so that the utility function Ui(ns) can be interpreted as the

family’s consumer surplus from their choice. We assume Ui(ns) takes the following linear form:

Ui(ns) = WiAns + εnsi−Pns. (1)

In the above equation Ans ≡ [A1ns, . . . ,AKns]
′ is a K× 1 vector of underlying latent amenities that

characterize the neighborhood n, the school s and the commuting zone c that (n,s) is associated

with. We exclude the commuting zone subscript c because commuting zone is fully determined

by n. Wi ≡ [W1i, . . . ,WKi] is a 1×K vector of weights that captures the increases in family i’s

willingness to pay for a neighborhood and school per unit increase in each of its K amenity factors

A1ns, . . . ,AKns, respectively. Pns is the price of living in n plus a fixed utility cost associated with the

logistics of attending school s from neighborhood n. The component εnsi is an idiosyncratic taste of

the parent/student i for the particular location and school (n,s).

8AM model the choice of school attendance area, defining the choices of school and neighborhood to be synonymous.
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Next we specify a linear relationship between willingness to pay (hereafter denoted WTP) for

particular amenities across parent/student combinations and the families’ observable (Xi) and un-

observable (XU
i ) characteristics that affect the school outcome (say college attendance) and an ad-

ditional set of variables Qi:

Wi = XiΘΘΘ+XU
i ΘΘΘ

U +QiΘΘΘ
Q . (2)

Here Xi has L elements and XU
i has LU elements. The coefficient matrix ΘΘΘ (ΘΘΘU) is an L×K (LU×K)

matrix whose `k-th entry captures the extent to which the willingness to pay for the k-th element of

the amenity vector Ans varies with the `-th element of Xi (XU
i ). We sometimes refer to the elements

of ΘΘΘ, ΘΘΘ
U, and ΘΘΘ

Q as WTP coefficients. The 1×LQ vector Qi captures the components of i’s taste

for the K amenities in Ans that are uncorrelated with [Xi,XU
i ]. Below we define XU

i so that [Xi,XU
i ]

represents the complete set of student attributes that determine Ysi, so the elements of Qi influence

school choice but have no direct effect on student outcomes.

Substituting equation (2) into equation (1), we obtain:

Ui(ns) = (XiΘΘΘ+XU
i ΘΘΘ

U +QiΘΘΘ
Q)Ans + εnsi−Pns (3)

As AM discuss, this formulation of utility allows for a fairly general pattern of relationships between

different student characteristics (observable or unobservable) and tastes for different school/neighborhood

amenities, subject to the additive separability assumed in (1).

Expected utility is taken with respect to the information available when n and s is chosen. The

information set includes the price and the amenity vector in each school and neighborhood as well

as student/parent characteristics [Xi,XU
i ,Qi] and the values of εnsi, where n∈N and s∈S (n). The

information set excludes any local shocks that are determined after the start of secondary school.

It also excludes components of neighborhood, school quality and commuting zone quality that are

not observable to families when a location is chosen. Some of the elements of Ans may depend

on school and neighborhood characteristics that influence educational attainment and labor market

outcomes (denoted ZN∗
n and ZS∗

s in the production function introduced later). The amenities may

also include or depend on aspects of the demographic composition of the neighborhood and school.

Some determinants of amenities (such as spending per pupil) may be affected by demographic

composition. Thus, some of the amenities are influenced by the sorting equilibrium.

The parents of i choose (n,s) if net utility Ui(ns) is the highest among the options. That is,

(n(i),s(i)) = arg max
n∈N ,s∈S (n)

Ui(ns)

Parents behave competitively in the sense that prices and Ans are taken as given, and choice is

unrestricted. In equilibrium the values of some elements of Ans may in fact depend on the averages

of Xi and XU
i for the parents who choose n and the parents who choose s (not all of whom come

from n) but parents ignore the externalities they are imposing on others.

Proposition 1 of AM establishes that the expectation XU
ns ≡ E[XU

i |(n(i),s(i)) = (n,s)] is linearly
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dependent on the expectation Xns ≡ E[Xi|(n(i),s(i)) = (n,s)] if five assumptions hold. Decompose

XU
i into its linear prediction given Xi and an uncorrelated residual vector X̃U

i :

XU
i = XiΠΠΠXUX + X̃U

i . (4)

Use (4) to rewrite (2) as Wi = XiΘ̃ΘΘ+ X̃U
i ΘΘΘ

U +QiΘΘΘ
Q, where Θ̃ΘΘ = [ΘΘΘ+ΠΠΠXUXΘΘΘ

U]. In the rewritten

form, the three components of Wi are mutually orthogonal.

Proposition 1: (AM (2016)) Assume the following assumptions hold:

A1: Preferences are given by (3).

A2: Parents take Pns and Ans as given when choosing location, and face a common choice set.

A3: The idiosyncratic preference components εnsi have a mean of 0 and are independent of Xi,

XU
i , Qi , and Ans for all (n,s).

A4: E(Xi|Wi) and E(XU
i |Wi) are linear in Wi.

A5: (Spanning Assumption) The row space of the WTP coefficient matrix Θ̃ΘΘ spans the row space

of the WTP coefficient matrix ΘΘΘ
U relating tastes for A to XU

i . That is,

ΘΘΘ
U = RΘ̃ΘΘ (5)

for some LU ×L matrix R.

Then the expectation XU
ns is linearly dependent on the expectation Xns. Specifically,

XU
ns = Xns[ΠΠΠXUX +Var(Xi)

−1R′Var(X̃U
i )] (6)

The proof is in AM. Proposition 1 states that the sorting model introduced in this section implies

that the vector Xns can serve as a set of controls for XU
ns. This is key to distinguishing the causal

effect of school and location on outcomes from sorting on unobservable student characteristics that

affect outcomes. AM provide a detailed discussion of the assumptions, and devote particular atten-

tion to the spanning assumption A5. We will not repeat that discussion here. Note, though, that the

proposition characterizes the relationship between expected values of observable and unobservable

student characteristics conditional on choice of school and neighborhood; the exact linear depen-

dence need not hold when samples of students are taken at each school. However, AM provide a

monte carlo analysis suggesting that (6) is a good approximation even with samples of 20 students at

each school (around the number observed per school used to construct Xs in the samples we employ

below).
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3 The Model of Education Attainment and Wage Rates

In this section we present the model of outcomes. The model is similar to its counterpart from

AM, but 1) is explicit about the separate roles played by neighborhood, school, and local area

inputs, and 2) introduces potential interactions or complementarities between individual inputs and

each category of group-level inputs.

In our application the outcomes are high school graduation, attendance at a four-year college,

graduation from a four-year college, and the wage rate. The outcome Yi of student i whose family

has chosen the neighborhood n(i), school s(i) and the associated commuting zone c(i) is determined

according to

Yi = X∗i βββ
∗+ZN∗

n ΓΓΓ
N∗+ZS∗

s ΓΓΓ
N∗+ZC∗

c ΓΓΓ
C∗ (7)

+MiZN∗
n ρρρ

∗
N +MiZS∗

s ρρρ
∗
S +MiZ

C∗
c ρρρ

∗
C

+ηnsci +ξnsci

where we have dropped the dependence of the neighborhood, school, and commuting zone sub-

scripts on the student subscript i to simplify the notation. To simplify the presentation and the

proofs of identification results in Propositions 2 and 3 below, we focus on the case in which Mi is a

scalar. In the empirical specification, Mi is replaced with a vector.

For the education outcomes, Yi is the latent variable that determines the binary outcome. The

row vectors X∗i , ZN∗
n , ZS∗

s , and ZC∗
c respectively denote the exhaustive set of child and family charac-

teristics, neighborhood characteristics, school characteristics, and commuting zone characteristics

that determine outcomes. Many of them are not observed by the econometrician. All are normalized

to have a population mean of 0.

The parameters βββ
∗, ΓΓΓ

N∗, ΓΓΓ
S∗, and ΓΓΓ

C∗ are the corresponding slope coefficients or input produc-

tivities. By virtue of our normalization, ΓΓΓ
N∗, ΓΓΓ

S∗, and ΓΓΓ
C∗ capture the effects of school and location

variables at the mean of Mi.

Mi is a known scalar-valued linear function of Xi. The parameters ρρρN∗, ρρρS∗, and ρρρC∗ represent

unknown parameter vectors capturing the strength of interactions or complementarities between

student- and group-level inputs. In the empirical work, we will place restrictions on the ρρρ vectors

and will often use estimated parameter vectors to construct the Mi values from Xi. Our current anal-

ysis excludes interactions between XU
i and Z∗. We leave the possibility of relaxing this restriction

to future work.

The unobserved scalar index ηnsci captures variation among students within a neighborhood/school

combination in the neighborhood and school inputs they experience, such as the characteristics of

immediate neighbors and characteristics of nearby children, distinct course tracks and the luck of

the draw in teacher quality at the school. Importantly, ηnsci captures the extent to which differ-

ent students receive different school and location “treatments”, while the ρρρ parameters capture the

extent to which different students respond differently to the same school and location treatments

11



(i.e. treatment effect heterogeneity). Some of the factors that determine ηnsci may represent within-

neighborhood components of ZN∗
n and within-school components of ZS∗

s .

The component ξnsci is the sum of influences at the n, s, and c level that are determined after

secondary school and are unrelated to the other variables in the model, both with and across groups.

We use the nsc subscript to allow for shocks at all three levels, but we primarily have in mind

shocks at the commuting zone level. These might include the opening of a local college or local

labor demand shocks that occur after high school is completed. It will prove useful to write ξsnci as

ξsnc +ξi, where ξsnc is common to all students in nsc and ξi is idiosyncratic. ξnsc is taken to be 0 for

the high school graduation outcome.

Note that the characteristics/inputs at each level of observation can represent non-linear func-

tions of other inputs from that level (e.g. an element of X∗i can represent the square of another

element of X∗i ). Thus, the linear-in-parameters specification for Yis is more general than it first

appears.

The productivity parameters βββ
∗ , ΓΓΓ

N∗, ΓΓΓ
S∗, and ΓΓΓ

C∗, the complementarity parameters ρρρ∗N , ρρρ∗S,

ρρρ∗C, and the error components ηnsci and ξnsci depend implicitly upon the specific outcome under

consideration as well as the time period in the case of wages. To simply the subscripts, we often use

g to refer to the combined “group” index nsc. Furthermore, in this section and in our empirical work

we restrict neighborhoods to be nested within schools, so that the set S (n) from the previous section

is restricted to be a singleton for each n (each school is still associated with several neighborhoods).9

The schools are then nested within commuting zones. We use the terms “area” or “location” to refer

to the joint influence of neighborhood and commuting zone inputs.

This production function yields a clear definition of the “neighborhood” effect associated with

a given neighborhood, as experienced by a particular student type (indexed by Mi). Specifically,

compared to a neighborhood with population-average inputs (ZN∗
n = 0), a randomly selected stu-

dent with a particular value Mi = M
a

i who grows up in a neighborhood n1 featuring neighborhood

inputs ZN∗
n1 can expect an increase (or decrease) in outcome Yi of [ZN∗

n1 ΓΓΓ
N∗+M

a

i ZN∗
n1 ρρρN], holding the

distribution of school quality and commuting zone quality constant. A student with the population

mean value Mi = 0 can expect an increase of ZN∗
n1 ΓΓΓ

N∗. The corresponding expression for the effect

of attending school s1 rather then a school with average inputs (holding location inputs constant) is

ZS∗
s1 ΓΓΓ

S∗+M
a

i ZS∗
s1 ρρρ

S.

The corresponding effect of community zone c1 versus a commuting zone with average inputs (hold-

ing school and neighborhood quality constant) is

ZC∗
c1 ΓΓΓ

C∗+M
a

i ZC∗
c1 ρρρ

C.

The impact at M
a

i of growing up in a particular (n,s,c) combination (n1,s1,c1) relative to one

9We discussion the issue in Section 6.3 below.
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featuring average inputs at each level is:

[ZN∗
n1 ΓΓΓ

N∗+ZS∗
s1 ΓΓΓ

S∗+ZC∗
c1 ΓΓΓ

C∗+M
a

i (Z
N∗
n1 ρρρ

N +ZS∗
s1 ρρρ

S +ZC∗
c1 ρρρ

C)]

A natural extension would be to consider interactions between neighborhood, school, and com-

muting zone characteristics, but we leave that to future research.

We wish to quantify the contributions of differences in neighborhood factors, school factors,

and commuting zone factors to education and labor market outcomes. In the case of college atten-

dance, college graduation, and wage rates, the expected outcome from growing up in a particular

school/location combination will also reflect ξnsc1 , which is common to all individuals in commuting

zone c but is determined after high school.10

The productivity coefficients βββ
∗ do not have a straightforward causal interpretation. Some com-

ponents of X∗i associated with student inputs (for example, student aptitude) will have been deter-

mined by past parental inputs such as family income (Todd and Wolpin (2003) and Cunha et al.

(2006)). Such links make it difficult to interpret the productivity associated with a given component

of X∗i , once we have conditioned on the other components. Consequently, we do not attempt to

tease apart the distinct influences of child characteristics, family characteristics, and early child-

hood schooling and location inputs, respectively. We introduce the βββ
∗ notation in order to clearly

demonstrate the impact of student sorting on our ability to identify the causal effects associated

with group-level inputs as well as the degree to which these causal effects vary across students with

different individual characteristics.

Nor do we attempt to estimate the causal effects of particular neighborhood, school, or com-

muting zone inputs (and so will not aim to separately identify particular elements of ΓΓΓ
∗). This is

because the control function variables only addresses sorting bias. It does not eliminate omitted

variable bias that arises because observed neighborhood, school, or region inputs may be correlated

with unobserved inputs. Instead, we aim to distinguish the combined outcome effects of neighbor-

hood factors, school factors, and commuting zone factors, respectively, from the effects of student,

family, and prior school and location factors.

4 Identification Results

In this section we present our estimating equation for the outcome Yi and discuss the relationship

between the slope parameters and error components recovered from estimation and the parameters

of the outcome production function (7) presented in Section 3. In particular, we show that the

regression coefficients and error components estimated via OLS allow us to divide the contribu-

tion of student inputs and school/location inputs to Yi into four components. The first component

consists of the main effect of student inputs on the outcome. Its effect is common across groups

10The outcomes of a specific student i will also differ across neighborhoods, schools and commuting zones because
the values of the idiosyncratic terms ηnsci differ.
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(school/location combinations). The second component consists of the main effect of group-level

inputs. These effects are common to all students. The third consists of interactions between stu-

dent inputs and group inputs. The fourth component is associated with the control function Xns.

It captures a combination of group inputs (mostly peer influences) and group averages of student

inputs that affect outcomes regardless of the school and location (reflecting sorting). In Section 8 we

show how to use the identification results to provide conservative estimates of the average impact

associated with “treatments” where group-level inputs are shifted. We also show how to estimate

the impact of group treatments on particular student types (allowing a characterization of the de-

gree of treatment effect heterogeneity). As we explain below, we are not able to fully distinguish

among the roles of unobserved neighborhood characteristics, unobserved school characteristics, and

unobserved commuting zone characteristics.

4.1 Toward an Estimating Equation

In this subsection we introduce some additional notation. We use it to write both the production

function (7) and our estimating equation in a way that facilitates the analysis of identification in

subsections 4.2 and 4.3.

To this end, we first decompose the vector X∗i into its observable and unobservable components:

[Xi,Xi
U]. Note that the superscript “U” denotes “unobserved” throughout the paper. We similarly

decompose βββ
∗ ≡ [βββ ,βββ U] so that the index X∗i βββ

∗ is equal to Xiβββ +Xi
U

βββ
U.

Similarly, the neighborhood influence term ZN∗
n ΓΓΓ

N∗ may be written as

ZN∗
n ΓΓΓ

N∗ = XnΓΓΓ
N
1 +ZN

2nΓΓΓ
N
2 + zNU

n

where ZN∗
n = [Xn,ZN

2n,Z
NU
n ]. To better utilize the theoretical insights from the choice model above,

we distinguish Xn, which is the vector of neighborhood means of Xi, from ZN
2n, which is a set of

other observed neighborhood characteristics that are not mechanically related to peer characteristics.

