

Gene-targeted microfluidic cultivation validated by isolation of a gut bacterium listed in Human Microbiome Project's Most Wanted taxa

Liang Ma^a, Jungwoo Kim^a, Roland Hatzenpichler^b, Mikhail A. Karymov^a, Nathaniel Hubert^c, Ira M. Hanan^c, Eugene B. Chang^c, and Rustem F. Ismagilov^{a,1}

Divisions of ^aChemistry and Chemical Engineering and ^bGeological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125; and ^cDepartment of Medicine, The University of Chicago, Chicago, IL 60637

Edited by Robert Haselkorn, The University of Chicago, Chicago, IL, and approved May 19, 2014 (received for review March 20, 2014)

This paper describes a microfluidics-based workflow for genetically targeted isolation and cultivation of microorganisms from complex clinical samples. Data sets from high-throughput sequencing suggest the existence of previously unidentified bacterial taxa and functional genes with high biomedical importance. Obtaining isolates of these targets, preferably in pure cultures, is crucial for advancing understanding of microbial genetics and physiology and enabling physical access to microbes for further applications. However, the majority of microbes have not been cultured, due in part to the difficulties of both identifying proper growth conditions and characterizing and isolating each species. We describe a method that enables genetically targeted cultivation of microorganisms through a combination of microfluidics and onand off-chip assays. This method involves (i) identification of cultivation conditions for microbes using growth substrates available only in small quantities as well as the correction of sampling bias using a "chip wash" technique; and (ii) performing on-chip genetic assays while also preserving live bacterial cells for subsequent scale-up cultivation of desired microbes, by applying recently developed technology to create arrays of individually addressable replica microbial cultures. We validated this targeted approach by cultivating a bacterium, here referred to as isolate microfluidicus 1, from a human cecal biopsy. Isolate microfluidicus 1 is, to our knowledge, the first successful example of targeted cultivation of a microorganism from the high-priority group of the Human Microbiome Project's "Most Wanted" list, and, to our knowledge, the first cultured representative of a previously unidentified genus of the Ruminococcaceae family.

microscale | anaerobe | aerobe | cultivate | metagenome

his paper describes an integrated microfluidic workflow for genetically targeted cultivation and isolation of microorganisms. Microbes play critical functional roles in diverse environments ranging from soil and oceans to the human gut. The emergence of culture-independent techniques has provided insights into microbial ecology by revealing genetic signatures of uncultured microbial taxa (1-5). It also suggests that certain microbes may impact host phenotypes such as obesity, inflammation, and gastrointestinal integrity (6, 7). This explosion of sequencing data has presented new challenges and opportunities for microbial cultivation, which is critical for allowing direct access to microorganisms to test hypotheses experimentally, and is crucial for proper taxonomic classification, functional annotation of metagenomic sequences, and use of such microbes for environmental remediation, energy applications, and formulation of probiotics. However, a direct approach that cultivates, in a targeted fashion, microbes carrying genes of interest identified in metagenomic data sets remains mostly unexplored. As a result, for example, a list of the "Most Wanted" taxa that are urgently in need of cultivation has been issued by the Human Microbiome Project (HMP) from the National Institutes of Health. These microorganisms are highly prevalent and abundant

in the human microbiome but poorly represented in cultured collections (2).

Most microbes do not grow using traditional cultivation methods and hence are referred to as "unculturable" (8-10). Although these microbes could be grown in their natural habitats (9), where effects such as cross-feeding (11) and microbe-host interactions (12, 13) are present, some biological samples, such as clinical biopsies, are often limited in quantity. This makes it challenging to set up cultivation experiments in large scale with these native media, but creates opportunities for miniaturized methods. Further, miniaturized methods that use compartmentalization can eliminate competition among species. Cultivation methods that use miniaturization and compartmentalization, including gel microdroplets (14), miniaturized Petri dishes (15), and microfluidics (16-19), have become increasingly promising as a basis for targeted microbial cultivation and isolation platforms, as they can limit the consumption of precious samples and also control the microenvironment around cells (20). We envisioned implementing targeted cultivation with microfluidics by focusing on two goals. The first goal is to efficiently identify cultivation

Significance

Obtaining cultures of microbes is essential for developing knowledge of bacterial genetics and physiology, but many microbes with potential biomedical significance identified from metagenomic studies have not yet been cultured due to the difficulty of identifying growth conditions, isolation, and characterization. We developed a microfluidics-based, genetically targeted approach to address these challenges. This approach corrects sampling bias from differential bacterial growth kinetics, enables the use of growth stimulants available only in small quantities, and allows targeted isolation and cultivation of a previously uncultured microbe from the human cecum that belongs to the high-priority group of the Human Microbiome Project's "Most Wanted" list. This workflow could be leveraged to isolate novel microbes and focus cultivation efforts on biomedically important targets.

Conflict of interest statement: R.F.I. has a financial interest in SlipChip Corporation.

This article is a PNAS Direct Submission

Author contributions: L.M., J.K., R.H., E.B.C., and R.F.I. designed research; L.M., J.K., R.H., M.A.K., N.H., and I.M.H. performed research; L.M., J.K., and R.H. analyzed data; and L.M., R.H., and R.F.I. wrote the paper.

Freely available online through the PNAS open access option.

Data deposition: The genome sequences reported in this paper have been deposited in the Joint Genome Institute's Integrated Microbial Genomes database, https://img.jgi.doe.gov/cgi-bin/w/main.cgi (accession no. 2545555870). The 165 rRNA gene sequences of isolate microfluidicus 1 reported in this paper have been deposited in the GenBank database (accession nos. KJ875866 and KJ875867).

