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Abstract- In this paper, we give in section (1) compact 

description of the algorithm for solving general quadratic 
programming problems (that is, obtaining a local minimum of 

a quadratic function subject to inequality constraints) is 

presented. In section (2), we give practical application of the 

algorithm, we also discuss the computation work and 

performing by the algorithm and try to achieve efficiency and 

stability as possible as we can. In section (3), we show how to 

update the QR-factors of A1 (K), when the tableau is 

complementary ,we give updating to the LDLT-Factors of (K 

) A G . In section (4) we are not going to describe a fully 

detailed method of obtaining an initial feasible point, since 

linear programming literature is full of such techniques. 

 

I. INTRODUCTION 

In this section we give the detailed outlines of the algorithm of 

indefinite quadratic programming problems. It references to 

the numbers of some equations and conditions appeared in the 

following equations [1-8]: 

 

 
Practical Application of the Algorithm 

The algorithm presented above represents a general outline of 
a method for solving indefinite quadratic programming 

problems rather than an exact definition of a computer 

implementation. In this section we discuss the computational 

work performed by the algorithm, and try to achieve 

efficiency and stability as possible as we can. In doing so we 

follow, with slight modifications, the work of Gill and Murray 

which has been applied to active set methods since mid-

seventies until now [7-10]. The slight modifications are made 

to cope with the new forms of the matrices used in the method 

when G is indefinite. In the case when G is positive (semi 

definite) the active set methods are considered to be 
equivalent, [20], pointed out. There he gave a detailed 

description of that equivalence. He also re-mentioned this 

equivalence [6]. The major computational work of the 

algorithm is in the solution of  
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We do not solve them directly; instead, we make use of the 

special structure of the matrices involved. We use the matrices 

H and T are defined in eqn. (5). Thus, accordingly the solution 

in eqn. (3) is given by: 

 
H, U, T define the inverse of the upper left partition of the 

basis matrix when the tableau is complementary. This calls for 

making them available at every complementary tableau. In 

other words they are to be updated from a complementary 

tableau to another [12]. 

 
The choice of S(K) and Z(K) to satisfy in eqns. (13) and (14), 

respectively is generally open. Here we take the choice given 

in S=Q1R-T, Z=Q2 which is, according to K(ZTGZ)≤K(G), is 

advantageous as far as stability is concerned. For the sake of 

making this section selfcontained we show how S(K) and 

Z(K) are obtained in away suitable to this section. Let: 

 
Where I the identity matrix is whose columns are reversed. 

Thus we conclude by saying that the computation is focused 

on using the QR factorization of  A K , (when the kth iteration 
is complementary)  

So updating these factors is required at each iteration when the 

tableau is complementary [25]. 

Updating the QR-Factors of 1 

A(K ) 

In this section we show how to update the QR-factors of ( )1A 

K , when the tableau is complementary, also we give updating 

to the LDLTFactors of (K ) A G . Following the stream of our 

discussions, two cases are to be considered separately. The 

case when the (k+1)th iteration results in a complementary 

tableau, and the case when complementarity is restored at the 

(k+r+1)th iteration after r successive non-complementary 
tableaux. In the first case the factors of A1 (k) are updated to 

give those of ( 1) 1A K + , and this is the case when a column, 

q a say, is deleted from A1 (k). In the second case the factors 

of A1 (k) are used to give those of A1 (k+r+1), and this is the 

case when one column, q a say, is deleted from A1 (k) and 

then r other columns are added to A1 (k). We follow the same 

steps carried [9], with the appropriate modification in the 

second case. In the first case, let A1 (k) be the n×(Lk-1) 

matrix obtained by deleting the qth 

column, q a , from A1 (k). Suppose the QR-factorization of 

A12 (k) is given. 
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Updating The LDLT-Factors of (K ) 

A G 

The factors L(K )D(K )L(K )T of (K ) A G are updated at each 
iteration when the tableau is complementary. Near the end of 

this section we show that (1) A G is always positive definite 

(on the assumption that (K ) 

A G is positive semi-definite). Updating these factors is very 

stable when (K )A G is positive definite as we shall see. This 

fact is counted as one of the good numerical features of the 

method. We consider the case when the (k+1)th iteration 

results in a complementary tableau. Unfortunately,in the other 

case when complementarity is restored at the 

(k+r+1)thiteration, we are unable till now to explore a way of 
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using the factorsof (K )A G in obtaining those of (K r 1)A G + 

+ . However n-Lk-r, the dimensionof (K r 1)A G + + , 

decreases with r, in which case the effort of re-factorizing(K r 

1)A G + + might not be so much, especially when n-Lk is 

itself small.This calls for choosing the starting L1 so that n-L1 

is small. In the casewhen the number of constraints is greater 
than n, L1 is chosen to beequal to n; that is the initial guess 

x(1) is a vertex. With this choice(1) 0 A G = , and in the 

second iteration we might expect a constraint to bedeleted 

from the active set (which is the case when the second 

iteration is complementary). Otherwise the third iteration will 

definitely restore complementarity at another vertex leaving 

(3) 0 A G = . In the former case the dimension of (2) A G is 1. 

In general the dimension of (K )A G keeps on increasing when 

constraints are deleted, and updating the factors is straight 

forward as will be shown. On the other hand the dimension of 

(K )A G keeps on decreasing when constraints are added to the 

active set, and in this case we are faced with re-factorizing the 
factors. We return to the case when the (k+1)th iteration is 

complementary. Here we 

are almost copying the work of in eqn. (9). In this case, as in 

eqn. (25) 

 

The numerical stability of this scheme is based on the fact 

that, if (K 1) A G + is positive definite, the element n LK 1 d − 

+ must be positive. In this event in eqn. (34) ensures that 

arbitrary growth in magnitude cannot occur in the elements of 

L . Before ending this section we show that when the kth 

iteration and the (k+1)th iteration are complementary then (K 
1) A G + must be positive definite. Let the tableau be 

complementary at the kth iteration. Let ( ) 1 

A K be the matrix whose columns correspond to the active 

constraints, and (K ) 0 q λ<. The increase of vq changes f 

according to  
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Finding an Initial Feasible Point 

In this section we are not going to describe a fully detailed 

method of obtaining an initial feasible point, since linear 

programming literature is full of such techniques. The method 

of finding a feasible point has been resolved in linear 

programming by a technique known as phase 1 simplex [27]. 
The basis of the technique is to define an artificial objective 

function, namely:  set of indices of constraints which are 

violated at the point x , and to minimize this function with 

respect to x , subject to the constraints 

T 0 j j a x − b ≥ ,j∉v(x) . The function F (x) is linear and is 

known as the sum of infeasibilities. If a feasible point exists 

the solution x* of the artificial problem is such that F (x* )= 

0 . In the case when m exceeds n, a non-feasible vertex is 

available as an initial feasible point to phase 1 and the simplex 

method is applied to minimize F (x) . This process will 

ultimately lead to a feasible vertex [28]. Direct application of 

this method to finding a feasible point in the case when m is 
less than n is not feasible since, although a feasible point may 

exist a feasible vertex will not. Under these circumstances 

artificial vertices can be defined by adding simple bounds to 

the variables, but this could lead to either a poor initial point, 

since some of these artificial constraints must be active, or 

exclusion of the feasible region. A way out of this dilemma is 

described [6-9] a number of methods including the above one 

have been described. Gill and Murray is advantageous in that 

it makes available the QR-factorization of the initial matrix of 

active constraints which is then directly used in our algorithm. 
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