Both of these components are observed. The variable zNU
n ≡ ZNU

n ΓΓΓ
NU is an index of the unobserved

neighborhood characteristics (possibly including the neighborhood mean XU
n of XU

i ). ΓΓΓ
N
1 , ΓΓΓ

N
2 , and

ΓΓΓ
NU are the subvectors that make up ΓΓΓ

N∗. Thus, XnΓΓΓ
N
1 captures peer influences generated by Xn,

and zNU
n will partly reflect peer influences generated by XU

n .

Along the same lines, we can write the indices summarizing the components of the impact of

school and commuting zone inputs that are common to all students as

ZS∗
s ΓΓΓ

S∗ ≡ XsΓΓΓ
S
1 +ZS

2sΓΓΓ
S
2 + zSU

s

and

ZC∗
c ΓΓΓ

C∗ ≡ XcΓΓΓ
C
1 +ZC

2cΓΓΓ
C
2 + zCU

c .

Furthermore, to conserve notation, we introduce the subscript g ≡ (n,s,c) to denote the com-
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bined neighborhood-school-commuting zone combination or “group” experienced by a given child.

Thus, we may define the following vector of observed group-level inputs Zg ≡ [ZN
n ,ZS

s ,ZC
c ] ≡

[XN
n ,ZN

2n,X
S
s ,ZS

2s,X
C
c ,ZC

2c]. We define the vector ZU
g analogously. The index of group-level un-

observed impacts, zU
g , is defined as zNU

n + zSU
s + zCU

c .

Similarly, we define ΓΓΓ≡ [ΓΓΓN′,ΓΓΓS′,ΓΓΓC′]′≡ [ΓΓΓN′
1 ,ΓΓΓN′

2 ,ΓΓΓS′
1 ,ΓΓΓ

S′
2 ,ΓΓΓ

C′
1 ,ΓΓΓC′

2 ]′ and we define ρρρ ≡ [ρρρN′,ρρρS′,ρρρC′]′≡
[ρρρN′

1 ,ρρρN′
2 ,ρρρS′

1 ,ρρρ
S′
2 ,ρρρ

C′
1 ,ρρρC′

2 ]′. ΓΓΓ
U and ρρρU are defined analogously.

Using this notation, the production function for outcomes may be written in compact form as

Yi = Xiβββ +ZgΓΓΓ+MiZgρρρ + xU
i + zU

g +MiZU
g ρρρ

U +ηgi +ξgi . (8)

For purposes of comparison with our estimating equation, however, we usually refer to the

version that distinguishes peer inputs from other group-level inputs:

Yi = Xiβββ +XgΓΓΓ1 +ZgΓΓΓ2 +MiXgρρρ1 +MiZ2gρρρ2

+MiXU
g ρρρ

U
1 +MiZU

g ρρρ
U
2 + xU

i + zU
g +ηgi +ξgi . (9)

AM provide an extensive discussion of which variables should be included in Xg and Z2g, re-

spectively, which we summarize in Section 5.3.

Using the same group notation, our estimating equation takes form

Ygi = XiB+XgG1 +Z2gG2 +MiXgr1 +MiZ2gr2 +MgXgG3 +MgZ2gG4 + vg +(vgi− vg). (10)

The parameters refer to the coefficient vectors from the linear least-squares projection of Ygi on

the right hand side variables. In practice, we will dramatically restrict the estimating equation rather

than freely introduce all of the interaction terms.

The inclusion of the row vectors MgXg and MgZg would ensure that identification of r1 and

r2 is obtained exclusively from within-group variation in MiXg and MiZ2g. We show below that

Assumptions 1-5 of the sorting model combined with an additional assumption imply that G3 and

G4 are 0, and so in the end we exclude MgXg and MgZg from the models we estimate.

We now consider how the parameters of the estimating equation (10) relate to the production

function parameters in (9). We first consider B, r1 and r2 and then turn to G1, G2, G3, and G4.

4.2 Interpretation of B, r1, and r2

Let D represent the within-group linear operator, so that DYgi ≡ Ygi−E[Ygi|g(i) = g]≡ Ygi−Yg,

where Yg is the expected value of Ygi conditional on student i’s choice of g. The within-group

counterpart of our estimating equation (10) can be written as:

DYgi = DXiB+[(DMi)Xg]r1 +[(DMi)Z2g]r2 +Dvgi (11)
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Given the presence in (10) of the group means Xg, MgXg and MgZ2g, OLS estimation of B, r1, and

r2 using (10) is equivalent to OLS estimation using the within-group equation (11). Thus, we can

start by restricting attention to (11).

Next, we make the following strong but powerful assumption:

A6: Cov[DMiDX∗′i ,Z
∗
g] = 0

Assumption 6 states that the cross products of the within group deviations of Mi and the student

variables Xi and XU
i do not covary with any of the observed or unobserved neighborhood/school

variables. Because Z∗g is normalized to have a mean of 0, assumption A6 is equivalent to the

assumption E[DMiDX∗′i ,Z
∗
g] = 0. A6 addresses a potentially important identification problem.

The variation that will potentially identify interaction effects in our estimating equation consists

of differences in the strength of the relationship between individual characteristics and outcomes

across groups with different characteristics (e.g. student-teacher ratio). If the covariance between

parental income (observed) and parental motivation (unobserved) is larger at schools with smaller

student-teacher ratios, then parental income may predict greater increases in outcomes at schools

with smaller student-teacher ratios because parental income better predicts parental motivation at

such schools, even if students of richer parents are not differentially sensitive to low student-teacher

ratios. Such a mechanism would yield spurious “interaction” effects. Assumption A6 rules out

this possibility, so that any differential impact of Mi across groups with different observed inputs

can be interpreted as evidence of true student-group interactions rather than evidence of differential

sorting-induced joint distributions of [Xi,XU
i ] across groups.

How plausible is Assumption A6? We fully allow the possibility that the means of Mi and X∗i
vary across g and even systematically with Z∗g. To the extent that choice of g is heavily influenced

by Qi and idiosyncratic factors, then the within group second moments may not vary much with

Z∗g. Below we use the index XiB as an Mi variable. One could test A6 for observed components of

DX∗′i and Z∗g, although we have not yet done so. The assumption will fail when Mi is set to binary

variables such as the indicators for minority status and low income status that vary substantially

across g. The quantitative significance of failures of A6 requires further investigation.

We also require a second additional assumption:

A7 E[DM2
i |g(i) = g] is a constant.

One could test this assumption for the case Mi = XiB.It does not hold when Mi is the minority

status indicator, given that the mean and thus the within group variance of Mi varies substantially

across groups. Finally, we assume:

A8. E[Dη̃giDMi[Xg,Z2g]] = 0
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To interpret A8, recall that ηgi reflects differential treatment of i in g that is due to random

factors. The interaction term DMiZ∗gρ in the outcome equation (8) captures differential impacts of

a common treatment. A8 concerns the residual component of the projection (13) of Dηgi on DXi.

A8 is perfectly consistent with the possibility that Dηgi is related to DMi through the relationship

between Dηgi and DXi. If DMi is a linear function of DXi, Dη̃gi and DMi are orthogonal in the

population. A8 will hold if they do not covary within a group.

The statement of Proposition 2 below uses the projection matrices from the following projection

equations:

DXU
i = DXiΠΠΠDXiDXU

i
+ D̃XU

i (12)

Dηgi = DXiΠΠΠDηgiDXi +Dη̃gi. (13)

XU
g = XgΠΠΠXU

g Xg (14)

ZU
2g = XgΠΠΠZU

2gXg
+Z2gΠΠΠZU

2gZ2g
+ Z̃U

2g (15)

Note that XU
g is perfectly predicted by Xg under the assumptions of Proposition 1 of Altonji and

Mansfield (2016), with ΠΠΠXU
g Xg≡[ΠΠΠXUX +Var(Xi)

−1R′Var(X̃U
i )]. This is why (14) does not have

an error term.

We are now ready to present the relationship between B, r1, and r2 in (11) (and therefore in (10)

as well) and the production function parameters in (9).

Proposition 2:

Suppose assumptions A1-A8 hold. Then:

B = βββ +ΠΠΠDXiDXU
i
βββ

U +ΠΠΠDηgiDXi (16)

r1 = ρρρ1 +ΠΠΠXU
g Xgρρρ

U
1 +ΠΠΠZU

2gXg
ρρρ

U
2 (17)

r2 = ρρρ2 +ΠΠΠZU
2gZ2g

ρρρ
U
2 . (18)

The proof is in Appendix A1. Note that the coefficient vector B on Xi is the same as the coeffi-

cient vector in the model without interactions considered by AM. The coefficient r1 consists of ρρρ1,

which is the vector of interactions between Mi and the group averages of the observable student char-

acteristics Xg, plus two other terms. The second term ΠΠΠXU
g Xgρρρ1 captures interactions between Mi

and the group average of the unobservables XU
g (Recall that under proposition 1, XU

g = XgΠΠΠXU
g Xg).

Thus, the first two terms of r1 capture the fact that the effect of Xi on Yi depends upon the character-

istics of the population in g. The third term ΠΠΠZU
2gXg

ρρρU
2 is present because the unobserved school and

area characteristics ZU
2g may vary with Xg conditional on Z2g. The coefficient vector r2 is the sum of

ρρρ2, the effect of the interaction between Mi and Z2g, along with the effect of the interaction between

Mi and the portion of ZU
2g that is predictable by Z2g holding Xg constant. Importantly, both r1 and
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r2 exclusively reflect interactions between Xi and group-level characteristics, rather than individual

contributions that are common across groups or group-level contributions that are common across

individuals.

4.3 Interpretation of G1,G2,G3, and G4

This subsection presents Proposition 3, which establishes the relationship between the produc-

tion parameters in (8) and the coefficients G1,G2,G3, and G4 identified by OLS. Note that just as B,

r1, and r2 are identified exclusively from within-group variation, G1, G2, G3, and G4 are identified

exclusively from between-group variation. This fact means that the OLS coefficients G1, G2, G3,

and G4 are numerically identical to the coefficients of the projection of the adjusted group g mean

of Ygi, Yg− [XgB+MgXgr1 +MgZ2gr2] , onto Xg, Z2g, MgXg, and MgZ2g.

First we need to define some projection coefficients that appear in Proposition 3. Let the pro-

jections of the unobserved production function index zU
2g onto the space of group-level observables

[Xg,Z2g,MgXg,MgZ2g] be given by

zU
2g = XgΠΠΠzU

2gXg
+Z2gΠΠΠzU

2gZ2g
+MgXgΠΠΠzU

2g,MgXg
+MgZ2gΠΠΠzU

2g,MgZ2g
+ z̃U

2g

We also introduce an additional assumption:

A9 Z̃U
2g has mean 0 and is independent of Xg and Z2g.

By definition, the error component Z̃U
2g in the projection equation (15) is uncorrelated with Xg

and Z2g. A9 strengthens zero correlation to independence. Doing so rules out the possibility that Xg

or Z2g might be predictive of the value of the average interaction MgZU
2g, even conditional on MgXg

and MgZ2g.

We are now ready to state the proposition.

Proposition 3:

Suppose assumptions A1-A9 hold. Then:

G1 = [(βββ −B)+ΠΠΠxU
g Xg ]+ [ΓΓΓ1 +ΠΠΠXU

g XgΓΓΓ
U
1 +ΠΠΠzU

2gXg
]

G2 = ΓΓΓ2 +ΠΠΠzU
2gZ2g

G3 = 0

G4 = 0
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The proof is in Appendix A2. Proposition 3 states that under A1-A9 the coefficients G1 and G2

on Xg and Z2g in the model with interactions are the same as the corresponding coefficients in the

model without interactions considered by AM. G1 consists of the causal peer effects of Xg and XU
g

plus the part of the effect of unobserved group inputs ZU
2g predicted by Xg. However, it also picks

up the bias term (βββ −B) and the term ΠΠΠxU
g Xg , which captures differences across school and location

in xU
g . Since these last two components represent student contributions to Y rather than group-level

contributions, we exclude XgG1 when constructing lower bound estimates for school and location

treatment effects.

G2 captures the causal effects of the observed group-level inputs Z2g along with associated

variation in unobserved group-level inputs zU
g on the outcome of a student at the population mean of

Mi. Thus, the index Z2gG2 only reflects the contributions of group-level inputs whose impacts are

common across all students. It does not include student inputs or interactions between student- and

group-level inputs. This result is key to our ability to characterize both average treatment effects

associated with shifts in neighborhood quality as well as the degree of treatment effect heterogeneity

across types of students.

Finally, G3 and G4 both enter with zero coefficients. Consequently, we can exclude both MgXg

and MgZ2g from the estimating equation (10).

4.3.1 Interpretation of the Error Components vg and (vgi− vg)

The final proposition establishes the relationship between the individual-level and group-level

error components in (8) and (10).

Proposition 4:

Suppose assumptions A1-A9 hold. Then:

vg = z̃U
2g +MgZ̃U

2gρρρ
U
2 +ξg (19)

vgi− vg = D̃xU
i +Dηgi +Dξgi. (20)

We relegate the proof to a footnote11. Equation (19) reveals that vg is the sum of group-level

effects that are common across students (z̃U
2g and ξg) and group-averages of interactions between

student inputs and group inputs (MgZ̃U
2gρρρU

2 ). In principal, one could estimate the distribution of

MgZ̃U
2gρρρU

2 by incorporating random neighborhood-, school-, and commuting zone-specific slopes

11Proposition 4 can be proved simply by (1) substituting into the estimating equation (10) the expressions from Proposi-
tions 2 and 3 for B, r1, r1, G1, G2, G3, and G4, (2) subtracting off all the observed regression indices from the production
function for Yi given by (9), and (3) taking group means and within-group deviations of the production function com-
ponents that remain. To obtain z̃U

2g in (19) we also use the fact that by definition zU
g , which appears in (9), is equal to

XU
g ΓΓΓ

U
1 + zU

2g, where zU
2g = ZU

2gΓΓΓ
U
2 .
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with respect to Mi into a mixed effects procedure. This would complete the full separation of the

contributions of interaction components from the common impacts of group-level inputs that we

discuss in the introduction. However, in practice we have had trouble identifying such random

slopes in our application.

Finally, (20) shows that vgi−vg reflects only student level inputs and perhaps (via Dηgi) differen-

tial treatments within groups (e.g. the sequence of assigned teachers), rather than interactions with

group-level inputs that would reflect heterogeneity in the impact of the same group-level treatments.

5 Data, Variable Selection, and Specification of Interactions

5.1 Overview of Data Sources

We use two panel data sets, the National Educational Longitudinal Survey of 1988 (NELS88)

and the Educational Longitudinal Survey of 2002 (ELS2002).12 These data sources possess a num-

ber of common properties that make them well-suited for our analysis. First, each samples an entire

cohort of American students. The cohorts are students who were 8th graders in 1988 for NELS88,

and 10th graders in 2002 for ELS2002. Second, each source provides a representative sample of

American 8th grades and high schools, respectively, and samples of students are selected within

each school. Public, private, and parochial schools are represented.13 Enough students are sam-

pled from each school to permit construction of estimates of the school means of a large set of

student-specific variables and to provide sufficient within-school variation to support the variance

decomposition described below. Third, each survey administered questionnaires to school adminis-

trators in addition to sampling individuals at each school. This provides us with a rich set of both

individual-level and school-level variables to examine, allowing a meaningful decomposition of ob-

servable versus unobservable variation at both levels of observation. Fourth, each survey contains

information on the student’s location of residence. In the case of NELS, we observe the student’s

ZIP code in grade 8 and at age 25. In ELS, we observe the student’s census block of residence in

grade 10, as well as each student’s ZIP code of residence in each of three follow up surveys. Ob-

serving residential location is critical for characterizing the relative contributions of neighborhood

versus school inputs as well as the relative importance of neighborhood versus school amenities in

driving student sorting. Finally, each survey collects follow-up information from each student past

high school graduation, facilitating analysis of the impact of high school environment on outcomes

economists and policymakers particularly care about: educational attainment and wage rates at age

12This section draws heavily on Section 6 of AM.
13We include private schools because they are an important part of the education landscape. The model in Section 2

says that we should include group averages for the neighborhood/school pairs to control for sorting on unobservables,
but that is not practical, because sample sizes are too small. We include Xs for the school and census based demographic
variables at the zip code or block group level, which we denote Xn even though they include characteristics of residents
who are not students or parents.
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25.14

While there is considerable overlap in the survey questionnaires associated with NELS88 and

ELS2002, we chose not to restrict attention to the set of variables that are available and measured

consistently across the two datasets. This is because the efficacy of the control function approach

depends on the richness and diversity of our student-level measures, and using the intersection of the

two datasets limits the diversity of student characteristics. In practice, the variables lists are similar,

as one can see from the variable list in Appendix Table 1. Section 5.3 describes the process by

which we chose what to include in Xi, Xn, Xs, Xc, ZS
2s, and ZC

2c. Unfortunately, the panel surveys

do not contain neighborhood level variables, though we do merge in Census-based and LODES

based neighborhood-level demographic averages to bolster our control function.