¹To whom correspondence should be addressed. E-mail: rustem.admin@caltech.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. 1073/pnas.1404753111/-/DCSupplemental.

conditions that support growth of target microbes. This can be accomplished by performing a genetic assay with target-specific primers or probes on the pooled microbial culture from a certain cultivation condition before isolation (21); however, designing specific probes based on short reads from high-throughput sequencing can be difficult. Moreover, it can be challenging to detect and cultivate slowly growing strains, as they often fall below the limit of detection, being outcompeted by rapidly growing strains in a complex community. A second goal of targeted cultivation is to focus isolation efforts on microbial targets of interest, thereby minimizing the effort associated with isolating off-target colonies. However, both PCR and fluorescence in situ hybridization (FISH) require access to genetic material, which is often not compatible with the goal of isolating and cultivating live cells. This paper addresses these challenges. In an accompanying paper (22), we describe the design, fabrication, and underlying physics of a microfluidic device to create arrays of individually addressable replica microbial cultures. Here, we integrate this device and additional devices and methods into a workflow for genetically targeted microbial cultivation, and validate this workflow by isolating a bacterium from the Most Wanted taxa.

Results and Discussion

Overview of Workflow for Genetically Targeted Microfluidics-Based Cultivation. We envisioned isolating and cultivating microbial targets identified from metagenomic or 16S ribosomal RNA (16S rRNA) gene high-throughput sequencing studies by combining

Fig. 1. Illustration representing the workflow for targeted cultivation and isolation of microbial organisms. (A) Microbial targets carrying genes of interest are identified by high-throughput sequencing of clinical samples. A representative sequence of the target is shown in red. To cultivate the target, the inoculum is suspended in cultivation medium and loaded onto a microfluidic device, enabling stochastic confinement of single cells and cultivation of individual species (represented by different shapes). (B) A chip wash method is used to monitor bacterial growth under different cultivation conditions. Cells are pooled en masse into a tube and DNA is extracted for genetic analysis such as sequencing and PCR. (C) The target can be isolated by growing the sample under the growth condition identified from the chip wash. The two halves of the device are separated, resulting in two copies of each colony. On one half of the chip, target colonies are identified using PCR. Then, the target colony on the other half of the chip is retrieved for a scale-up culture, after which sequencing is used to validate that the correct target has been isolated.

microfluidics with genetic assays (Fig. 1A). To address the goal of streamlining cultivation efforts using genetic assays, we created a general workflow with two major components: identification of cultivation conditions for the target organism (Fig. 1B) and isolation of the target (Fig. 1C). In both components, single bacterial cells from clinical samples are stochastically confined in nanoliter wells on a microfluidic device to promote the growth of microcolonies. This confinement can be useful for suppression of overgrowth from rapidly growing strains, in favor of slowly growing strains. In the first step, a "chip wash" method is used to monitor bacterial growth on a microfluidic device (Fig. 1B) under various conditions; miniaturization allows cultivation experiments that involve limited quantities of natural growth stimulants. In this method, microcolonies grown under each cultivation condition are collected into a single tube by washing the microwells after cultivation, analogously to the plate wash PCR method (21). DNA from the pooled cells is analyzed by sequencing, target-specific primers, or both, to determine whether the cultivation conditions for that chip allowed the growth of the target microorganism. This chip wash method can be repeated sequentially or in parallel until the growth conditions are identified. Then, the target organism is isolated and cultivated (Fig. 1C): The sample is cultivated on a separate microfluidic device, described in an accompanying paper (22), under the optimal condition identified during chip wash. After cultivation, this device splits each microcolony into two identical copies. We anticipate that multiple rounds of culture and splitting on the same device could be performed in a similar fashion. PCR is performed on the first copy to identify the compartment containing the target of interest, and then live cells can be retrieved from the corresponding well on the other half of the chip for scale-up cultivation.

To implement this workflow, we relied on the SlipChip platform for three reasons (23). First, it can create thousands of miniaturized reactions without the need for bulky equipment. It can be used in the limited space of an anaerobic chamber, which is widely used to cultivate anaerobes that dominate the human gut microbiota. Second, SlipChip is compatible with PCR (24) and enzymatic assays (25). Third, compartmentalization on SlipChip is reversible and the microcolonies can be spatially indexed as described in an accompanying paper (22), which facilitates the retrieval of reagents and organisms from the device (24, 26).

Chip Wash Device. Fig. 2A shows the general workflow of a chip wash experiment. We designed a microfluidic device to perform up to 3,200 microbial cultivation experiments, each on a scale of ~6 nL (Fig. 2C and SI Appendix). This device enables three capabilities: stochastic confinement of single cells from samples, microbial cultivation, and collection of cultivated cells. To confine single cells, a sample of bacteria suspended in cultivation medium is loaded into the channels and wells (Fig. 2A, ii). Slipping the bottom plate (dashed layer in Fig. 2A) upward enables stochastic confinement of bacterial cells in wells (Fig. 2 A, iii). To introduce gas into the channel and remove residual sample in the channel, the solution is purged from the channel by vacuum (Fig. 2A, iv). To cultivate microbes, the device is incubated and some of the single cells grow to microcolonies (Fig. 2A, v). After cultivation, the microchannel is loaded with buffer solution (Fig. 2A, v) to avoid the formation of gas bubbles. The presence of gas bubbles in a channel could increase flow resistance (27) and therefore slow down or stop the flow in that channel, resulting in inefficient washing in later steps. To allow collection of the microbial cells, the bottom plate is slipped back to overlay the wells with the channel (Fig. 2A, vi). A buffer solution is injected to flush the channel (Fig. 2A, vii) and is collected, from the outlet specifically designed for collection (Fig. 2 A, viii and C), in a pipette tip. The flow of fluid on SlipChip is

controlled by positive pressure using a pipettor. This process of injection-collection is repeated three times. Immiscible oil is then injected to further displace the remaining aqueous phase. We used a red dye experiment to visualize the device operation described above (Fig. 2B), which allowed us to observe that the droplets remained intact during purging when gas was introduced into the channels. In addition, in the chip wash step, the solutions from the channel and the wells were merged and could be visualized by the originally colorless solutions from the channel turning red. The removal of red dye can be observed in Fig. 2B, vii as the solution in the channel turned back to colorless. To quantify the recovery efficiency of this method, a solution with a fluorescent dye was injected into the device and subsequently collected and quantified using a fluorospectrometer. We determined a recovery rate of 96% when comparing the fluorescence signal from the chip wash solution with the starting stock solution normalized to the same volume. A recovery rate of 83% was observed when Escherichia coli cells labeled with red fluorescent protein were used to quantify the recovery efficiency of bacterial cells.