Coding of most of the variables is straightforward, but in some cases variables are the first

principle components constructed from the responses to batteries of questions about topics such as

the home environment, school policies for reducing dropout rates, and quality of school facilities,

among others.

As AM discuss, a drawback of the two panel surveys is that only around 20 students per school

are generally sampled. Simulation results in AM indicate that samples of this size may reduce

to some degree the ability of sample school averages of observable characteristics to serve as an

effective control function for variation in average unobservable student contributions across schools,

but they perform fairly well15

We restrict our samples to those individuals whose school administrator filled out a school sur-

vey, and who have non-missing information on the outcome variable and the following key charac-

teristics: race, gender, SES, test scores, region, and urban/rural status. We then impute values for

the other explanatory variables to preserve the sample size, since no other single variable is critical

to our analysis.16

5.2 Outcome Measures and Weighting

HSGRAD is an indicator for whether a student has a high school diploma (not including a GED)

as of two years after the high school graduation year of his/her cohort. ENROLL is an indicator for

whether the student is enrolled in a four year college in October of the second year beyond the high

school graduation year of his/her cohort. COLLBA is an indicator for whether the student has a

14AM (2011) and AM (2016) use the National Longitudinal Survey of the Class of 1972 as well as NELS88 and
ELS2002. The NLS72 is less rich in terms of student and school covariates, does not identify ZIP code of residence
separately from high school, and does not start until 12th grade. However, it contains panel data on wages and follows
students up to 13 years after 12th grade. Thus, it is better suited for the study of permanent wage rates.

15AM’s simulations are for an additive model. Using an additive model, AM also study high school graduation using
administrative data from the student record system of North Carolina. They report simulation experiments that compare
estimates based upon the full North Carolina sample with estimates based upon samples of students that match the
distributions in NELS88 and ELS2002 of students per school. The results suggest that the modest samples per school in
NELS88 and ELS2002 is not a major problem.

16We include mother’s education combined with a missing indicator for mother’s education when performing imputa-
tion, along with school averages of all the key characteristics above.
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four-year degree at age 25. Log wages are hourly and in 2009 dollars. They are reported at about

age 25.

Use of COLLBA and log wage results in a loss of sample, because it requires use of the NELS

4th follow-up and the ELS 3rd follow-up. High school graduation rates in the previous follow-

up surveys are somewhat higher among respondents who are also observed in the final followups.

Summary statistics for the outcome measures are in Table 1.

One might want to use weights for three reasons. The first is to account for the stratified sam-

pling regime used by the sample designers. The second is differential attrition associated with the

explanatory variables. The third is because follow-up probabilities are based on outcomes. We do

not use panel weights because we experienced difficulties in estimating the variance components of

the mixed level models when using weights. The slope parameter estimates are not very sensitive to

weighting, but we do not know whether weighting would affect the estimates of the error component

variances.

5.3 Selection of Xi, Xn, Xs, ZN
2n, ZS

2s, and ZC
2c

AM discuss the principles governing variable selection. Xi should include variables that directly

affect the outcome and/or are correlated with unobserved student level characteristics that affect the

outcome. We focus attention on a “full” specification which includes in Xi measures of student

behavior, parental expectations, and student academic ability (standardized test scores). Such mea-

sures may be influenced directly by school and location inputs, so including them could cause an

underestimate of the contribution of school and location inputs. As a result, our lower bound esti-

mates will be too conservative. On the other hand, excluding such measures could instead cause an

overestimate of the contribution of location- and school-level inputs if the more limited set of student

observables no longer satisfies the spanning condition A5 stated in Proposition 1. In that case, there

would exist differences in average unobservable student contributions to outcomes across schools

that are not predicted by the vector of school averages of observable characteristics. We also discuss

results for a “basic” specification that only includes student-level characteristics that are unlikely to

be affected by the neighborhood and high school the child attends.

For purposes of the control function, Xg should contain aggregates of Xi at the (n,s) school/neighborhood

level. In practice, due to sample size limitations we include Xs as well as Xn variables, but not av-

erages over (n,s) pairs. The Xn variables are census-based measures of the demographic makeup

of the neighborhood.17

ZN
2n, ZS

2s, and ZC
2c should include observed neighborhood and school characteristics that could

plausibly influence the socioeconomic outcome of interest, including school policies that may be

partially affected by student composition. ZN
2n, ZS

2s, and ZC
2c should exclude variables that are sim-

17As AM discuss, in principle the control function variables can be augmented with aggregates of outcome-irrelevant
characteristics Qi or even directly observed amenities in Ag, since its purpose is span the space of amenities that drive
sorting on XU

i .
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ple aggregates of parent/student traits that might also affect willingness to pay for neighborhood

characteristics and thus lead to sorting. These are Xn, Xs, or Xc variables regardless of whether the

source is aggregates of the student micro data, Census data, or administrative data from the schools.

Unfortunately, we do not observe any neighborhood-level variables that are not population aggre-

gates, so we do not include any ZN
2n variables in our empirical work. As a result, below we primarily

focus attention on the impact of shifts in school- and commuting zone-level treatments.

The sample sizes, number of neighborhoods (zip code or block group), number of schools, and

number of commuting zones are reported in Appendix Table 2. While the number of commuting

zones and schools is substantial, the demands of estimating our model are also substantial given the

lack of prior information about which school and commuting zone variable are likely to have large

effects. The precision of our estimates is reduced by the need to work with a fairly large number of

ZS
2s and ZC

2c variables, along with large numbers variables in the control functions Xn and Xs.

As AM discuss, group-level variables such as a school’s frequency of fights or average 10th

grade test scores that capture earlier outcomes that were jointly produced by both individual- and

group-level variables fall in a grey area. We exclude such variables entirely from the baseline

specification (on the basis that they are determined by other observed and unobserved variables in

the model), and include them in the control function Xg in the full specification. To the extent that

school policy and the skill of teachers and the administration have a large effect on fighting and/or

test scores, assigning these measures to the control function leads to conservative estimates of group

effects.

Appendix Table 1 lists the final choices of individual-level and school-level explanatory mea-

sures used in each dataset.18 The table also provides the mean, standard deviation, and percent of

observations imputed for each individual-level and school-level characteristics for each of our data

sets. Appendix Table 2 provides the number of neighborhoods, schools, and commuting zones for

each combination of dataset and outcome.

6 Estimation Methods

6.1 Restricting MiZ∗s ρρρ

As we mentioned earlier, we have to reduce the dimensionality of the interactions between

student characteristics and peer characteristics as well as between student characteristics and neigh-

borhood, school, and commuting zone characteristics. In our main specification with interactions,

we set Mi to consist of the index XiB and indicators for whether the student is female, a member of

18In preliminary work we experimented with a grouped backward stepwise regression procedure to pare down the
variable sets at each unit level. One could also consider other procedures, such as group Lasso (Meier et al. (2008) and
Yuan and Lin (2006)). Ultimately, we chose not to use these procedures because of concerns about how to do statistical
inference, and about the computational feasibility and statistical properties of a bootstrap procedure that accounts for both
variable selection and sampling error given variable choice. The three step estimation method we use is computationally
demanding.
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an underrepresented minority group (denoted URM below and coded as Hispanic or non-Hispanic

black), and whether the student’s family is in the bottom quartile in our sample of the ratio of family

income to average rent in the commuting zone (LOWINC). Including XiB in Mi imposes the re-

striction that for white males from high income families, the strength of interactions depends upon

components of Xi in proportion to their direct effects on the outcome. Including the three additional

indicator variables in Mi allows a somewhat more general pattern of interactions for particular sub-

populations for whom differential interactions have often been posited in the literature.

In addition, to keep the main specification parsimonious, we further restrict the interactions

involving XiB and Z∗s to occur only through separate interactions between XiB and the indices

XnGN
1 , XsGS

s , ZS
2sG

S
2 , and ZC

2cGC
2 . The three subpopulation indicators are restricted to interact with

only the indices ZS
2sG

S
2 , and ZC

2cGC
2 .

6.2 Estimating the Parameters of the Model

We estimate the model in three steps:

Step 1: Estimate B, GN
1 , GS

1 , GS
2 , and GC

2

We estimate B, GN
1 , GS

1 , GS
2 , and GC

2 using models that include the interaction terms but ignore

the multilevel random effects error structure. That is, we estimate the following specification:

Ygi = XiB+XnGN
1 +XsGS

1 +ZS
2sG

S
2 +ZC

2cGC
2

+XiBXnGN
1 rn

1 +XiBXsGS
1rs

1 +Mi⊗ZS
2sG

S
2rs

2 +Mi⊗ZC
2cGC

2 rc
2 + vgi, (21)

where Ygi is the latent index and Mi ≡ [XiB,1(Female),1(URM),1(Low Income)] and as a re-

minder, the Kronecker product Mi⊗ZS
2sG

S
2 is the row vector [XiB ZS

2sG
S
2 ,1(Female) ZS

2sG
S
2 ,1(URM)ZS

2sG
S
2 ,

1(Low Income)ZS
2sG

S
2 ].

19

For binary education outcomes, Ygi is the latent index of a nonlinear probit model, and the model

is estimated via maximum likelihood with parameter restrictions on the regressor indices imposed.

For log wages, (21) we estimate using nonlinear least squares.20

19To improve the allocation of school level factors to estimates of the school treatment effects and the allocation of
community level factors to the estimates of commuting level effects, when estimating (21) we also include school and
commuting zone averages of the index XnĜN

1 as well as the commuting zone averages of the indices XsĜS
1 and ZS

2sĜ
S
2

with separate coefficients. The school and commuting zone averages of XnĜN
1 and the commuting zone average of XsĜS

1
are treated as control function variables and are contained in XsĜS

1 when estimating (22) below. The commuting zone
average of the index ZS

2sĜ
S
2 is treated as a commuting zone characteristic that is contained in ZC

2cĜC
2 in (22) below. It

contributes to our estimates of the variance in commuting zone treatment effects described below. Since its coefficient
should not be affected by sorting bias under assumptions A1-A9, and is identified purely from between-commuting zone
variation, it is likely to capture otherwise unobserved commuting zone inputs).

20To impose the restrictions that the interactions operate through the same regressor indices as the main group effects,
we choose initial values B0, GN,0

1 , GS,0
1 , GS,0

2 , and GC,0
2 . Then, letting k denote the iteration number, we implement

an iterative estimation procedure in which (temporary) main effect parameters Bk GN,k
1 , GS,k

1 , GS,k
2 , and GC,k

2 and the
interaction coefficients rk

1n, rk
1s, rk

2s and rk
2c are estimated while holding fixed the regressor indices entering the interaction
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Note that Propositions 2 and 3 imply that the coefficients B, GN
1 , GS

1 , GS
2 , and GC

2 in (21) match

those in (10), so there is no inconsistency in using the same symbols to label the coefficients in the

two equations.

Step 2: Estimate the restricted mixed level model

In the second step, we estimate the following model:

Yi = α0 +α1
XiB̂

sd(XiB̂)
+α2

XnĜN
1

sd(XnĜN
1 )

+α3
XsĜS

1

sd(XsĜS
1)

+α4
ZS

2sĜ
S
2

sd(ZS
2sĜ

S
2)

+α5
ZC

2cĜC
2

sd(ZC
2cĜC

2 )
+

+ rN
1

XiB̂
sd(XiB̂)

XnĜN
1

sd(XnĜN
1 )

+ rS
1

XiB̂
sd(XiB̂)

XsĜS
1

sd(XsĜS
1)

+ [M̂i⊗
ZS

2sĜ
S
2

sd(ZS
2sĜ

S
2)
]rS

2 +[M̂i⊗
ZC

2cĜC
2

sd(ZC
2cĜC

2 )
]rC

2

+ vc +(vs− vc)+(vn− vs)+(vi− vn) (22)

If we excluded the interaction terms and used a simple probit model, which norms the variance

of the composite error term to 1, then by construction the parameter α1 would equal sd(XiB̂), α2

would equal sd(XnĜN
1 ), α3 would equal sd(XsĜS

2), and so on. We allow the estimates {α̂k} to differ

from 1 because the mixed level probit model norms Var(vi− vn) to 1 instead. In practice, estimates

are very close to the implied values. Recall that all variables, including the indices, are entered as

deviations from samplewide means, so the main effects can be interpreted as effects at the mean.

We experienced computational difficulties when attempting to estimate (22) via maximum like-

lihood. Instead, we adopt a Bayesian approach to estimating the slope parameters and the variances

Var(vc), Var(vs−vc), Var(vn−vs), and Var(vi−vn). Specifically, we assign prior distributions from

which our slope parameters and random effect variances are drawn, and use Markov-chain Monte

Carlo methods to estimate the means of the posterior distributions governing these parameters. We

use these posterior means in place of the fixed parameters defined in (22) when reporting results and

computing estimates of the impact of alternative group-level treatments below. The estimates are

not very sensitive to modest changes in the priors for Var(vc), Var(vs− vc), Var(vn− vs). We treat

the Bayesian approach as a computational device.

Step 3: Adjust estimates of α1-α5 and error component variances for sampling error in B̂,

ĜN
1 , ĜS

1 , ĜS
2 , and ĜC

2 .

The parameter α3 captures sd(XsGS
1), where the standard deviation is taken over the student-

weighted distribution of XsGS
1 . α̂3 corresponds to sd(XsĜS

1). It will be biased upward by sampling

error in ĜS
1 . The same issue arises for the other α parameters. Because the hierarchical nature of

the model and the control function strategy we adopt requires the use of a large number of variables

at multiple group levels, the bias from sampling error is not negligible given our sample sizes. We

terms at their values from the previous iteration (XiBk−1, XnGN,k−1
1 , XsGS,k−1

1 , ZS
2sG

S,k−1
2 , and ZC

2cGC,k−1
2 ). The

iterative routine ends when successive iterations produce sufficiently similar parameter estimates.
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separate the signal and noise subcomponents of α̂3 via:

[α̂3]
2 =Var(Xs(i)ĜS

1) =
1
N ∑

i
(Xs(i)GS

1GS′
1 X′s(i))+

1
N ∑

i
Xs(i)[ĜS

1−GS
1 ][Ĝ

S
1−GS

1 ]
′X′s(i). (23)

The expectation of the second (sampling variance) term, conditional on Xs(i), is

1
N ∑

i
Xs(i)Var(ĜS

1)X
′
s(i) (24)

Using (24) we generate a bias-adjusted estimate of α3 via [(α̂3)
2− 1

N ∑i Xs(i)V̂ar(ĜS
1)X

′
s(i)]

.5
,

where α̂3 is the estimate from the multilevel mixed effects model in Step 2. We use estimates

of V̂ar(ĜS
1) based on the formula for the asymptotic variance of our Step 1 probit estimates. We

account for clustering at the commuting zone level but not for the use of imputed data. We perform

similar adjustments to the Step 2 estimates of the other α parameters, but not to the coefficients on

the interactions (where we conjecture that the sampling error in the indices might bias estimates of

interaction effects toward zero). Note, however, that the sampling error in the regression indices

reflects true contributions of the error components, so that such sampling error implies downward

bias in estimates of the variances of the error components Var(vc), Var(vs− vc), Var(vn− vs), and

Var(vi− vn). We discuss how we allocate the bias adjustments across these error components to

remove this downward bias in Web Appendix A3.21

In the case of the wages, we construct an estimate of the variance of the permanent component

of vi under the assumption that the permanent component of the wage makes up the same 45.7%

share of cross-sectional wage variance at age 25 in the ELS and NELS samples as it did for the high

school class of 1972 cohort (NLS72) examined in AM (2016).