Validating the Chip Wash Method with a Two-Species Model Community.

Having validated the device's operation, we next tested the functionality of the chip wash method using a model community from the human gut microbiome (Fig. 3). First, we tested whether chip wash can detect microbial growth on SlipChip. We cultivated a mixture of *Clostridium scindens* and *Enterococcus faecalis* at a 5:1 ratio on the chip or agar plates. The genomic DNA of the starting inoculum and chip wash solution were extracted and quantified by quantitative PCR (qPCR). Cultivation on the chip followed by chip wash resulted in an ~1,000-fold increase of DNA for each strain compared with DNA from the starting inoculum used as a nongrowth control (Fig. 3*E*), showing that chip wash can be used to detect microbial growth.

Second, we hypothesized that chip wash would detect, without bias, the growth of bacteria that grow at different rates but with similar carrying capacity, for the following reason. For the interest of detection, the optimal time for sampling is the late exponential phase or early stationary phase of the target to maximize the yield of biomass. A single cell growing on a plate starts at a density of ~10 cfu mL⁻¹ assuming the inoculation density is 300 cfu with 30 mL of medium, whereas a single cell growing in a 6-nL well starts at a density of ~1.7 × 10⁵ cfu mL⁻¹. Typical carrying capacity of the media we used for gut anaerobes is ~10⁹ cfu mL⁻¹; therefore, on the device the carrying capacity can be reached more rapidly, and for a larger range of growth

Fig. 2. Design and operation of the chip wash device. (*A*) Schematic drawings of the chip wash method illustrating device design for handling microbial cells. (*B*) Representative photographs showing device operation as visualized with red dye. See text for details. Scale bar in *i–vii*, 200 μ m. (*C*) Photograph of 3,200 droplets generated and stored on the chip for chip wash, shown next to a US quarter.

Fig. 3. Validation of the chip wash method with a model community of *C. scindens* and *E. faecalis*. Samples were collected on day 1. (*A* and *B*) Representative optical microscopy of *C. scindens* (*A*) and *E. faecalis* (*B*) grown on SlipChip. (*C* and *D*) Representative photographs of *C. scindens* (*C*) and *E. faecalis* (*D*) grown on an agar plate. (*E*) Graph showing genomic DNA of *C. scindens* and *E. faecalis* recovered from nongrowth negative control, chip wash, and plate wash solutions. The nongrowth control and the chip wash experiments were performed using an identical procedure and can be directly compared. Because the plate wash experiment requires a different protocol, only the relative values can be compared (emphasized by the break in the axis). Error bars indicate SD (n = 3). Scale bar, 30 µm for *A* and *B* and 1 mm for *C* and *D*.

rates, than on a plate. To test this hypothesis, we confirmed that under this particular cultivation condition, E. faecalis grew faster than C. scindens on agar plates, as observed from the difference in colony size on day 1 (Fig. 3 C and D). The cultivation medium has a similar carrying capacity for the two strains (*SI Appendix*). Consistent with the prediction, the two strains grew on the chip to a comparable density on day 1 (Fig. 3 A and B). As shown by the quantity of genomic DNA recovered from the two strains, sampling on day 1 by plate wash resulted in an \sim 1,000-fold bias toward rapidly growing bacteria, whereas the chip wash method effectively corrected this bias, as the genomic DNA was comparable for each strain (Fig. 3E). This chip wash method provides an efficient way to detect slowly growing bacteria and is complementary to the plate wash method (21). Because we have shown that SlipChip is compatible with solutions used in membrane protein crystallization (28), we expect that SlipChip would be compatible with testing a wide range of growth media with different viscosities and surface tensions.

Using Splitting to Preserve Cultivar and Perform Genetic Assays. We next tested whether genetic assays could be used to identify and characterize microbes on the chip. We used a replica-SlipChip described in an accompanying paper (22) to split the microcolonies into two halves so that PCR could be performed with one of these halves and live microbes could be preserved on the other. To unambiguously establish the mapping from genotype to phenotype, we used E. coli cells expressing DsRed or GFP genes to ensure the genotype could be characterized by PCR, and the phenotype could be monitored by fluorescence microscopy (Fig. 4). We tested if this on-chip PCR approach could reliably distinguish the DsRed-labeled E. coli from the GFPlabeled E. coli. A mixture of E. coli cells labeled with GFP and DsRed proteins was loaded onto the chip, at final densities of $2 \times$ 10^4 cfu mL⁻¹ and 2 × 10^3 cfu mL⁻¹, respectively. We assume that the cells are distributed in wells randomly and therefore that their distribution is governed by the Poisson statistics. We used a motile strain of E. coli to ensure uniform distribution of bacterial cells in both wells within 3 h of incubation. Individual cells were compartmentalized and cultivated, and then the chip was split into two daughter halves, each carrying a copy of the microcolonies (Fig. 4A). One chip was mixed with PCR reagents containing primers targeting the plasmid of DsRed and the other was imaged with a fluorescence microscope to check for the presence or absence of fluorescent proteins. We observed 125 wells that contained colonies with GFP E. coli and 12 wells

Fig. 4. Cultivating pure microcolonies from a mixture and using PCR to identify specific microcolonies. Schematics show side views, whereas photographs show top views. (A) Schematic illustrating the cultivation of single cells from a mixture of E. coli expressing GFP and DsRed genes, as well as a method for splitting individual colonies. PCR was used to identify the E. coli expressing DsRed gene on one half of the split chip. The PCR reagents wells have an ellipsoidal cross-section from top view. An increase in fluorescence intensity indicated a positive result for PCR, and thus, the presence of the DsRed gene. Fluorescence microscopy identified wells that contained microbes expressing red and green fluorescent proteins, matching corresponding results in PCR. (B) To test the accuracy of the PCR assay, results from microscopy imaging (red), indicating E. coli colonies expressing DsRed gene, and PCR assay (white) were montaged with an offset to allow visualization without overlap. (C) Plot of a 20 \times 50-well grid was used to represent the position of each well on the same device. Elements corresponding to

wells were colored to highlight the presence of *E. coli* GFP colonies (green squares), *E. coli* DsRed colonies (red dots), and PCR positive results for DsRed (white diamonds). A red square in the third plot denotes a false positive result from PCR. The different shapes of markers used in *C* do not represent the shapes of wells. Scale bar, 200 µm for *A*, 2 mm for *B*. A 200-µm-wide yellow rectangle was used as scale bar for images showing DsRed expressing *E. coli* colonies in *B*. Note: schematics are not to scale; dimensions are provided in *SI Appendix*.

containing DsRed *E. coli*. The wells showing PCR-positive matched the corresponding wells containing DsRed *E. coli* (Fig. 4 *B* and *C*); in contrast, blank wells that contained no bacteria and wells containing GFP-labeled *E. coli* were PCR-negative. We also noticed one well that showed increased fluorescence intensity in the PCR result, but no bacterial colony was detected in the other copy, which indicates that the well may have contained nongrowing cells or cell-free DNA from the solution. Many microbes residing in the human gut are not motile and might also adhere to surfaces. Therefore, we wanted to verify that this method would work with such organisms or whether active mixing inside SlipChip wells (25) would be required.

Identifying Cultivation Conditions for One of the Most Wanted Microbial Targets. To test this workflow, we focused on isolating microbes from the human gut that belong to the high-priority groups of the Most Wanted list. The genus Oscillibacter is frequently observed in the Most Wanted list (2) and other sequencing data sets (29-31), but no human-associated member of this genus has been cultivated yet. To cultivate this genus, we collected samples from the human cecum using a brushing technique to obtain mucosa-associated microbes of high biomedical interest that may directly interact with the host (Fig. 5A). To identify microbial targets in the cultivar, we used 16S rRNA gene high-throughput sequencing with the V4 variable region (32) as a first screening. Reads were clustered to operational taxonomic units (OTUs) de novo with mothur software (33). First, the sample was cultured on agar plates in M2GSC medium (see SI Appendix for ingredients) and examined by plate wash. No OTU from the cultivar was classified as Oscillibacter. Next, miniaturization enabled by microfluidics allowed us to test if we could culture this genus by supplementing the medium with washing fluid from the sampling site in the human cecum. We obtained washing fluid by a lavage technique, autoclaved it, and spiked into the cultivation medium, referred to in this paper as M2LC (see SI Appendix for ingredients). The same amount of inoculum as plated on M2GSC agar was cultivated on SlipChip with M2LC medium and then chip wash was performed as described above. High-throughput sequencing of the V4 region of the 16S rRNA gene showed the successful cultivation of Oscillibacter on the chip (SI Appendix). We performed highthroughput sequencing of the V1V3 region of the 16S rRNA gene to test if the Oscillibacter recovered from chip wash

belonged to the Most Wanted list. We were able to assign the reads classified as *Oscillibacter* to OTU_158_V1V3 (OTU158 for short, with an estimated ~0.7% relative abundance in stool samples in the HMP dataset) from the list (*SI Appendix*) using a custom script (provided in *SI Appendix*) based on usearch software (34). PCR with OTU158-specific primers (OTU158P) confirmed that the target OTU indeed could be found in the cultivar (*SI Appendix*). OTU158P allowed us to validate results of the 16S survey conclusively by qPCR (Fig. 5B). We quantified the genomic DNA of OTU158 using OTU158P and total bacterial genomic DNA of OTU158 from the chip wash experiment

Fig. 5. Targeted isolation of isolate microfluidicus 1 from SlipChip. (A) Illustration showing that mucosal biopsies obtained from the human cecum were used for stochastic confinement as well as supplemented into the medium to stimulate growth of microbes. (B) Identifying the cultivation condition of the microbial target OTU158 using gPCR. (Left) Graph showing that the use of target-specific primers revealed that the target was found in the chip wash solution (M2LC) but not in the blank negative control (NC) or the plate wash solution (M2GSC). (Right) Graph showing that the use of universal primers of 16S rRNA gene showed that both chip wash and plate wash solutions contained bacterial genomic DNA. A lower Cq value indicates higher concentration of DNA. Error bars indicate SD (n = 3). (C) Fluorescence microscopy photograph of on-chip colony PCR after the chip was split, showing a positive well (Right) for OTU158. A PCR negative well is shown on the left, as indicated by the low fluorescence intensity of the solution. The bright spot was presumably from cell material stained with SYBR Green. (D) Photograph of the first round of scaled-up culture of OTU158. (E) Microphotograph of a single colony of isolate microfluidicus 1. (F) Transmission electron microscopy image of a single OTU158 cell. Scale bar, 200 µm for C and E, and 0.5 µm for F.

but not in the blank negative control or the plate wash experiment, whereas both plate wash and chip wash solutions had similar quantities of bacterial DNA that were higher than that of the blank negative control. Chip wash with M2GSC medium did not recover OTU158 (*SI Appendix*). We concluded that the M2LC medium with the washing fluid is an optimal condition to cultivate OTU158.