The standard errors in the paper are based on a bootstrap approach encompassing the entire

estimation procedure, including the construction of Xs, imputation of missing data, and the bias

corrections to the α parameters. In particular, they account for the fact that the coefficients that

define the index variables used in the second step are estimated.22 Across outcome variables, data

sets, and specifications, we find that the mean of the bootstrap replications of the bias corrected

slope coefficients on XnĜN
1

sd(XnĜN
1 )

, XsĜS
1

sd(XsĜS
1)

, ZS
2sĜ

S
2

sd(ZS
2sĜ

S
2)

, and ZC
2cĜC

2
sd(ZC

2cĜC
2 )

are above the point estimates. Not

21If the bias adjusted estimate of a variance is negative, we set it to 0. The bias adjusted estimate of the covariance
between two terms is set to 0 if the estimate of the variance of one of the terms is 0. If the correlation between two terms
implied by bias adjusted estimates exceeds 1 in absolute value, we adjust the covariance to make the correlation 1 in
absolute value.

22The standard error estimates are based on re-sampling commuting zones with replacement. To preserve the size
distribution of the samples of students from particular commuting zones, we divide the sample into ten CZ sample size
classes and resample CZs within class. For CZs in the largest size class, we break the CZs into two groups, each containing
half the schools. We sample these half CZs instead to prevent any one bootstrap cluster from accounting for too large a
share of the sample. Due to the considerable computational burden of the model estimation and the simulations relative
to the computer resources available for use with the restricted-use versions of ELS and NELS, we use 100 replications
to form the bootstrap estimates for this submission. Furthermore, we use fewer (4) MCMC chains of length 300 rather
than the 20 chains of length 500 that we use to compute the point estimates. This might lead to an overstatement of the
standard errors.
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surprisingly, the disparity is even greater for the bias corrected variance component estimates based

on them, which underlie the variance decompositions in Table 3-1 to 3-4. The distribution of the

bootstrap estimates display a right skew as well as a mean shift. For this reason, we report 5th

and 95th percentile values of the bootstrap distribution of our estimated variance components. The

distribution of the estimates of the treatment effects of a 10th-90th percentile shift in school and/or

commuting zone quality are wider than we would like, but are less sensitive to the issue. More work

on the best way to implement bias corrections and do statistical inference is needed.

6.3 Variance Decomposition Methodology

Here we describe the simple variance decomposition procedure that we use to 1) provide an

initial, descriptive sense of the relative importance of inputs at each level (individual, neighborhood,

school, commuting zone) in determining the outcomes of interest, and 2) assess the degree to which

amenities at the neighborhood, school, and commuting zone level are driving student sorting.

To simplify the empirical analysis we define neighborhoods to be nested within schools, which

are themselves nested within commuting zones.23 We consider a linear version of our estimating

equation in which the vector of interaction coefficients [rN
1 ,r

S
1,r

S
2 ,r2] is restricted to equal 0.24

Yi = XiB+ZN
n GN +ZS

s GS +ZC
c GC +(vi− vn)+(vn− vs)+(vs− vc)+ vc. (25)

One can then write the outcome as the sum of orthogonal components:

Yi = (Yi−Yn)+(Yn−Ys)+(Ys−Yc)+Yc. (26)

Because the components in (26) are mutually orthogonal, Var(Yi) is:

Var(Yi) =Var(Yi−Yn)+Var(Yn−Ys)+Var(Ys−Yc)+Var(Yc) (27)

While characterizing sorting on unobservable student characteristics is daunting (even our con-

trol function approach absorbs group-level sorting at the expense of absorbing part of the group

treatment effect), we can use an analogous four-component decomposition to analyze the structure

23In the empirical work our narrowest definition of neighborhood is the census block group. In a few cases, students
from the same block group choose different schools. We treat students from the same block group who attend different
schools as if they live in different block groups by using school-block group combinations as our definition of a neigh-
borhood. Nesting neighborhood within school greatly simplifies the empirical analysis and is required by the routine we
use to estimate the variances of the error components. But it may diminish the precision of our estimates of neighborhood
and school effects on outcomes. The same issue arises when zip code is the neighborhood definition. Note that the choice
model in Section 2 allows families who live in a given neighborhood to choose different schools.

24When interactions are included in the model, the within-neighborhood variance will differ across neighborhoods
based on the degree to which students sensitive to environment are located in neighborhoods/schools offering more
supportive environments, undermining the validity of a simple decomposition.
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of sorting on the index of observable characteristics XiB that best predicts the outcome:

Var(XiB) =Var((Xi−Xn)B)+Var((Xn−Xs)B)+Var((Xs−Xc)B)+Var(XcB) (28)

This is likely to be a reasonable approximation of the overall structure of sorting if either observable

characteristics drive the bulk of sorting or if the relative weights in the taste matrix ΘΘΘ
U placed on

amenities at the neighborhood, school, and commuting zone levels by unobservable characteristics

mirror the weights implicit in ΘΘΘ.

6.4 Measuring the Effect of Shifts in School and Commuting Zone Quality

While decompositions of variance provide an overall sense of the relative importance of individ-

ual, neighborhood, school, and commuting zone inputs in determining later educational outcomes,

they do not permit one to easily gauge the impact that a substantial improvement in external envi-

ronment can have on a student’s expected educational attainment. Consequently, in this section we

extend to the non-linear context AM’s methodology for converting variance components into ex-

pected impacts on outcomes of particular “treatments”, or shifts in school and/or community input

quality. Here we describe the three distinct treatments we consider.

6.4.1 The Combined School and Commuting Zone Treatment

First, we evaluate the expected change in outcomes associated with moving a randomly cho-

sen student from a school/commuting zone combination at the 10th percentile of the combined

school/commuting zone quality distribution to the 90th percentile. From our production function

(7), the true distribution of combined school/commuting zone quality may be defined as the distri-

bution of ZS∗
s ΓΓΓ

S∗+ZC∗
c ΓΓΓ

S∗. We approximate this combined school/commuting zone quality distri-

bution using the distribution of T = ZS
2sG

S
2 +ZC

2cGC
2 +(vs− vc)+ vc, where we use T to denote the

particular “treatment” chosen. Because we exclude the control function XnGN
1 +XsGS

1 , which may

capture peer effects and other unobserved school and commuting zone inputs in [ZS∗,ZC∗] in addi-

tion to student sorting, our estimated impacts of 10th-to-90th percentile shifts in school/commuting

zone quality will likely understate the impact of the corresponding 10th-to-90th percentile shifts in

ZS∗
s ΓΓΓ

S∗+ZC∗
c ΓΓΓ

S∗. However, as the discussion in Section 6.3 made clear, to the extent that unob-

served neighborhood inputs are clustered in particular schools and commuting zones, such inputs

could contribute to GS
2 , GC

2 , vs− vc, and vc. To the extent that such clustering is significant, we

could interpret our estimates instead as lower bound estimates of the impact of a shift in the com-

bined neighborhood/school/commuting zone quality index ZN∗
n ΓΓΓ

N∗+ZS∗
s ΓΓΓ

S∗+ZC∗
c ΓΓΓ

S∗.

Building an estimator of the impact of these quantile shift “treatments” is complicated by the

interaction terms in (10). First, we assume that the treatment distribution T ≡ ZS
2sG

S
2 +ZC

2cGC
2 +

(vs− vc)+ vc is normally distributed, so that the q-th treatment quantile (denoted T q) is given by

T q = ˆVar(T ).5Φ−1(q) where Φ(∗) is the CDF of the standard normal distribution and Φ−1(∗) is its

28



inverse. Next, note that the interaction terms Mi⊗ZS
2sG

S
2rS

2 and Mi⊗ZC
2cGC

2 rC
2 depend separately on

the subcomponents ZS
2sG

S
2 and ZC

2cGC
2 of the full treatment T . We handle this by effectively integrat-

ing over the joint conditional distribution f (ZS
2sG

S
2 ,Z

C
2cGC

2 |T = T q). We do this by taking P draws

of the vector [ZS
2sG

S
2 ,Z

C
2cGC

2 ] from the appropriate joint multivariate normal conditional distribution

and averaging our predicted outcomes over these P draws. The parameters of that distribution are

based on the bias-corrected estimates of the variances and covariances of the components of the

vector. In our main results we also integrate over the distribution of student and neighborhood in-

puts. We use the empirical joint distribution of observed student and neighborhood inputs from our

sample by averaging over the observed [XiB,XN
n ,XS

s ] vectors of all I students in the sample.

Thus, our estimator of the expected outcome at a chosen quantile q of the “treatment effect”

distribution is:

E[Ŷ q] =
1
P ∑

p

1
I ∑

i
Φ(XiB̂+XN

n ĜN
1 +XS

s ĜS
1 +T q

+(XiB̂)(XN
n ĜN

1 )r̂
N
1 +(XiB̂)(XS

s ĜS
1)r̂

S
1 +Mi⊗ (ZS

2sĜ
S
2)pr̂S

2

+Mi⊗ (ZC
2cĜC

2 )pr̂C
2 )/(1+Var(vn− vs)) (29)

where (ZS
2sG

S
2)p and (ZC

2cGC
2 )p represent the p-th draws of these regression indices from the condi-

tional joint distribution f (ZS
2sG

S
2 ,Z

C
2cGC

2 |T = T q). Note that Var(vi− vn) has been normalized to 1

in the denominator, since the scale of the latent index for binary outcomes is not identified.

We then compute the difference E[Ŷ 90]−E[Ŷ 10] to estimate the change in expected outcome

(e.g. the increase in the probability of high school graduation) for a randomly chosen high school

student from a 10th-to-90th percentile shift in school/commuting zone quality. Alternatively, this

quantity can be thought of as the increase in the population average outcome if we placed every

student in a 10th percentile school/commuting zone, and then moved them each to a 90th percentile

school/commuting zone, but held the distribution of peer effects fixed as it was in our sample. We

refer to this counterfactual as the “School and CZ” counterfactual in our tables and discussion.

6.4.2 The School Treatment

The second counterfactual thought experiment or “treatment” we consider consists of only re-

placing each student’s school inputs with those of the school at the 10th percentile versus 90th

percentile of the school quality distribution (defined by ZS∗
s ΓΓΓ

S∗), holding neighborhood and com-

muting zone inputs fixed. We approximate the distribution of true school quality ZS∗
s ΓΓΓ

S∗ with the

distribution of T ≡ ZS
2sG

S
2 + (vs− vc). Our analysis in Section 4 suggests that both ZS

2sG
S
2 and

(vs− vc) should be purged of any observed or unobserved student inputs by virtue of including Xs

in the control function. However, just as in our first treatment, ZS
2sG

S
2 + vs will not include any peer

effects or unobserved inputs that are predicted by ZS
1s, and it may include unobserved neighborhood

inputs, to the extent that they cluster at the school (but not CZ) level. As we discussed in section 6.3,

if the full set of commuting zone averages of ZS
2sG

S
2 were included in ZC

2c, then we could rule out
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the possibility that any unobserved commuting zone inputs could project onto ZS
2s and be captured

by GS
2 . However, to guard against overfitting we only include the commuting zone average of the

single index ZS
2sG

S
2 in ZC

2c, so that our “school only” treatment could in principle be slightly influ-

enced by unobserved commuting zone inputs as well. Thus, the counterfactual impacts we estimate

are simply the best approximation of the true counterfactual impacts E[Y |T 90]−E[Y |T 10] that our

data and model allow. We refer to this counterfactual as the “School only” counterfactual in our

tables and discussion.

Specifically, our estimator of the expected outcome for a randomly chosen student who is as-

signed a school at the q-th percentile of quality is:

E[Ŷ q] =
1
P ∑

p

1
I ∑

i
Φ(XiB̂+XN

n ĜN
1 +XS

s ĜS
1 +T q +(ZC

2cGC
2 )p +(vc)p (30)

+(XiB̂)(XN
n ĜN

1 )r̂
N
1 +(XiB̂)(XS

s ĜS
1)r̂

S
1 +Mi⊗ (ZS

2sĜ
S
2)pr̂S

2 (31)

+Mi⊗ (ZC
2cĜC

2 )pr̂C
2 )/(1+Var(vn− vs)) (32)

where (ZS
2sG

S
2)p represents the p-th draw from the conditional distribution f (ZS

2sG
S
2 |T = T q) and

(ZC
2cGC

2 )p and (vc)p represent the p-th draws from the unconditional joint distribution f (ZC
2cGC

2 ,vc).

This counterfactual attempts to isolate the sensitivity of student outcomes to the quality of the school

as distinct from the inputs of the surrounding commuting zone.

6.4.3 The Commuting Zone Treatment

The third counterfactual “treatment” replaces each student’s commuting zone inputs with those

of the commuting zone at the 10th percentile versus 90th percentile of the CZ quality distribution

defined by ZC∗
c ΓΓΓ

C∗, holding neighborhood and school inputs fixed. Importantly, this treatment does

not include the subcomponent of ZS∗
s ΓΓΓ

S∗
2 that varies across commuting zones. Thus, this coun-

terfactual is designed to gauge the importance of commuting zone-level inputs in their own right,

rather than the importance of the choice of commuting zone in which to live (which combines com-

muting zone inputs with differences in the distributions of school inputs across commuting zones).

We approximate the distribution of true commuting zone quality ZC∗
c ΓΓΓ

C∗ with the distribution of

T ≡ZC
2cGC

2 +vc (and we do not include the between-CZ component of ZS
2sG

S
2 , since GS

2 is identified

using between-school/within-CZ variation and is designed to capture school effects).25 This is again

an approximation due to the possibility that ZC
2cGC

2 and vc could partly reflect unobserved school or

neighborhood inputs, to the extent that good schools or neighborhoods tend to cluster in particular

commuting zones. We refer to this counterfactual as the “CZ only” counterfactual in our tables and

discussion.

Our estimator of the expected outcome for a randomly chosen student who is assigned a com-

25Recall from footnote 19 in section 6.2 that the commuting zone average of ZS
2sG

S
2 enters our estimating equation as

a separate commuting zone variable with its own coefficient. Since the coefficient on this index is identified purely from
between-commuting zone variation, we include this index as part of our commuting zone treatment.
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muting zone at the q-th percentile of quality is:

E[Ŷ q] =
1
P ∑

p

1
I ∑

i
Φ(XiB̂+XN

1nĜN
1 +XS

1sĜ
S
1 +(ZS

2sG
S
2)p +(vs− vc)p +T q

+(XiB̂)(XN
n ĜN

1 )r̂
N
1 +(XiB̂)(XS

s ĜS
1)r̂

S
1 +Mi⊗ (ZS

2sĜ
S
2)pr̂S

2

+Mi⊗ (ZC
2cĜC

2 )pr̂C
2 )/(1+Var(vn− vs)) (33)

where (ZS
2sG

S
2)p and (vs − vc)p are the p-th draws from the unconditional joint distribution of

(ZS
2sG

S
2) and (vs− vc) and (ZC

2cGC
2 )p and (vc)p are the p-th draws from the conditional joint distri-

bution f (ZC
2cGC

2 ,vc|T ≡ ZC
2cGC

2 + vc = T q).

6.4.4 Estimating Impacts of Shifts in School and Commuting Zone Quality for Particular
Subpopulations

In contrast to AM (2016), the introduction of interaction terms in the estimated production func-

tion (10) in this paper allows us to characterize the degree to which the outcomes of specific sub-

populations are particularly sensitive to the quality of external inputs at the neighborhood, school,

or commuting zone levels.26 Thus, in this subsection we briefly describe how to extend the method-

ology introduced in the last subsection to capture treatment heterogeneity across particular subpop-

ulations.

The most straightforward approach is simply to restrict the sample used for the counterfac-

tual treatments to members of a particular subpopulation. We report results from the following

subpopulations: Hispanic students, non-Hispanic black students, students in a single-mother house-

hold where the mother has a high-school education or less, and students in a two-parent-college-

educated household. We use the empirical distribution of individual and neighborhood inputs

XiB̂+XN
n ĜN

1 +XS
s ĜS

1 , so restricting the sample naturally imposes the chosen sample’s joint dis-

tribution of observed individual and neighborhood inputs. Furthermore, recall that the unobserved

components vi−vn and vn−vs are defined to be uncorrelated with all of the observable characteris-

tics used to define the subpopulation. Thus, the formulas (29) - (33) are still valid, with i and I now

indexing the particular individual and number of individuals among the chosen subpopulation. All

elements of Mi take on the values for i, so that the results for Hispanic students, for example, reflect

not only the interaction terms involving the minority (non-Hispanic black or Hispanic) indicator but

also differences across groups in the distribution of the other elements of Mi, such as low income

status, weighted by the corresponding elements of the interaction coefficients r̂S
2 and r̂C

2 .

However, our rich set of observed individual characteristics also allow us to investigate the

degree to which school and CZ treatment effect heterogeneity is related to the individual’s own

contribution to the outcome. To do this, we fix XiB at each quintile dividing point [.05, . . . , .95]

in its empirical distribution in the sample, and compute the change in expected outcome for each

26The only non-linearity in AM (2016) came from the probit function for binary outcomes.
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of our three counterfactual quality shifts (“School and CZ”, “School only”, and “CZ only”, de-

scribed above) for randomly chosen individuals at the chosen quintile of XiB. We integrate over

the joint distribution of vi− vn, vn− vs, XN
n GN

1 and XS
s GS

1 . This means that we are not holding fixed

the kind of neighborhood such students tend to experience, but are instead randomly assigning a

neighborhood from the full population distribution for both the low (E[Y |T 10]) and high (E[Y |T 90])

school/commuting zone treatments. Specifically, the expected outcome of a randomly chosen stu-

dent at a particular XiB percentile q′ (denoted (XiB̂)q′ below) who is assigned a school-commuting

zone combination at the q-th percentile in the “School and CZ” counterfactual is estimated via:

E[Ŷ q] =
1
P ∑

p

1
I ∑

i
Φ((XiB̂)q′+XN

n ĜN
1 +XS

s ĜS
1 +T q

+(XiB̂)q′(XN
n ĜN

1 )r̂
N
1 +(XiB̂)q′(XS

s ĜS
1)r̂

S
1 +Mi

q′⊗ (ZS
2sĜ

S
2)pr̂S

2

+Mi
q′⊗ (ZC

2cĜC
2 )pr̂C

2 )/(1+Var(vn− vs)), (34)

where Mq′
i = [(XiB)q′ ,1(Female),1(URM),1(Low Income)]. We can then examine how sensitivity

to school and commuting zone inputs systematically varies as one moves through the distribution of

observed student contributions.

Note that, just as in AM (2016), part of the differential sensitivity will arise from the nonlinearity

of the probit function. In other words, even if each of the interaction parameters {rN
1 ,r

S
1,r

S
2 ,r

C
2 }

were equal to zero, we should still expect heterogeneity in outcome sensitivity even in the absence

of heterogeneity in sensitivity of the latent probit index to the school and location treatments. This is

because some subpopulations have a larger mass of students near the decision margin (as evidenced

by different mean outcome values). Below we sometimes compare the predicted effects we obtain

from subpopulation-specific 10th-to-90th quantile shifts based on the non-linear probit index model

to the corresponding predicted effects based on the linear version of our estimating equation (25) in

which the vector of interaction coefficients is restricted to 0. We do this to better gauge the degree

to which the treatment effect heterogeneity generated by our full model is well-approximated by the

more parsimonious model that removes interaction terms.

7 Results: Main Estimates and Variance Decompositions

In section 7.1 we discuss the estimates of (22). In section 7.2 we present the decompositions of

variance discussed in (6.3) for each of our outcomes from NELS and ELS. These are based on the

linear version of our estimating equation (25) in which the interaction parameters {rN
1 ,r

S
1,r

S
2 ,r

C
2 }

have been restricted to zero. We focus on the estimates for the “full” set of Xi variables. Model

estimates and variance decompositions for the “basic” set are in the supplemental appendix. As

expected, they usually imply a more important role for school and commuting zone factors in edu-

cation and wages. We discuss treatment effect estimates based on them in Section 8
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7.1 Model Estimates

Since we do not seek to interpret any of the particular elements of the coefficient vectors B,

G1, or G2, we focus here on characterizing the relative importance of the regression indices at each

school and location level, as well as the strength of the interaction coefficients. To this end, the

columns of Table 2-1 present bias-corrected estimates of (22) for the educational attainment out-

comes.27 Keep in mind that the indices are normed to have a standard deviation of one (they were

already mean zero by construction), so that the coefficients α1-α5 capture the degree to which a one

standard deviation change in a given regression index increases the latent probit indices that deter-

mine the outcomes we consider. Table 2-2 presents a corresponding set of estimates for ln(wage) at

about age 25. Zero values for point estimates of the α parameters indicate that the bias correction

led to a negative value.

First, note that the individual-level observable index XiB is an extremely powerful predictor

of educational attainment outcomes, particularly ENROLL and COLLBA. The estimate is similar

when we exclude interaction terms (See Web Appendix Table 7-1). As we will demonstrate in

Figure 3a below, one can predict educational attainment quite well using observed student and

family characteristics even in 8th grade (NELS results). In the case of ln(wage), a one standard

deviation increase in XiB raises the permanent wage by 0.165 in the case of ELS and 0.134 in the

case of NELS. These values are substantial relative to the standard deviation of permanent wages,

which we estimate to be 0.338 for ELS and 0.361 for NELS. The mid-20’s wages used here do not

fully capture the divergence that will occur later in life.

The second notable pattern is that the index of observed neighborhood (zip code or block group)

characteristics taken from Census Bureau and LODES data demonstrates very little predictive power

across outcomes and datasets. Indeed, once the bias correction has been applied, in 5 of 12 cases

we find that there is no more variance in the observed neighborhood index than we would expect

due to sampling variance (so that the bias corrected coefficient is zeroed out).

Third, the group-level unobserved components are small to modest in size for each outcome,

with the neighborhood component being the most important followed by the school and then the

commuting zone. The standard deviation of vn− vs is close to 0.15 at the block group level in

ELS for all 3 education outcomes. It is around 0.11 at the zipcode level across the three education

outcomes for both ELS and NELS. Not surprisingly, these values are small relative to XiB or the

idiosyncratic component vi− vn, which has a standard deviation of 1. The estimates of the standard

deviation of vs − vc are tightly concentrated around 0.07 across data sets and specifications for

HSGRAD, around 0.11 for ENROLL, and around 0.06 for COLLBA. We do not have strong priors

as to whether to expect a larger value for the lower-level education outcomes than for COLLBA.

27As noted above, we do not use weights in the estimation because using them led to computational difficulties in
estimating the error component variances. We have also experimented with estimating α1−α5 and the interaction coeffi-
cients treating the error term as a composite error. The uncorrected estimates are very close to the uncorrected estimates
that underlie the bias corrected estimates reported in the tables. Not surprisingly, discrepancies do arise for some of
the coefficients on the interactions, which have large estimated standard errors. We do not know if the error variance
estimates are sensitive to weighting.
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Commuting zone error components vc typically feature standard deviations about half to two thirds

as large as the school level component vs− vc.

In the case of wages, the standard deviation of the neighborhood random component vn− vs is

.043 (.008) log points in the ELS block group case. It is around .027 at the zip code level for both

ELS and NELS. School effects and commuting zone effects are small, on the order of .01-.02 log

points.

Next, we turn to the indices of observed group-level inputs that are not averages of individual

inputs, ZS
2s and ZC

2c. The ability of these indices to predict outcomes, along the standard deviations

of vs− vc and vc, form the core of our counterfactual shifts in school- and commuting zone-level

inputs presented later in this section.

The estimated (bias-corrected) standard deviations of ZC
2c (α̂5) are relatively robust across alter-

native neighborhood definitions, linear/nonlinear specifications, and datasets for both high school

graduation and four-year college enrollment. The values range between .10 and .15, with slightly

smaller NELS88 values for high school graduation and slightly larger values for college enrollment.

Standard deviations for college graduation are somewhat smaller, between .06 and .12. As we will

see in Section 8, these commuting zone inputs predict enough outcome variation to imply relatively

large impacts from shifting from low to high commuting zone environments. Standard errors are

typically around .035 and tend to be larger in models with interaction terms.

The estimated (bias-corrected) standard deviations of ZS
2s (α̂4) are mostly of similar size to

(or slightly smaller than) ZC
2c, suggesting similar importance for school and commuting-zone level

inputs. Recall that commuting zone averages of ZS
2sĜ2 are included in ZC

2c, so that α̂4 is based

only on within-CZ variation across schools, preventing CZ-level inputs from being captured by α̂4.

These estimates are also generally robust to excluding interactions and changing the neighborhood

definition, with the notable exception of high school graduation in ELS. In the ELS case, α̂4 is much

smaller with a much larger standard error (α̂4 =.009 (.073)) than when interactions are restricted to

0 (0.124 (.051)), particularly when block group is used to designate a neighborhood. While we do

not have a convincing explanation for the sensitivity to interactions in this one context, we should

note that dropping out is a rare outcome in the unweighted ELS sample (only 8%), which may lead

these estimates to be less robust. Indeed, the corresponding ELS high school graduation results for

the basic specification (displayed in Web Appendix Table 1-1) display a much smaller drop in α̂4.

Neither ZS
2s nor ZC

2c predicts log wages particularly well, with α̂4 generally between .01 and .03

log points and α̂5 between .02 and .04 log points. α̂4 is not statistically significant in either the

ELS block group or zipcode specifications. This may reflect the early age at which log wages are

measured in both NELS and ELS.

Finally, the estimates of the interaction coefficients are somewhat noisy. In the case of the

interactions between XiB and the neighborhood composition index XN
n GN

1 , the estimates of rN
1 are

negative and statistically significant in the equations for ENROLL and COLLBA, suggesting that

disadvantaged students disproportionately benefit from living in a stronger neighborhood. However,
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we do not make too much of this result because the main effect of XN
n GN

1 is weak and the result does

not carry over to high school graduation or wages. The estimates of rS
1 also tend to be small and

statistically insignificant (partly due to large standard errors), and the signs vary across outcomes

and data sets. The sensitivity of the estimates partly reflects the relatively low predictive power of

Z2sG2 (particularly for ELS high school graduation), so that there is limited variation with which

to identify interactions with Z2sG2. Alternatively, for the binary outcomes in particular, this may

suggest that the non-linear probit function that maps the probit index into the outcome probability

does a fairly good job of capturing the differential sensitivity of students with higher and lower

observed inputs to group-level inputs. We investigate this further in section 8.

7.2 Decompositions of Variance

7.2.1 The Extent of Neighborhood-, School-, and Commuting Zone-Level Clustering in Out-
comes

Columns 1-3 of Table 3-1 report the decomposition of the variance of the latent probit index Yi

that determines high school graduation into components at the individual, neighborhood, school, and

commuting zone levels based on the linear specification (25) that excludes the interaction terms. We

report the 5th and 95th percentiles of the bootstrap replications in brackets and give a few examples

in the text. The range is often substantial relative to the point estimates. Figure 1 displays the

decomposition for each dataset and outcome graphically.

The first row of Column 1 suggests that about 82.3% of the variance in the latent index deter-

mining graduation exists among students living within the same grade 8 neighborhoods in NELS.

Row 2 shows that just 1.2% [0.5%, 1.6%] consists of different neighborhood averages among stu-

dents attending the same school, while Row 3 indicates that another 10.1% [8.0%, 13.5%] consists

of different school averages among students residing in the same commuting zone. Finally, row 4

shows that the remaining 6.4% [5.5%, 9.0%] consists of differences in commuting zone averages.

While the small neighborhood component is surprising, note that this does not necessarily mean

that neighborhood effects are unimportant. Rather, it could be that high and low quality neighbor-

hoods tend to be sufficiently grouped within school attendance zones so that most of the variation in

neighborhood inputs exists across schools. As discussed in section 6.3, our variance decompositions

are crafted to prevent higher-level inputs (eg., commuting zone) from being reflected in lower-level

variance components, but between-school variation in neighborhood quality will still be captured

by the between-school variance components. Alternatively, ZIP code may be too coarse a measure

of neighborhood, with most ZIP codes containing a mix of both good and bad neighborhoods (so

that the bulk of neighborhood effect variation is assigned to the “within-neighborhood” category

in Table 3-1). The larger neighborhood-level variance component in the ELS block group results

suggest that this is part of the story.

Column 3 presents a variance decomposition of the determinants of HSGRAD for ELS using

zip code. A greater share of the variance is now within-neighborhood (84.2%), with slightly smaller
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shares at the neighborhood, school and commuting zone levels (1.2%, 9.1%, and 5.4% respectively).

The ELS results using block group as the neighborhood definition (column 2) are similar, but the

contribution of neighborhood is higher (2.1% versus 1.2%).

Columns 4-6 present the same decomposition for the latent index that determines enrollment in

a four-year college. The NELS grade 8 results (Col. 4) display considerably larger school and com-

muting zone components (14.7% and 9.8%, respectively) at the expense of within-neighborhood

variance (74.2%), with the neighborhood component only increasing to 1.4%. The ELS zip code

results mirror the 10th grade NELS results except for a slight decrease in the within-neighborhood

component (71.9%) and slightly larger school and commuting zone components (16.7 and 10.6%).

The ELS block group results are similar, but the neighborhood component rises from 0.8% to 2.7%

[2.0%,4.9%].28

Columns 7-9 show the results for COLLBA. The neighborhood, school, and commuting zone

shares of variance are between those for high school graduation and college enrollment, but closer

to the high school graduation shares.

The results for log wages (columns 10-12) show a much larger role for the variance of stu-

dent level factors within neighborhood for NELS, with only 1.8% of the variance existing across

schools/within commuting zones, and 6.9% existing across commuting zones. ELS results display

a similarly-sized commuting zone component, but a much larger school component (∼ 8.5%).

7.3 The Extent of Student Sorting at the Neighborhood, School, and Commuting
Zone Levels

The decompositions in Table 3-1 convey the degree of outcome clustering at each level of ag-

gregation, but they combine group-level differences that are attributable to student sorting with

true group-level inputs. In this subsection we focus attention on the degree to which neighborhood,

school, and commuting zone amenities and job opportunities segregate the population on the observ-

able individual characteristics that best predict educational outcomes and wages. Specifically, the

last row of Table 3-2 provides the fraction of the total variance in the latent index for each outcome

that is attributable to the regression index of individual-level observables XiB. Rows 1 through 4 de-

compose this variance component into within-neighborhood, between-neighborhood/within-school,

between-school/within-commuting zone, and between-commuting zone components to illustrate the

nature of student sorting on outcome-relevant observables.

Column 1 displays the results for grade 8 neighborhoods, schools, and commuting zones in

NELS for the index that determines high school graduation. Row 5 shows that individual observ-

ables have a fair amount of predictive power. They account for 22.9% of the total variance in

the latent index Yi. Rows 1-4 show that 73.4% of this variance is within neighborhood, while the

28It bears repeating that we are not using sampling weights due to computational difficulties and so are not accounting
for differences in designs of the ELS and NELS samples. It is possible that this contributes to differences in the estimates
across ELS and NELS.
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neighborhood-level, school-level, and commuting zone level inputs each account for 1.4%, 14.4%,

and 10.8% of Var(XiB), respectively. Consistent with the results in the previous section, there is

virtually no evidence of outcome-relevant sorting across ZIP codes within school attendance zones.

Perhaps this is simply an indication that ZIP codes are poor proxies for neighborhoods. The table

shows that there is substantial student sorting on observables both across commuting zones and

across schools within commuting zones. Such sorting underscores the need for econometric tech-

niques to distill the contribution of school and commuting zone inputs, since a substantial portion

of differences in raw outcome means across schools and commuting zones is directly attributable to

differences in the kinds of students these schools and areas attract.

The ELS results using zipcode (col. 3) are similar but with a substantially larger value for

schools (18.7%) and only 0.5 percent for zipcode. The ELS block group estimates (col. 3) are

similar to the ELS zipcode results, but show a slightly larger value for neighborhood (2%) within

school. Nonetheless, this suggests that school attendance is the critical level at which sorting occurs,

rather than neighborhoods within attendance zones

Columns 4-6 display the corresponding decomposition of Var(XiB) for the latent index deter-

mining college enrollment. Interestingly, the bottom row indicates that the individual-level observ-

able characteristics are much more powerful predictors of ENROLL than high school graduation;

for ENROLL they account for around 34% of the total outcome variance in NELS and around 40%

in the two ELS specifications. The relative importance of neighborhood, school, and commuting

zone in driving sorting is essentially unchanged across outcomes.