Isolating OTU158 Using Replica-SlipChip. We further tested isolation and scale-up of microcolonies by cultivating the sample on the replica-SlipChip (22) with the M2LC medium containing the washing fluid from the sampling site. PCR was carried out with primers OTU158P targeting OTU158. We observed two positive wells (one is shown in Fig. 5C) from a single device with \sim 500 microbial colonies (a negative PCR well is shown in Fig. 5C, Left). We scaled up the cultivar from one of the positive wells on an agar plate using the M2GSC medium. The intact scale-up culture after 3 d of incubation is shown in Fig. 5D. The culture contained multiple colonies, as shown in the picture, due to the presence of multiple cfus transferred from the same well of the chip. Although we did not observe the target from plate wash and chip wash experiments in the same medium, the cells could be scaled up on an agar plate with M2GSC medium. It is possible that the target grew in M2GSC medium but was outcompeted by rapidly growing strains in both plate wash and chip wash experiments, or that the target was in a dormant state until it was primed by washing fluid from the sampling site (35). Alternatively, the scaled-up colonies may represent a subpopulation of cells that can be cultivated with M2GSC, and the microcolony grown on the chip offered enough cells to cultivate these rare cells. We expect this observation can be understood as similar isolates are obtained using this method and as improved analytics are developed for quantitatively understanding the unculturable state of cells from environmental samples (10). Next, we performed colony PCR on this isolate with both species-specific

Fig. 6. Phylogenetic affiliation of isolate microfluidicus 1 and validation of the purity of the culture by FISH. (A) Fluorescence images showing that both 16S rRNA types obtained from the culture are expressed within the same cells, demonstrating the presence of a single *Ruminococcaceae* species within the culture. Clostr183-I and Clostr183-II indicate FISH probes, each specific to a different sequence type. (Scale bar, 10 μ m.) (B) 16S rRNA-based consensus tree demonstrating the positioning of isolate microfluidicus 1 within the *Ruminococcaceae* (Clostridia cluster IV). Please see *SI Appendix* for details.

and universal primers in bulk, and confirmed by Sanger sequencing that it was indeed the desired target. Although we observed that this was an almost pure culture (with some minor heterogeneity observed from chromatogram, shown in SI Ap*pendix*), we streaked the plates five times for purification to obtain single colonies (Fig. 5D) of target cells. This isolate, hereafter referred to in this paper as isolate microfluidicus 1, could then be routinely grown in bulk liquid culture to obtain enough biomass to initiate in vivo studies and whole genome sequencing. For example, the draft genome of this isolate was sequenced and assembled into 83 contigs comprising 3.4 Mbp sequences. We observed rod-shaped cells (Fig. 5F and SI Appendix) and two 16S rRNA gene types of 99.4% sequence identity to one another, each with 99% identical to OTU 158 V1V3 and OTU 896 V1V3 from the Most Wanted list (Table S1). Both OTUs are from the high-priority group classified as Oscillibacter, but their relative abundances differ by 20-fold in stool samples surveyed by the HMP (2). Although sequence heterogeneity among multiple 16S rRNA genes on the same genome is not uncommon (36), these two sequence types could either have been derived from a single strain or indicated the presence of two closely related strains. Therefore, we designed two oligonucleotide probes able to distinguish between the two sequence types and used them in FISH experiments (37, 38). All FISH-positive cells bound both sequence type-specific FISH probes (Clost183-I and Clost183-II, Fig. 6A), as well as the general probe mix EUB338I-III (SI Appendix), which specifically detects most members of the bacteria (39, 40). Together, these results demonstrate the presence of a single Ruminococcaceae species in the culture.

Improved Taxonomic Assignment of the Isolate. Short reads from 16S rRNA high-throughput sequencing may not be sufficient for assignment of taxonomy if the organisms are poorly represented in culture collections. Based on both 16S rRNA V4 and V1V3 high-throughput sequencing, the target was classified as Oscillibacter (see SI Appendix for Ribosomal Database Project classification). However, the pure culture suggests that isolate microfluidicus 1 is a member of a previously unidentified genus. The closest described relative for which a 16S rRNA sequence is available is Oscillibacter valericigenes, isolated from a Japanese clam (Corbicula) (41), which exhibits a sequence identity of 93.0% to the isolate of isolate microfluidicus 1. Phylogenetic analyses of the 16S rRNA of isolate microfluidicus 1 confirmed the unique positioning of this microbe within the Ruminococcaceae (42, 43) (Fig. 6B). These observations suggest that this highly sought (Table S2) bacterium may represent, to our knowledge, the first discovered species of an uncultured genus.

Materials and Methods

Sample Collection. Brush and luminal cecum samples were collected from a healthy volunteer. Samples were transferred into an anaerobic chamber immediately after collection and homogenized in grants buffered saline solution (GBSS) supplemented with 5% DMSO by vortexing for 5 min. Aliquots of the samples were flash frozen with liquid nitrogen and preserved at -80 °C. Work with clinical samples for this project is approved by the Institutional Review Boards at California Institute of Technology and The University of Chicago, and by the Institutional Biosafety Committee.

SlipChip Cultivation. The brush sample was serially diluted in GBSS buffer and then suspended in M2LC medium. This bacterial suspension was then loaded onto SlipChip designed for chip wash and incubated for 3 d.

Chip Wash. The cultivar was collected into an Eppendorf pipette tip by flowing 90 μ L PBS buffer three times and then 90 μ L tetradecane into the SlipChip. The solution was then transferred into an Eppendorf tube. DNA was extracted using a QiaAmp kit following the manufacturer's protocol and then used to prepare the library for high-throughput sequencing and PCR.

Isolation of Isolate Microfluidicus 1. We used the replica-SlipChip to cultivate and split the microcolonies. One copy was used for colony PCR to identify the wells containing OTU158. The microcolony from the other copy was transferred on an M2GSC agar plate for scale-up culture.

Conclusions

In this paper, we describe an integrated microfluidic workflow for genetically targeted isolation of microbes, and validate it by successful isolation and cultivation of isolate microfluidicus 1 from the HMP's Most Wanted list. To our knowledge, this is the first example of targeted isolation of a highpriority member from the list, and is the first successful targeted cultivation from a complex biological sample of a previously uncultured taxon defined only by short reads from highthroughput sequencing of the 16S rRNA gene. We believe this genetically targeted workflow can become a general method beyond the isolate described in this paper, as in our preliminary experiments, an additional high-priority and three medium-priority organisms on the Most Wanted list have been isolated. We envision that the microfluidics-based workflow described in