The decompositions for the latent index determining college graduation (col. 7-9) are roughly

similar to those for high school graduation and college enrollment; Var(XiB) accounts for between

32% and 39% of the total variance, and the relative importance of the different groups closely

mirrors the high school graduation results.

In the case of permanent wages (col. 10-12), between 66% and 72% of the variance in XiB is

within neighborhood across datasets, with 16-19% of the variance existing between schools/within-

commuting zones, and around 10-11% between commuting zones. The between-neighborhood/within

school share is again much larger (4.7%) for the ELS block group specification than for ELS or

NELS zip code specifications (around 1%), underscoring the importance of better finer neighbor-

hood designations.

8 Results from Counterfactual Shifts in School and Commuting Zone
Quality

This section reports results from the three types of counterfactual shifts in school and commuting

zone quality described in section 6.4, both for the full population and for particular subpopulations.

We organize the discussion by outcome. We focus on the treatment effects estimates for the full set

of Xi variables but briefly discuss estimates using the basic set, which are typically larger.
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8.1 High School Graduation

Columns 1-3 of Table 4 report the expected difference in the probability of graduating high

school for a student randomly chosen from the full population between “treatments” in which the

student grows up in a 10th versus 90th percentile school and/or commuting zone environment.

Standard errors are in parentheses.

The entries in the first row consider the “School and CZ” treatment (labeled Sch+CZ). Here we

set the combined school and commuting zone inputs that the student receives to the 10th vs. 90th

percentile of the distribution of combined inputs ZS∗ΓΓΓS∗+ZC∗ΓΓΓC∗, which we approximate with the

estimated distribution of ZS
2sG

S
2 +ZC

2cGC
2 +(vs−vc)+vc. The entries in the second row consider the

“School only” specification (labeled Sch Only). Here we aim to set school inputs only at the 10th

vs. 90th percentile of the true school input distribution ZS∗ΓΓΓS∗. We approximate these quantities

using the distribution of ZS
2sG

S
2 +(vs− vc). Finally, the third row entries display results from the

“CZ only” treatment. Here we isolate the importance of commuting-zone level inputs by using

quantiles of the ZC
2cGC

2 + vc distribution to approximate the distribution of true CZ inputs ZC∗ΓΓΓC∗.

Focusing first on the NELS grade 8 results in column 1, we see that growing up in a 90th

percentile school/commuting zone environment rather than a 10th percentile environment increases

a randomly chosen student’s probability of graduation from .821 to .903, an increase of 8.2 (1.7)

percentage points. It is very large relative to the dropout rate. A corresponding shift in school

environment only (while receiving a random draw from the distribution of commuting zone inputs)

changes the graduation probability from .832 to .893, an increase of 6.1 (1.9) percentage points. A

10th-to-90th percentile shift in commuting zone inputs generates a predicted increase of 5.5 (2.0)

percentage points (.835 to .890).

The estimates for ELS are considerably smaller. Column 3 reports ELS results for block group.

The “School and CZ”, “School Only”, and “CZ Only” treatments raise the graduation probability

by 5.4 (2.2) percentage points (.901 to .955), 3.0 (2.0) percentage points, and 4.5 (1.8) percentage

points, respectively. The values are slightly smaller when we use zipcode as the neighborhood

measure (column 2). One reason for the smaller ELS estimates is that the unweighted high school

graduation probability in the sample is very high: 0.92. Thus, there is not much room for increases in

the graduation probability. However, as discussed earlier, the estimated standard deviation of ZS
2sĜ2

is anomalously small in the nonlinear full specification for high school graduation in ELS, relative

to the NELS estimates, the linear version (no interaction terms) of the full specification in ELS

(not reported), or the nonlinear specification in ELS that uses only the basic Xi variables. Indeed,

the same 10th-90th probability shifts for the “School and CZ”, “School Only”, and “CZ Only”

treatments using the linear specification (25) with block group as the neighborhood designation are

6.6 percentage points, 4.9 percentage points, and 4.3 percentage points, respectively. Estimates

are similar for the basic non-linear specification (Web Appendix Table 1-1) and the full non-linear

specification using zip code to define the neighborhood (Column 3).

While the estimates are somewhat noisy (standard errors are usually nearly 2 percentage points),
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taken together the results for HSGRAD indicate that large shifts in school and commuting zone

inputs could generate socially significant impacts on graduation probabilities. Note that this is true

even though the components (ZS
2sG

S
2 ,Z

C
2cGC

2 ,(vs−vc),vc) that we ascribe to school and commuting

zone inputs comprise relatively small fractions of the outcome variance. Appendix Table 3 displays

the variance components that underlie the three counterfactual treatments.29 The variance of the

distribution of combined school and CZ inputs in the “School and CZ” specification comprises

just 2.0 percent of the full latent index variance in NELS, and only 2.4 percent in the ELS block

group specification. Similarly, the variance of the inputs that make up the school quality and CZ

quality distributions in the “School Only” and “CZ Only” specifications each account for only about

1 percent of the latent index variance in NELS grade 8. How do 10th-to-90th quantile shifts in

distributions featuring such small variances generate such substantial outcome changes? One reason

is that variance components, by virtue of squaring deviations, tend to exacerbate differences in the

relative importance of various inputs; standard deviations of these components are considerably

closer in size to those corresponding to individual inputs. However, perhaps more importantly,

for binary outcomes even a small shift in underlying propensity to graduate can have a significant

impact on graduation outcomes if many students are near the decision margin.

The ELS estimates using the basic set of Xi variables in Web Appendix Table 5 are typically

about 1 percentage point larger for School and CZ and for School, but not for CZ. The NELS

estimates change very little. As we have discussed, the estimates based on the full set are more

conservative. The inclusion in the full set of test scores and other variables that are likely to be

influenced by the school and location will generally lead to an understatement of treatment effects.

Including them in Xs also potentially absorbs more of the true variation school and location quality,

leading to a further understatement. The advantage of the full set is that the expanded Xs reduces

the risk of sorting bias.

8.1.1 Subpopulation Results for High School Graduation

We now examine the degree of heterogeneity in sensitivity to our counterfactual treatments

across subpopulations.

Treatment effect heterogeneity across groups arises through three pathways. The first is that the

model includes interactions involving female, underrepresented minority, and low income indica-

tor variables. The second and third both arise from differences in the distributions of XiB across

subpopulations. The second pathway arises because the model contains interactions between XiB
and ZS

2sG
S
2 and ZC

2cGC
2 , respectively. The third arises because differences in the locations of the XiB

distribution across subgroups produces effect heterogeneity for binary outcomes even in the absence

29Note that these variance components are computed based on the specification in Columns 1-3 of Table 2-1. In
computing variance fractions, we ignore the variance contribution of the interaction terms because a simple variance
decomposition does not exist for the model with interactions. The interactions are accounted for in the 10-90 estimates.
The corresponding table for the linear specification is available upon request. The values are close for all outcomes and
samples, with the exception of HSGRAD for the ELS block group sample.
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of explicit interaction terms. Due to the nonlinearity in the probit function that links Y to the binary

outcome indicators for education, the sensitivity to school quality is higher for subpopulations with

values of XiB̂ that place them closer to an outcome probability of 0.5. Consequently, HSGRAD

is more sensitive to school or commuting zone quality for disadvantaged subpopulations and less

sensitive for advantaged subpopulations. The opposite tends to be true for ENROLL and COLLBA.

In the extreme case, if every member of the subpopulation had a sufficiently high XiB value, they

would all be presumed to attain the positive outcome regardless of their school/commuting zone

environment.

Table 2-1, column 1 shows that rS
21, the coefficient on the interaction between XiB and ZS

2sG
S
2 ,

is only .008 (.033) for NELS 8th graders. The corresponding values for ELS block group and

ELS zipcode are -.011 (.035) and -.011 (.034). None of these values are statistically nor socially

significant. The NELS coefficient implies that experiencing a school with a one standard deviation

above average value of the index ZS
2sG

S
2 would increase the probit index by .008 more for a student

with a one standard deviation above average value of the index XiB than for a student at the mean

of XiB.

The coefficient rC
21 on (XiB)(ZC

2cGC
2 ) is small and positive for NELS and ELS blockgroup and

-.017 (.029) for ELS zip code. Again, none are statistically significant. Columns 2, 4, and 6 also

report coefficients on the other interactions. They are mostly small and inconsistent in sign. The

estimates are noisy, so we cannot rule out the possibility of important interaction effects in the

probit index. But the interaction terms are not the primary source of the substantial differences

across groups in treatment effects, to which we now turn.

Table 5 displays the impacts of the 10th-to-90th quantile shifts in quality for each of our three

counterfactuals for randomly chosen individuals from specific subpopulations. We consider His-

panic students, non-Hispanic black students, white students, non-Hispanic white students with a

single mother with a high school education or less, and non-Hispanic white students living with two

biological parents with four-year college degrees or above.

White students dominate the sample, and so estimates are similar to but a bit smaller than those

for full sample. Black students are moderately more sensitive to each of the three treatments than

the population at large, while Hispanic students and non-Hispanic white students with a single

mother with a high school education or less, who have the lowest mean XiB values, are the most

sensitive. Specifically, for the “School and CZ” 10th-to-90th quality shift, the predicted increase in

high school graduation probability is 8.7 (2.1) percentage points (81.4 to 90.1) for a random member

of the black subpopulation and 13.6 (2.7) percentage points (65.6 to 79.3) for a member of the

subpopulation with less-educated white single mothers. In contrast, non-Hispanic white students

with two college-graduate parents can only expect a 4.2 (0.9) percentage point increase from the

same shift in school/commuting zone inputs. The ELS results with either block group or zip code as

the neighborhood are smaller: 7.6 (3.3) and 6.7 (2.9) percentage points, respectively, for Hispanic

and non-Hispanic black students, and only about 1.8 (0.9) percentage points for a randomly chosen

white student with two college-graduate parents. The smaller ELS results are primarily due to the
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high sample mean graduation rate of 92% in the ELS sample: high income students are sufficiently

well-supported that they are likely to graduate high school regardless of the school and commuting

zone environment they experience in the ELS cohort.

Similar patterns emerge for the “School only” and “CZ only” counterfactuals, for which the

subpopulations feature variation in their 10th-90th probability differences of a couple of percentage

points around the full sample means of 3.0 and 4.5 percentage points for ELS block group, and 6.1

and 5.5 percentage points for NELS zip code. Interestingly, the “CZ only” counterfactual continues

to have a slightly larger impact than the “School only” counterfactual for all subgroups, despite the

fact that the estimated interaction coefficients imply that disadvantaged subgroups might be less

sensitive to CZ inputs than the full population and more sensitive to school inputs. This implies that

the contribution of the estimated interaction effects to treatment effect heterogeneity is swamped by

the effect heterogeneity generated by the highly nonlinear probit function, which for high school

graduation makes all disadvantaged populations more sensitive to external inputs (a greater share

are near the decision margin). Consist with this, we obtain similar estimates of 10th-90th treatment

effects using the models without interactions (not shown).

Finally, Figures 3a and 3b and Figure 4 illustrate more generally how the predicted outcome

changes as the percentile of the XiB index increases (based on (34)). The solid dark line in Figure

3a (3b) shows how in the NELS (ELS block group) case the probability of high school graduation

(vertical axis) varies with the percentile of XiB for a student who receives the median value of the

School and CZ treatment. It provides a yard stick for thinking about the magnitude of treatment

effects. Figure 4 graphs 10th-to-90th treatment effects against the XiB percentile. We exclude con-

fidence intervals to avoid cluttering the graph, but Web Appendix Table 4 reports estimates as well

as standard errors of treatment effects for student at the 10th, 50th and 90th quantiles of XiB. The

impact of each 10th-to-90th treatment decreases monotonically with the XiB quantile. Specifically,

students in NELS (light grey line) at the 5th quantile of the XiB distribution move from a 51.8%

chance of graduating to a 68.9% chance when the quality of the combined school/commuting zone

environment shifts from the 10th to the 90th percentile, whereas students at the 95th quantile only

move from a 98.0% graduation rate to a 99.3% graduation rate. So 8th grade school and commut-

ing zone environment seems to be critically important for high school graduation for particularly

disadvantaged populations, and essentially irrelevant for particularly advantaged populations. The

ELS results for both neighborhood definitions display a similar pattern of sensitivity to school and

CZ inputs, but with proportionately smaller impacts for all subpopulations.

8.2 Enrollment in a Four-Year College

Columns 4-6 of Table 4 reports the impacts of the corresponding counterfactual shifts in school

and/or commuting zone environment for whether the student enrolls in a four-year college within

two years of expected high school graduation.

A 10th-to-90th percentile shift in combined school/commuting zone quality predicts increases
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in enrollment probability of 17.9 (2.3) percentage points (23.4 to .41.3) for 8th graders in NELS,

while the corresponding shifts in school inputs exclusively and commuting zone inputs exclusively

generate predicted increases of 13.0 (25.7 to 38.9) and 11.4 (26.5 to 37.9) percentage points, re-

spectively. The effect of the “School and CZ” treatment in the ELS zip code and ELS block group

specifications are 16.2% (2.7%) and 15.8% (3.6%), respectively, with a reduced importance of CZ

compared to school.

Note that the impacts of school and commuting zone on this outcome are considerably larger

than those for high school graduation. For NELS, this partly reflects a larger variance in the compo-

nent of Yi (the latent index) that is attributed to school and commuting zone inputs (2 vs. 3.5 percent

of Var(Yi), from Appendix Table 3). However, the variance components underlying the ELS block

group and ELS zipcode counterfactuals are very similar in magnitude to those used for the high

school graduation counterfactuals (∼ 2.3 percent of Var(Yi) in each case). Instead, the larger esti-

mated impacts for college enrollment primarily reflects the fact that the population outcome mean

for college enrollment is much closer to .5 (.327 in NELS and .422 in ELS, from Table 1) than for

high school graduation (.853 in NELS and .919 in ELS). The probit model assumes a normal distri-

bution of unobserved inputs, so that an outcome mean of .5 implies that many students are near the

decision margin. Thus, the same change in the latent probit index translates to a much greater shift

in outcome probability for college enrollment.

Treatment effects for the basic specification of Xi are about 4 percentage points larger in ELS

and about 0.5 percentage points larger in NELS (Web Appendix Table 5, columns 4-6).

8.2.1 Subpopulation Results for College Enrollment

Table 5 reports the impacts of our counterfactual shifts for particular subgroups of NELS 8th

graders. Because the population mean for college enrollment is below .5, the probit model im-

plies that more disadvantaged subpopulations have fewer students near the decision margin, so that

the largest impacts occur for the most advantaged subgroup (in this case, white students with two

college-graduate parents) and the lowest value is for the most disadvantaged subgroup (children of

single white mothers with education less than or equal to high school). The impacts of the “School

and CZ” treatment range from 12.2 to 21.7 percentage points. The “School only” treatment displays

slightly higher effects than the “CZ only” treatments with similar degrees of heterogeneity: Impacts

range from 6.9-14.1 percentage points for “School only” and 9.2-15.7 percentage points for the “CZ

only” treatment.

The dashed line (zip code) and dotted line (block group) in Figures 3a and 3b display for NELS

and ELS block group the same strong link between XiB and college attendance as was found for

high school graduation.

Figure 5 shows the relationship between the treatment effects on college attendance probability

and the quantiles of XiB. The impact of the counterfactual treatments is nonmonotonic in XiB,

increasing and then decreasing as one moves through the distribution of XiB. For example, for
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the “School and CZ” counterfactual in NELS, the estimated impact for the 10th, 70th (near the

maximum impact), and 95th quantiles of XiB are 7.3 percentage points, 25.2 percentage points, and

18.3 percentage points, respectively.

The pattern occurs despite the fact that in the NELS case the coefficient on the interaction be-

tween XiB and ZS
2sG

S
2 is substantial: -.087 (0.038). Part of the decline at the top of the XiB distribu-

tion may be due to this. However, the pattern is primarily due to a striking fact about the variation

in predicted outcome probabilities across XiB quantiles that is established in Figure 1a. In NELS

(solid light line) for a school/CZ combination of median quality, the predicted enrollment rates for

a student at the 10th, 30th, 70th and 95th quantiles of XiB are 6.1%, 21.6%, 60.7%, and 89.3%,

respectively. The figure demonstrates just how strongly observed family background and student

aptitude measures (as of 8th grade) predict enrollment at a four-year postsecondary institution.

The estimates of the treatment effects for the ELS zip code and block group specifications fol-

low the same pattern as in NELS, although the estimates are typically about 1 point smaller in size

and fall in a narrower range. The variance components attributed to school inputs (Var(ZS
2sG

S
2)

and Var(vs− vc)) are substantially larger in ELS than those attributed to CZ inputs (Var(ZC
2cGC

2 )

and Var(vc)), so that counterfactual impacts are substantially larger for the “School Only” speci-

fication than the “CZ only” specification, particularly for subgroups featuring low values of XiB.

For example, the impact of a 10th-to-90th percentile shift in the quality of school inputs increases

the predicted enrollment probability by 11 percentage points for a random member of the Hispanic

subpopulation, while the corresponding shift in the quality of commuting zone inputs only produces

a 7 percentage point increase. The estimated impacts associated with 10th-90th shifts in combined

school and CZ inputs display similar magnitudes and patterns of heterogeneity to the NELS sample.

The ELS zip code specification provides a particularly useful opportunity to assess the im-

portance of the interaction terms in the model. First, the bias-corrected standard deviations in

ZS
2sĜ2 and ZC

2cGC
2 are both substantial, so that there is more signal contained in these regression

indices with which to identify true interactions. Second, a number of the interaction terms are

seemingly non-negligible in size (albeit still noisily estimated). Specifically, the interaction coeffi-

cients on 1(LowInc)×ZS
2sG

S
2 and 1(LowInc)×ZC

2cGC
2 are 0.079 and 0.053 respectively, suggest-

ing greater sensitivity of students from modest backgrounds to both school and CZ inputs. The

interaction coefficients on (1(URM)ZS
2sG

S
2) and (1(URM)ZC

2cGC
2 ) are also substantial, but are con-

flicting in sign ( -0.044 and 0.071 respectively). Third, the linear and nonlinear specifications fea-

ture very similar values of the variance components we use for our “School and CZ” treatment

(Var(ZS
2sĜ2 +ZC

2cGC
2 +(vs−vc)+vc) makes up 2.37% of Var(Yi) in both cases), so that we can di-

rectly compare treatment effects when interaction terms are both excluded and included, effectively

holding fixed the importance of the main effects. Indeed, the mean impact of the 10th-90th “School

and CZ” treatment is 16.1 percentage points in the linear specification (not shown) and 16.2 (Table

4) percentage points in the nonlinear specification.

However, none of the subgroups we consider displays more than a 0.3 percentage point differ-

ence in treatment effects between the linear and non-linear specification. While the imprecision of

43



our interaction estimates cautions against overinterpreting the results, our limited evidence suggests

that the probit function seems to be doing an effective job of capturing heterogeneity in sensitivity

to higher quality school and commuting zone inputs.

8.3 Graduation from a Four-Year College

Columns 7-9 of Table 4 report the estimated impacts of the same counterfactual treatments on

a randomly selected student’s probability of graduating college by age 25. The NELS results (col.

7) indicate that replacing a combined school/commuting zone at the 10th percentile of the quality

distribution with one at the 90th percentile increases the college graduation probability by 11.9 (2.1)

percentage points (38.6% to 50.5%), while shifting only school inputs or only CZ inputs from their

respective 10th to 90th percentiles increases the graduation probability by 10.1 (2.8) and 9.2 (2.3)

percentage points, respectively. The small increase in impact from shifting school and CZ quality

together relative to separately is partly due to an estimated negative covariance between ZS
2sG

S
2 and

ZC
2cGC

2 , but is also due to the fact that doubling a variance only increases the standard deviation by

a factor of
√

2.

However, the ELS block group estimates (col. 8) are only 7.3 (2.2), 5.6 (2.4), and 5.7 (2.4)

percentages points, respectively, with the ELS zip code estimates (col. 9) displaying similar mag-

nitudes. The discrepancy is much larger in percentage terms than the discrepancy in the results for

ENROLL. COLLBA has a mean of 0.376 in ELS and 0.443 in NELS (Table 1), so one cannot at-

tribute more than a small share of the larger treatment effects in NELS to nonlinearity of the probit

model. Instead, the share of variance in the latent index attributed to school and CZ inputs is only

half as large in ELS as in NELS (Appendix Table 3). While this could be a true cohort effect, the

fact that college graduation outcome is measured four years later in a separate survey than our en-

rollment and high school graduation outcomes may be a contributing factor. The change in sample

is larger in NELS (the sample size drops by about a quarter), and may have had a different compo-

sition relative to ELS. Notably, the school effect and the commuting zone effect are similar in size

to each other in both data sets.

Switching from the full specification to the basic specification (displayed in Web Appendix

Table 5) increases the estimates in ELS by about 2.6% and in NELS by about 1.2%, narrowing the

gap between the data sets.

8.3.1 Subpopulation Results for College Graduation

Table 5 reveals modest heterogeneity in estimated impacts from the counterfactual treatments

across subgroups for NELS 8th graders. For the “School and CZ” counterfactual, a 10th-to-90th

shift in combined school/CZ input quality increases the probability of college graduation by between

9.6% and 12.4%. The range across subgroups of the estimated impacts of the “School only” and “CZ

only” counterfactuals are 8.2-10.5 and 7.2-9.7 percentage points. However, this is partly because the
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XiB distributions for these subgroups feature similar fractions of students for whom the treatment

effects are largest (those at the 40th to 90th percentiles of the distribution), in contrast to high school

graduation, so that the degree of heterogeneity across student types is somewhat obscured by these

subgroup choices.

Once again, examining the variation in treatment impacts across XiB quantiles reveals a greater

degree of heterogeneity (Figure 4). For NELS, the “School and CZ” impacts for the 5th, 70th, and

95th quantiles of XiB are 5.8, 14.8, and 8.4 percentage points, respectively, demonstrating the same

non-monotonicity of treatment impacts across the XiB as was observed for the college enrollment

outcome. Figure 1a shows that in NELS the probability of college graduation is 12.8% for a student

at the 10th quantile of XiB and 79.5% at the 90th (evaluated at the median value of the “School and

CZ” treatment).

8.4 Log Wage Rates

Columns 10-12 of Table 4 report the estimated impacts of the same counterfactual treatments on

a randomly selected student’s log wage as of about age 25. The NELS results (col. 10) indicate that

the effect of the 10th-90th percentile combined school/commuting zone treatment is 0.129 (0.031)

log points (which corresponds to a 13.8% wage increase). A one standard deviation improvement

in the treatment would raise the wage by 0.051 (a 5.2% wage increase). In comparison, the standard

deviation of the permanent component of the wage is 0.361. The values for ELS are smaller. The

estimate of the combined school/community 10th-90th treatment effect is only 0.093 (0.023) log

points in the block group specification (a 10% wage increase). Estimates using the base specification

in Web Appendix Table 3 are similar.

The effect of the 10th-90th commuting zone treatment is larger than the school treatment in both

NELS and in ELS, in contrast to what we found for education. One would expect commuting zone

characteristics to be particularly important for wages, where opportunities in the local labor market

are paramount.

Since the wage model is linear, the only source of treatment effect heterogeneity consists of the

interaction terms between Mi and ZS
2sG

S
2 and ZC

2cGC
2 . The coefficients on the interactions terms are

small, so we do not find important subgroup differences.

8.5 Summary of Results from Counterfactual Shifts

There are several broad takeaways from the estimated impacts of counterfactual 10th-to-90th

quantile shifts in school and/or commuting zone inputs. First, large changes in school and commut-

ing zone inputs can make a substantial difference in students’ educational attainment.

Second, the impact of these inputs is quite heterogeneous across disadvantaged vs. advantaged

students. The dropout rates of disadvantaged students are particularly sensitive to the external en-

vironment, while few advantaged students are near the margin. In contrast, for college enrollment
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and graduation, superior school and commuting zone inputs are important for all, but particularly

consequential for students near (or above) the middle of the distribution of student and family back-

ground.

Third, the more general model featuring interactions between student and school/commuting

zone inputs produces predicted impacts of shifts in school and commuting zone environment that

differ little from the results using the simpler probit specification without interactions. This suggests

that the nonlinearity inherent in the probit function does a fairly good job of capturing differential

sensitivity to school and region-level inputs, and that a linear specification for the probit index may

suffice in similar contexts. But this need not be true in other applications and the estimates of the

interaction coefficients are imprecise.30

Finally, both school and commuting zone inputs seem to be important, and with relatively com-

parable magnitudes. However, this conclusion is more tentative, since our ability to distinguish

school from commuting zone inputs is somewhat limited.

9 Conclusion

Educational attainment and wages, like many adult outcomes, are influenced by factors that are

specific to the individual as well as aspects of the broader social environment. In this paper, we

build on the rich literature on sorting, school and neighborhood effects, and multilevel modeling to

assess the relative importance of neighborhood, school, and broader local area factors in shaping

student’s educational attainment and early career wages, and the degree to which this relative im-

portance differs across students from different backgrounds. We extend the control function result

of Altonji and Mansfield (2016) that group averages of individual-level observables can fully con-

trol for sorting bias from group averages of unobservables to allow for multiple group levels and

interactions between individual and group level factors.

Our theoretical results demonstrate the existence a structural decomposition of variation in ed-

ucational and labor market outcomes of interest into four components: (1) individual contributions

that are common across groups, (2) group contributions that are common across individuals, (3) con-

tributions that consist of interactions between student and group inputs, and a (4) set of ambiguous

contributions, absorbed by our control function of group-level averages, that reflect a combination

of common group inputs and group-averages of individual inputs.

We implement this structural decomposition using a multilevel mixed effects model, and use the

results to generate lower bound estimates of the average impact among the student population of

“treatments” consisting of shifts in school, commuting zone, and combined school/CZ quality from

the 10th-to-90th quantile of their respective distributions. We also produce estimates customized

for particular student subpopulations that exploit the treatment effect heterogeneity accommodated

30In retrospect, it may have been better to put indicators for the subgroups we consider in Mi in place of LOWINC and
URM.
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by our model.

Despite accounting for a small share of the total variance in the latent indices that generate

our binary outcomes, our population average estimates suggest that school and commuting zone

inputs play an important role in determining educational attainment. Moving from a combined

school/CZ combination at the 10th quality quantile to a 90th quantile combination is estimated to

increase the probability of high school graduation by at least 5-8 percentage points across datasets

and specifications, the probability of enrollment at a four-year college by at least 16-18 percentage

points, and the probability of college graduation by at least 7-12 percentage points. School and

commuting zone inputs seem to play a roughly equal role in producing educational attainment,

though the model’s ability to distinguish between the two is more limited. Estimates for log wages

of the impact of 10th-90th quantile shifts in school/CZ quality are smaller, but still meaningful (10-

14 percent increases), though the age 25 wage data we use likely understates effects on permanent

income.

Our subpopulation estimates show that the high school graduation rates of disadvantaged pop-

ulations are considerably more sensitive to group-level inputs, while college graduation rates are

more sensitive to group-level inputs for advantaged populations. However, such heterogeneity in

treatment effects is driven by the predicted share of the subpopulation near the decision margin in

our probit models, rather than by fundamental differences in input sensitivity: our estimated inter-

action effects are small (though imprecise), suggesting that the inherent nonlinearity in the probit

model well-approximates the heterogeneity in school and commuting zone treatment effects.

Our analysis of a regression index of student-level observables suggests that most outcome-

relevant sorting takes place at the level of school attendance zones, with a modest role for CZ-level

sorting and a very small role for neighborhood sorting, though the neighborhood component may

be understated by the use of block group or zipcode to define neighborhood boundaries.

While the panel surveys we use offer many advantages, a multilevel mixed effects model fea-

turing interactions among multiple combinations of levels places strong demands on the data. This

leads some of our estimates (particularly interactions) to be imprecise, and highlights the value of

increasingly available linked administrative data that offer both many groups at each hierarchical

level and large numbers of individuals per group, along with rich sets of observable characteristics

at each level. A particular data limitation is the lack of observed neighborhood characteristics that

are plausible candidates for sources of neighborhood-level causal effects.

Going forward, natural extensions to the model include incorporating interactions with unob-

servable individual characteristics and examining the sensitivity of results to departures from the

assumption (A6) that the across-group variation in the within-group covariance matrix of individual-

level characteristics across groups is unrelated to group-level characteristics.
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Appendices

A1 Proof of Proposition 2:

In deviation from mean form, the model is

DYi === DXiβββ +++DDDMMMiXgρρρ1 +DMiZ2gρρρ2

+++DDDMMMiXU
g ρρρ

U
1 +++DDDMMMiZU

2gρρρ
U
2 +DxU

i +Dηgi +Dξgi .

Using X∗i βββ
∗ = Xiβββ+xU

i , DDDMMMiZ∗gρρρ∗ === DDDMMMiXgρρρ1 +++DDDMMMiZ2gρρρ2 +++DDDMMMiXU
g ρρρU

1 +++DDDMMMiZU
2gρρρU

2 , and

Dηgi = DXiΠΠΠηgiXi +Dη̃gi, we can rewrite the above equation as

DYi = DX∗i βββ
∗+++DDDMMMiZ∗gρρρ

∗+++DDDXXX iΠΠΠηgiDXi +Dη̃gi +Dξgi (35)

Dξgi is uncorrelated with all variables in the model. Dη̃gi in uncorrelated with DXi by construction,

and A8 with the interaction terms involving DMi are uncorrelated with all variables in the model.

Consequently, these components do not contribute to B, r1, or r2 and can be ignored for the rest of

the proof.

Write the projection of the within g deviation in individual i’s composite individual contribution

DX∗i βββ
∗ on the observable space [DXi,DMiXg,DMiZ2g] as

DDDXXX∗i βββ
∗ === DDDXXX iΠΠΠ1 +++DDDMMMiXgΠΠΠ2 +++DDDMMMiZ2gΠΠΠ3 +++ D̃X∗i βββ

∗ (36)

We now establish that ΠΠΠ2 and ΠΠΠ3 are 0. From basic regression theory, ΠΠΠ2 and ΠΠΠ3 are 0 if

DMiXg and DMiZg are both uncorrelated with DX∗i βββ
∗ and with DXi. Using the law of iter-

ated expectations it is easy to show that E[(DMi)Xg]E[DX∗i βββ
∗] = 0, E[(DMi)Z2g]E[DX∗i βββ

∗] = 0,

E[(DMi)Xg]
′E[Xi] = 0 and E[(DMi)Z2g]

′E[Xi] = 0.31 These results and A6 imply that Cov(((DMi)Xg)
′,DX∗i βββ

∗)=

0, Cov(((DMi)Z2g)
′,DX∗i βββ

∗) = 0, Cov((DMiXg)
′,DXi) = 0 and Cov((DMiZ2g)

′,DXi) = 0.32 We

31For example, E[(DMiXg]E[Xi] = E[E[(DMi)Xg|g]]E[Xi] = E[E[(DMi|g)Xg]]E[Xi] = 0 because DMi is the deviation
from the mean for g.

32To see this for Cov((DMiXg)
′,DX∗i βββ

∗), note that

Cov((DDDMiXg)
′,DDDXXX∗i βββ

∗) = Cov(X′gDMi,DX∗i βββ
∗)

= EEE[[[XXX ′gDDDMMMiDDDXXX∗i ]]]βββ
∗−E[X′gDMi]E[DDDXXX∗i ]]]βββ

∗. (37)

Since Xg is a subvector of Z∗g , A6 implies directly that EEE[X′gDMiDX∗i ]βββ
∗ is 0. Since E[X′gDMi] and E[DX∗i ] both

involve deviations from the mean of g, both are 0 and thus E[X′gDMi]E[DX∗i ]βββ
∗ = 0. Thus both terms of (37) are 0,

which establishes the result. Replacing Xg with Z2g in this derivation demonstrates that Cov((DMiZ2g)
′,DX∗i βββ

∗) = 0,
while replacing DX∗i βββ

∗ with DXi demonstrates that Cov((DMiXg)
′,DXi) = 0 as well. Using both replacements yields

Cov((DMiZ2g)
′,DXi) = 0.
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conclude that DMiXg and DMiZ2g are both uncorrelated with DX∗i βββ
∗ and with DXi . It fol-

lows that ΠΠΠ2 and ΠΠΠ3 are each 0, and more generally that Pro j(DX∗i βββ
∗|DXi,DXiXg,DXiZ2g) =

Pro j(DX∗i βββ
∗|DXi).