- 1. Schloss PD, Handelsman J (2005) Metagenomics for studying unculturable microorganisms: Cutting the Gordian knot. *Genome Biol* 6(8):229.
- Fodor AA, et al. (2012) The "most wanted" taxa from the human microbiome for whole genome sequencing. PLoS ONE 7(7):e41294.
- Kennedy J, et al. (2011) Functional metagenomic strategies for the discovery of novel enzymes and biosurfactants with biotechnological applications from marine ecosystems. J Appl Microbiol 111(4):787–799.
- Rooks DJ, McDonald JE, McCarthy AJ (2012) Metagenomic approaches to the discovery of cellulases. *Methods Enzymol* 510:375–394.
- 5. Reddy BVB, et al. (2012) Natural product biosynthetic gene diversity in geographically distinct soil microbiomes. *Appl Environ Microbiol* 78(10):3744–3752.
- Ridaura VK, et al. (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341(6150):1241214.
- Frank DN, et al. (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 104(34):13780–13785.
- Staley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39(1):321–346.
- Kaeberlein T, Lewis K, Epstein SS (2002) Isolating "uncultivable" microorganisms in pure culture in a simulated natural environment. *Science* 296(5570):1127–1129.
 Genuer EL (2012) Convice unculturable heatering (Participal Mathematica)
- 10. Stewart EJ (2012) Growing unculturable bacteria. J Bacteriol 194(16):4151–4160.
- D'Onofrio A, et al. (2010) Siderophores from neighboring organisms promote the growth of uncultured bacteria. *Chem Biol* 17(3):254–264.
 Giel JL, Sorg JA, Sonenshein AL, Zhu J (2010) Metabolism of bile salts in mice influ-
- ences spore germination in Clostridium difficile. *PLoS ONE* 5(1):e8740. 13. Singh S, et al. (2013) Cell extract-containing medium for culture of intracellular fas-
- tidious bacteria. J Clin Microbiol 51(8):2599–2607.
- 14. Zengler K, et al. (2002) Cultivating the uncultured. Proc Natl Acad Sci USA 99(24): 15681–15686.
- Ingham CJ, et al. (2007) The micro-Petri dish, a million-well growth chip for the culture and high-throughput screening of microorganisms. Proc Natl Acad Sci USA 104(46):18217–18222.
- Eun Y-J, Utada AS, Copeland MF, Takeuchi S, Weibel DB (2011) Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation. ACS Chem Biol 6(3):260–266.
- 17. Martin K, et al. (2003) Generation of larger numbers of separated microbial populations by cultivation in segmented-flow microdevices. *Lab Chip* 3(3):202–207.
- Park J, Kerner A, Burns MA, Lin XN (2011) Microdroplet-enabled highly parallel cocultivation of microbial communities. *PLoS ONE* 6(2):e17019.
- Liu W, Kim HJ, Lucchetta EM, Du W, Ismagilov RF (2009) Isolation, incubation, and parallel functional testing and identification by FISH of rare microbial single-copy cells from multi-species mixtures using the combination of chemistrode and stochastic confinement. Lab Chip 9(15):2153–2162.
- Vincent ME, Liu W, Haney EB, Ismagilov RF (2010) Microfluidic stochastic confinement enhances analysis of rare cells by isolating cells and creating high density environments for control of diffusible signals. *Chem Soc Rev* 39(3):974–984.
- Stevenson BS, Eichorst SA, Wertz JT, Schmidt TM, Breznak JA (2004) New strategies for cultivation and detection of previously uncultured microbes. *Appl Environ Microbiol* 70(8):4748–4755.
- Ma L, et al. (2014) Individually addressable arrays of replica microbial cultures enabled by splitting slipchips. *Integr Biol*, 10.1039/C4IB00109E.

this paper will be useful for conclusively testing hypotheses generated from culture-independent studies by providing pure cultures of biomedically and environmentally significant microorganisms.

ACKNOWLEDGMENTS. We thank Igor Antoshechkin and the Jacobs Genetics and Genomics Laboratory at California Institute of Technology for help with next-generation sequencing and assembly of the genome. We thank Alasdair McDowall from Prof. Grant Jensen's lab for assistance with electron microscopy, Whitney Robles for contributions to writing and editing this manuscript, Prof. Tom Schmidt for discussions of 16S rRNA heterogeneity and experimental techniques, and for suggesting the creation of the 100 "Most Wanted" list at the HMP meeting, Prof. Jared Leadbetter for discussion on nomenclature of the isolate, Prof. Victoria Orphan for access to lab facilities, and Dionysios A. Antonopoulos for providing the anaerobic chamber to process the clinical samples. We thank Robert Edgar, J. Gregory Caporaso, Justin Kuczynski, William A. Walters, Hiroyuki Imachi, George M. Garrity, and Ashlee M. Earl for helpful discussions. Research reported in this publication was supported by the National Human Genome Research Institute of the National Institutes of Health under Award R01HG005826. R.H. was supported via an Erwin Schrödinger Postdoctoral Fellowship by the Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung; J 3162-B20).