Since projection is a linear transformation,

Pro j(DX∗i βββ
∗|DXi)=Pro j(DXiβββ |DXi)+Pro j(DXU

i βββ
U |DXi)=DXiβββ +DXiΠΠΠDXU DX βββ

U)=DXi(βββ +ΠΠΠDXU DX βββ
U),

where ΠΠΠDXU DX is the projection coefficient from (12). Thus, ΠΠΠ1 = βββ +ΠΠΠDXU DX βββ
U .

Next, project DMiZ∗gρρρ∗ onto the space of observed regressors:

DMiZ∗gρρρ
∗ = DXiΠΠΠ4 +DMiXgΠΠΠ5 +DMiZ2gΠΠΠ6 + D̃MiZ∗gρρρ (38)

First, notice that A6 also implies that Cov(DX′i,DMiZ∗gρρρ∗) = 0, Cov(DX′i,DMiXg) = 0, and

Cov(DX′i,DMiZ2g) = 0 (the argument is essentially the same as in footnote 32). This implies that

Prooo jjj(((DDDMMMiZ∗gρρρ∗|||DDDXXX i,,,DDDMMMiXg,,,DDDMMMiZ2g))) === Prooo jjj(((DDDMMMiZ∗gρρρ∗|||DDDMMMiXg,,,DDDMMMiZ2g))), and that ΠΠΠ4 = 0.

Thus,

B = ΠΠΠ1 +ΠΠΠ4 +ΠΠΠDηgiDXi = βββ +ΠΠΠXU X βββ
U +ΠΠΠDηgiDXi

as stated in Proposition 2.

To determine ΠΠΠ5 and ΠΠΠ6, we break DMiZ∗gρρρ∗ into components. We first demonstrate that

Pro j(DMiZ∗g|DMi[Xg,Z2g]) = Pro j(Z∗g|[Xg,Z2g]). To see this, note that the projection coefficient

vector on DMi[Xg,Z2g] in (38) satisfies:

[ΠΠΠ′5,ΠΠΠ
′
6]
′ = Var(DMi[Xg,Z2g])

−1Cov((DMi[Xg,Z2g])
′,DMiZ∗g)

= E[DMiDMi[Xg,Z2g]
′[XgZ2g]]

−1E[DMiDMi[Xg,Z2g]
′Z∗g]

= E[E[(DMi)
2[Xg,Z2g]

′[XgZ2g]|g(i) = g]]]−1E[E[(DMi)
2[Xg,Z2g]

′Z∗g|g(i) = g]]

= E[E[(DMi)
2|g(i) = g][Xg,Z2g]

′[XgZ2g]]]
−1E[E[(DMi)

2|g(i) = g][Xg,Zg]
′Z∗g]

= E[(Var(DMi|g(i) = g)[Xg,Z2g]
′[XgZ2g]]]

−1E[Var(DMi|g(i) = g)[Xg,Z2g]
′Z∗g]

= [(Var(DMi)E[[Xg,Z2g]
′[Xg,Z2g]]]

−1[Var(DMi)E[Xg,Z2g]
′Z∗g] (39)

= Var([Xg,Z2g])
−1Cov([Xg,Z2g],Z∗g) (40)

The first equality uses basic regression theory. The second used the definition of a variance and

covariance and the fact that DMi[Xg,Z2g] has mean 0. It has a mean of 0 because DMi has mean 0

within g (by definition of deviation from means) as well as across g. We have also used the fact that

DMi is a scalar to rearrange terms. The third equality imposes the law of iterated expectation, and

the fourth uses the fact that Z∗g does not vary within a school. The fifth equality uses the fact that

E(DMi|g) = 0 by construction and the definition of a variance to replace E[(DMi)
2|g(i) = g] with

(Var(DMi|g(i) = g). The 6th equality follows from A7, while the seventh collects terms. The last
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equality illustrates that the projection coefficient on DMi[Xg,Z2g] in (38) equals what one would

recover from Pro j(Z∗g|[Xg,Z2g]), the simple projection of all school and area inputs on observed

school and area inputs.

Next, using the fact that projection is a linear transformation, we can write:

Pro j(Z∗g|[Xg,Z2g])ρρρ
∗ = Pro j(Xg|[Xg,Z2g])ρρρ1 +Pro j(Z2g|[Xg,Z2g])ρρρ2+

Pro j(XU
g |[Xg,Z2g])ρρρ

U
1 +Pro j(ZU

2g|[Xg,Z2g])ρρρ
U
2 (41)

Considering the four projections on the right hand side in turn, we find:

Xgρρρ1 = Xgρρρ1 +Z2g[0] (42)

Z2gρρρ2 = Xg[0]+Z2gρρρ2 (43)

XU
g ρρρ3 = XgΠΠΠXU

g Xg
ρρρ

U
1 +Z2g[0] (44)

ZU
2gρρρ4 = XgΠΠΠZU

2gXg
ρρρ

U
2 +Z2gΠΠΠZU

2gZ2g
ρρρ

U
2 (45)

The first and second lines use the fact that Xg and Z2g are of course fully determined by Xg and by

Z2g, respectively. The third line uses Proposition 1, which states that XU
g is an exact linear function

of Xg (equation (6) provides an explicit expression for ΠΠΠXU
g Xg

). The last line echoes (15) defined

above Proposition 2.

Collecting terms from equations (42)-(45), we see that:

r1 = ρρρ1 +ΠΠΠXU
g Xg

ρρρ
U
1 +ΠΠΠZU

2gXg
ρρρ

U
2 (46)

r2 = ρρρ2 +ΠΠΠZU
2gZ2g

ρρρ
U
2 (47)

This concludes the proof of Proposition 2.

A2 Proof of Proposition 3

Proposition 3:

Suppose assumptions A1-A9 hold. Then:
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G1 = [(βββ −B)+ΠΠΠxU
g Xg

]+ [ΓΓΓ1 +ΠΠΠXU
g Xg

ΓΓΓ
U
1 +ΠΠΠzU

2gXg
]

G2 = ΓΓΓ2 +ΠΠΠzU
2gZ2g

G3 = 0

G4 = 0

Proof:

As in the main text, we begin by noting that since none of Xg, Z2g, MgXg, and MgZ2g vary within

groups, G1, G2, G3, and G4 are identified exclusively from between-group variation. Thus, we can

simplify our analysis by noting that the OLS coefficients G1, G2, G3, and G4 are numerically

identical to the coefficients of the projection of the adjusted group g mean of Ygi, Yg − [XgB +

MgXgr1 +MgZ2gr2] , onto Xg, Z2g, MgXg, and MgZ2g.

Using (10), we obtain

Yg− [XgB+MgXgr1 +MgZ2gr2] = Xg[βββ −B+ΓΓΓ1]+Z2gΓΓΓ2 +MgXg[ρρρ1− r1]+MgZ2g[ρρρ2− r2]

+MgXU
g ρρρ

U
1 +MgZU

2gρρρ
U
2 + xU

g + zU
g (48)

Recall that under assumptions A1-A5 XU
g = XgΠΠΠXU

g Xg
, so that xU

g = XgΠΠΠXU X βββ
U ≡ XgΠΠΠxU

s Xs
.

Furthermore, recall that zU
g = XU

g ΓΓΓ
U
1 +ZU

2gΓΓΓ
U
2 and define zU

2g = ZU
2gΓΓΓ

U
2 . Then we can simplify (48)

as follows:

Yg− [XgB+MgXgr1 +MgZ2gr2] = Xg[βββ −B+ΓΓΓ1 +ΠΠΠxU
g Xg

+ΠΠΠXU
g Xg

ΓΓΓ
U
1 ] (49)

+Z2gΓΓΓ2 +MgXg[ρρρ1− r1 +ΠΠΠXU
g Xg

ρρρ
U
1 ]+MgZ2g[ρρρ2− r2](50)

+MgZU
2gρρρ

U
2 + zU

2g. (51)

Let projections of the error components zU
2g and MgZU

2gρρρU
2 in the above equation onto Xg, Z2g,

MgXg, and MgZ2g be given by:

zU
2g = XgΠΠΠzU

2gXg
+Z2gΠΠΠzU

2gZ2g
+MgXgΠΠΠzU

2g,MgXg
+MgZ2gΠΠΠzU

2g,MgZ2g
+ z̃U

2g (52)

MgZU
2gρρρ

U
2 = Xg(0)+Z2g(0)+

MgXgΠΠΠMgZU
2g,MgXg

ρρρ
U
2 +MgZ2gΠΠΠMgZU

2g,MgZ2g
ρρρ

U
2 + ˜MgZU

2gρρρU
2 . (53)

Note that we have imposed assumption A9 in order to set to zero the projection coefficients on Xg

and Z2g in (53). Recall that A9 implies that (15) gives the conditional expectation E[ZU
2g|Xg,Z2g]

and that Z̃U
2g is independent of Xg and Z2g and not simply uncorrelated with them.

Collecting terms from equations (51)-(53), we conclude that
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G1 = [(βββ −B)+ΠΠΠxU
g Xg

]+ [ΓΓΓ1 +ΠΠΠXU
g Xg

ΓΓΓ
U
1 +ΠΠΠzU

2gXg
] (54)

G2 = ΓΓΓ2 +ΠΠΠzU
g Z2g

(55)

G3 = [ρρρ1− r1 +ΠΠΠXU
g Xg

ρρρ
U
1 ]+ΠΠΠzU

g ,MgXg
+ΠΠΠMgZU

2g,MgXg
ρρρ

U
2 (56)

G4 = [ρρρ2− r2]+ΠΠΠzU
g ,MgZ2g

+ΠΠΠMgZU
2g,MgZ2g

ρρρ
U
2 (57)

However, the expressions for G3 and G4 can be simplified further.

First note that A9 and the fact that Mg is a linear function of Xg implies that Z̃U
2g and z̃U

2g are

independent of and thus do not co-vary with functions of Xg and Z2g. Thus, the terms ΠΠΠzU
2g,MgXg

and

ΠΠΠzU
2g,MgXg

in (52) are 0 and therefore drop out of equations (56) and (57), respectively.

Second, note that from (15) we can write MgZU
2gρρρU

2 as Mg[XgΠΠΠZU
2gXg

ρρρU
2 + Z2gΠΠΠZU

2gZ2g
ρρρU

2 ] +

MgZ̃U
2gρρρU

2 and separately consider the projections of the two terms. The first term is exactly equal to

MgXgΠΠΠZU
2gXg

ρρρU
2 +MgZ2gΠΠΠZU

2gZ2g
ρρρU

2 , so Xg and Z2g do not play a role. Furthermore, E(MgZ̃U
2gρρρU

2 |Xg,Z2g,MgXg,MgZ2g)=

0 by A9, the fact that Mg is function of Xg and is thus also independent of Z̃U
2g, and the fact that the

expectation of the product of two independent random variables is the product of the expectations.

Consequently, the right hand side of (53) simplifies to MgXgΠΠΠZU
2gXg

ρρρU
2 +MgZ2gΠΠΠZU

2gZ2g
ρρρU

2 , and the

terms ΠΠΠMgZU
2g,MgXg

ρρρU
2 and ΠΠΠMgZU

2g,MgZ2g
ρρρU

2 become ΠΠΠZU
2gXg

ρρρU
2 and ΠΠΠZU

2gZ2g
ρρρU

2 in equations (56) and

(57), respectively.

Thus, G3 and G4 simplify to:

G3 = ρρρ1− r1 +ΠΠΠXU
g Xg

ρρρ
U
1 +ΠΠΠZU

2gXg
ρρρ

U
2 G4 = ρρρ2− r2 +ΠΠΠZU

2gZ2g
ρρρ

U
2 (58)

But recall the results of Proposition 2:

r1 = ρρρ1 +ΠΠΠXU
g Xg

ρρρ
U
1 +ΠΠΠZU

2gXg
ρρρ

U
2 (59)

r2 = ρρρ2 +ΠΠΠZU
2gZ2g

ρρρ
U
2 (60)

This implies that both G3 and G4 are zero.

Combining these insights we obtain:

G1 = [(βββ −B)+ΠΠΠxU
g Xg

]+ [ΓΓΓ1 +ΠΠΠXU
g Xg

ΓΓΓ
U
1 +ΠΠΠzU

2gXg
]

G2 = ΓΓΓ2 +ΠΠΠzU
2gZ2g

G3 = 0

G4 = 0
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This completes the proof.

A3 Allocating Bias Correction Terms Across Error Components

Step 3 of Section 6.2 describes how we implement the bias correction to remove sampling

variance from our estimates of the variances and covariances of our observed regression indices.

However, consider the bias correction term 1
N ∑i Xs(i)Var(ĜS

1−GS
1)X

′
s(i) that is subtracted from

Var(XsĜS
1) to estimate Var(XsG1). Assuming that the outcome is measured without error, the ex-

pected sampling variance captured by this correction term reflects true inputs into Yi that should

have been allocated to the unobserved error components vi− vn, vn− vs, or vs− vc.

To determine the share of the bias correction to allocate to each error component, we ignore the

small amount of heterogeneity in the number of sampled students per neighborhood, the number of

sampled neighborhoods per school, and the number of sampled schools per commuting zone, and

treat these as fixed scalar values I
N , N

S , and S
C , respectively (where I, N, S, and C are the number of

sampled individuals, neighborhoods, schools, and commuting zones). We also treat the population

number of students per neighborhood, neighborhoods per school, and schools per commuting zone

as large, so that such sampling variance would disappear if we observed the full population of high

school students in the United States. Then the variance in the sampling error among school averages

Ys within the same commuting zone (for schools each featuring I
S sample members) is given by:

Var(
1

I/S ∑
i∈s
[(vi− vn(i))+(vn(i)− vs(i))+ vs]

=Var(
1

I/S ∑
i∈s
(vi− vn))+Var(

1
N/S

N
S

∑
n′=1

(vn′− vs))+Var(vs)

=
1

(I/S)2Var(∑
i∈s
(vi− vn))+

1
(N/S)2Var(

N
S

∑
n′=1

(vn′− vs))+Var(vs)

=
1

(I/S)2 (I/S)Var(vi− vn)+
1

(N/S)2 (N/S)Var(vn− vs)+Var(vs)

=
Var(vi− vn)

I/S
+

Var(vn− vs)

N/S
+Var(vs), (61)

where we have assumed independence in the draws of vi− vn(i), vn− vs, and vs across individuals,

neighborhoods and schools.

Thus, the individual, neighborhood, and school shares of the variance in the sampling error
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among school averages Ys is given by:

ShareI
S =

Var(vi−vn)
I/S

Var(vi−vn)
I/S + Var(vn−vs)

N/S +Var(vs)
(62)

ShareN
S =

Var(vn−vs)
N/S

Var(vi−vn)
I/S + Var(vn−vs)

N/S +Var(vs)
(63)

ShareS
S =

Var(vs)
N/S

Var(vi−vn)
I/S + Var(vn−vs)

N/S +Var(vs)
(64)

We assume that the sampling variance component of the estimated variance of each school-level

regression index (or the estimated covariance among each pair of school-level regression indices)

contains individual, neighborhood, and school subcomponents in the same proportions as the overall

variance in sampling error among school averages Ys. Thus, we allocate the estimated sampling

variance 1
N ∑i Xs(i)Var(ĜS

1−GS
1)X

′
s(i) associated with Var(XsĜ1), for example, to the individual-

level, neighborhood-level, and school-level error variances Var(vi− vn), Var(vn− vs) and Var(vs−
vc) according to the shares given in (62) - (64). We use analogous formulae to derive the individual

and neighborhood shares used to allocate neighborhood-level sampling variance terms and to derive

the individual, neighborhood, school, and commuting zone shares used to allocate commuting zone-

level sampling variance terms.
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