- 23. Du W, Li L, Nichols KP, Ismagilov RF (2009) SlipChip. Lab Chip 9(16):2286-2292.
- Shen F, et al. (2010) Nanoliter multiplex PCR arrays on a SlipChip. Anal Chem 82(11): 4606–4612.
- Liu W, Chen D, Du W, Nichols KP, Ismagilov RF (2010) SlipChip for immunoassays in nanoliter volumes. Anal Chem 82(8):3276–3282.
- Begolo S, Shen F, Ismagilov RF (2013) A microfluidic device for dry sample preservation in remote settings. Lab Chip 13(22):4331–4342.
- Fuerstman MJ, et al. (2007) The pressure drop along rectangular microchannels containing bubbles. Lab Chip 7(11):1479–1489.
- Li L, Du W, Ismagilov R (2010) User-loaded SlipChip for equipment-free multiplexed nanoliter-scale experiments. J Am Chem Soc 132(1):106–111.
- Claesson MJ, et al. (2012) Gut microbiota composition correlates with diet and health in the elderly. *Nature* 488(7410):178–184.
- Raman M, et al. (2013) Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. *Clin Gastroenterol Hepatol* 11(7):868–875, e1–e3.
- Lam YY, et al. (2012) Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLoS ONE 7(3):e34233.
- 32. Caporaso JG, et al. (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. *Proc Natl Acad Sci USA* 108(Suppl 1):4516–4522.
- Schloss PD, et al. (2009) Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. *Appl Environ Microbiol* 75(23):7537–7541.
- Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461.
- Lewis K (2007) Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5(1): 48–56.
- Klappenbach JA, Saxman PR, Cole JR, Schmidt TM (2001) Rrndb: The ribosomal RNA operon copy number database. Nucleic Acids Res 29(1):181–184.
- Amann R, Fuchs BM (2008) Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. *Nat Rev Microbiol* 6(5): 339–348.
- Stoecker K, Daims H, Wagner M (2005) Fluorescence in situ hybridization for the detection of prokaryotes. *Molecular Microbial Ecology*, eds Osborn AM, Smith CJ (Bios Advanced Methods, Abingdon, UK), pp 213–239.
- Amann RI, et al. (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. *Appl Environ Microbiol* 56(6):1919–1925.
- 40. Daims H, Brühl A, Amann R, Schleifer KH, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: Development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22(3):434–444.
- lino T, Mori K, Tanaka K, Suzuki K, Harayama S (2007) Oscillibacter valericigenes gen. nov., sp. nov., a valerate-producing anaerobic bacterium isolated from the alimentary canal of a Japanese corbicula clam. Int J Syst Evol Microbiol 57(Pt 8):1840–1845.
- Collins MD, et al. (1994) The phylogeny of the genus Clostridium: Proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44(4):812–826.
- Yutin N, Galperin MY (2013) A genomic update on clostridial phylogeny: Gramnegative spore formers and other misplaced clostridia. *Environ Microbiol* 15(10): 2631–2641.

Gene-targeted microfluidic cultivation validated by isolation of a gut bacterium listed in Human Microbiome Project's Most Wanted taxa

Liang Ma^a, Jungwoo Kim^a, Roland Hatzenpichler^b, Mikhail A. Karymov^a, Nathaniel Hubert^c, Ira M. Hanan^c, Eugene B. Chang^c and Rustem F. Ismagilov^a*

^aDivision of Chemistry and Chemical Engineering and ^bDivision of Geological and Planetary Sciences, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125 ^cDepartment of Medicine, The University of Chicago, 900 E 57th St, Chicago, Illinois 60637

*Corresponding author: rustem.admin@caltech.edu

Supporting Text

All chemicals were purchased from commercial sources and used as received unless otherwise stated.

Homemade Reagents

A protocol for making GBSS buffer can be found on the Schmidt Lab website (1). For H_2Oc or PBSc, 0.2% cysteine was added and the solution was sterilely filtered through 0.22 µm membrane. 0.1 M Fe(SCN)₃ solution was sterilely filtered through 0.22 µm membrane (Fisher Scientific) and used as a red dye solution. Tetradecane (Fisher Scientific) was sterilely filtered through 0.22 µm membrane (Fisher Scientific). For assembling SlipChip for depositing PCR reagents, filtered tetradecane was degassed under house vacuum overnight. All plastic consumables and reagents were equilibrated in an anaerobic chamber for more than 24 hours before usage.

Anaerobic Chamber

A Coy lab anaerobic chamber equipped with dehumidifier was used in all anaerobic cultivation experiments. The hydrogen level was maintained at 3–4% and a relative humidity of 30%. The chamber was equipped with recirculating atmosphere filtration system (HePa) to maintain a sterile atmosphere.

Design and Fabrication of SlipChip

SlipChips for chip wash were fabricated as previously reported(2). Photomasks were designed in AutoCAD and ordered from CAD/Art Services, Inc. (Bandon, OR). Soda-lime glass plates with chromium/photoresist and chromium/gold/photoresist coating were purchased from Telic Company (Valencia, CA). The device contained 3,200 microwells for compartmentalization on one plate, and continuous loading channels on the other plate. The depth of wells was 90 μ m measured using a profilometer (Dektak 150, Veeco, CA). Through holes were drilled with a 0.035" drill bit (Diamond ball 4F bit, Harvey Tool #74335-C4, Colmar Industrial Supplies, Wheeling, IL) before surface modification. Glass debris from drilling was removed by sonicating the chips in a 1:1 mixture of water and ethanol for more than one hour in a warm water bath. Prior to use, the SlipChips were cleaned with piranha solution, rinsed three times with millipore water followed by 200 proof ethanol, blow dried with nitrogen and silanized with dimethyldichlorosilane using a previously reported protocol (2). An acid piranha solution (caution: this is a corrosive mixture) is used to remove organic contaminants from substrates by mixing 3:1 (v:v) concentrated sulfuric acid (H₂SO₄) with 30% hydrogen peroxide (H₂O₂). Sulfuric Acid (Cat. #A300-212) and 30% Hydrogen peroxide (Cat. #H325-4) can be ordered through Fisher Scientific.

Silanized chips were stored at room temperature in a dessicant box (< 15% humidity, maintained with Drierite). When a glass SlipChip needed to be reused, it was cleaned with Piranha solution first, and then subjected to the same silanization procedure described above.

For the replica-SlipChip, the depth of the features measured by a contact profiler (Dektak 150, Veeco, CA) was 90 μ m. The depth was 120 μ m for wells, and 60 μ m for loading channels of the SlipChip used for depositing PCR reagent wells. The lateral dimensions of cultivation and PCR reagent wells can be measured by photographs from a stereoscope, as shown in the accompanying paper (3).

Performing Chip Wash

The plates of SlipChip were assembled under a layer of tetradecane in a petridish and four binder clips (small binder chips, cat # 429-415, Office Depot) were applied to hold the devices together. The lubricating oil in the loading channel and wells was removed by repeated purging with vacuum for 3 to 5 times at an interval of 1-2 hours between each purging. For anaerobic culture, the SlipChip was placed into the anaerobic chamber for at least 24 hours prior to use. Aqueous solution was loaded onto SlipChip by pipetting, and the device was slipped to form compartments. The solution in the loading channel was removed by purging with a vacuum. In the case of anaerobic cultivation, a gas recirculation pump for atmosphere filtration system was used as a vacuum source. For chip wash experiments with microbial samples, the loading channel can be cleaned by repeated washing with GBSS or PBSc buffer solution to remove any residual microbial cells and prevent overgrowth of microbes in the loading channel. The continuous loading channels were used as gas exchange channels.

PBS buffer was loaded into the channel to remove the gas phase, and can be used for repeated washing in the case of microbial samples. The SlipChip was designed to collect the chip wash solution with a single outlet (Fig. S1). To collect the solution, 90 μ L PBS buffer was injected into the SlipChip using an Eppendorf pipettor and collected into an Eppendorf pipette tip (1-200 μ L, cat. No. 02-717-141, Fisher Scientific) and transferred into an Eppendorf tube. This process was repeated for three times. 90 μ L tetradecane was loaded into the SlipChip to further remove the diluted aqueous solution. The solution was also transferred from the pipette tip into the Eppendorf tube.

It is important to keep the lubricating oil in the device from drainage during incubation at elevated temperature or for long-term culture. Loss of lubricating oil in the gap between the two glass plates causes cross-contamination among the confined wells, and cannot be used in the chip wash experiment because the washing buffer would flow through the gap and not into the collection outlet. To prevent loss of oil from the device, a piece of Kimwipe was briefly saturated with 1:1 (vol) mixture of water and tetradecane and then placed inside a Petri dish. The SlipChip was then placed into the Petri dish and Parafilm was used to seal the Petri dish. The Petri dish was then incubated at the desired temperature for microbial culture.

E. coli Preparation

The green fluorescent protein (GFP)-labeled *E. coli* RP 437 were obtained as a gift from Guillaume Lambert at Princeton University. *E. coli* RP 437 was purchased from CGSC (catalog #: 12122) and transformed with DsRed plasmid.

E. coli cells labeled with DsRed fluorescent proteins were enriched with 50 μ g mL⁻¹ of Ampicillin in LB at 37 °C overnight (12 hours) in a rotary shaking incubator (SI-600 Lab Companion, Jeio Tech) at 200 rpm. Overnight culture was then diluted 100-fold and cultured with 10 μ g mL⁻¹ of Ampicillin and 40 μ mol L⁻¹ IPTG in LB media for 3 hrs. Cells from 1 mL culture were then pelleted at 3000 ×g for 5 min and washed 3 times with 1 mL of ice cold 1× PBS buffer before use.

Quantifying the Recovery Efficiency of Chip Wash

To quantitatively test the recovery efficiency of this method, an aqueous solution of 200 nM Alexa Fluor 488 hydrazide (Invitrogen) in PBS buffer was injected into the device and subsequently collected by chip wash method, normalized to a volume of 500 μ L, and quantified using a fluorospectrometer (Thermo scientific). 0.45 nM, 0.9 nM, 1.8 nM, 3.6 nM and 7.2 nM of Alexa Fluor 488 hydrazide solutions in PBS buffer were used to obtain a calibration curve. The loading volume of the device was calculated to be 18 μ L. Therefore, the concentration of the recovered solution was divided by the concentration of 7.2 nM Alexa Fluor 488 hydrazide to calculate the recovery efficiency.

E. coli cells labeled with DsRed fluorescent proteins were prepared as described above, loaded onto SlipChip and collected immediately using chip wash method. The chip wash solution was normalized to a volume of 500 μ L. 18 μ L of the same solution was diluted to 500 μ L and used as a control. The cells from chip wash solutions as well as the control solution were quantified using INCYTO C-Chip (DHC-N01) under Leica DMI6000 microscope (Leica Microsystems) with a 20 x/0.4NA Leica objective, TX2 filter and a Hamamatsu ORCA-ER camera with 1× coupler with an exposure time of 200 ms. Images were acquired and analyzed by using Metamorph imaging system version 6.3r1 (Universal Imaging). Recovery efficiency was calculated by dividing cell number in the recovered solution by the cell number in the control solution.

Reagents and Equipment for PCR

Primers for PCR were ordered from Integrated DNA Technologies (Coralville, IA). SsoFast EvaGreen Supermix (2X) was purchased from Bio-Rad Laboratories (Hercules, CA). Bovine serum albumin solution (BSA) was purchased from Roche Diagnostics (Indianapolis, IN). PCR Mastercycler and in situ adapter were purchased from Eppendorf (Hamburg, Germany).

Using Chip Wash to Monitor Bacterial Growth with a Single Species Model System

E. coli cells labeled with DsRed fluorescent proteins prepared as described above were serially diluted to a final density of ~ 10^5 CFU/mL in 10 µg mL⁻¹ of Ampicillin and 40 µmol L⁻¹ IPTG in LB media or 1× PBS buffer that does not support growth of bacteria as a negative control and loaded onto SlipChip. SlipChip was incubated at 37 °C overnight. The solution was collected after cultivation using chip wash. Genomic DNA was purified from chip wash solutions using QiaAmp kit (Qiagen). For calibration, genomic DNA was purified from bulk liquid culture of *E. coli* cells labeled with DsRed fluorescent proteins, quantified by Quanti-it DNA high sensitivity quantification kit (Invitrogen), and serially diluted in AE buffer containing 0.01 mg/mL of BSA. The reaction master mixture for qPCR was prepared by mixing 10 µL of 2X SsoFast EvaGreen Supermix, 1 µL of forward and reverse primer (10 µmol L⁻¹), 1 µL of template solution and 8 µL of water (Fisher Scientific, BP 2470-1). qPCR was performed on the Eco real-time PCR machine (Illumina, Inc, San Diego, CA) with 27F(4) (5'-AGAGTTTGATCCTGGCTCAG -3') and 534R (5) (5'-ATTACCGCGGCTGCTGG-3') primers. We observed a 10,000-fold increase in DNA concentration (Fig. S1), suggesting that for this particular model system, non-growing cells contribute to 0.01% of the genetic material recovered from chip wash.

Performing Chip Wash and Plate Wash Experiment with a Two-Species Model System

Cells of Clostridium scindens (ATCC 35704) and Enterococcus faecalis (ATCC 49532) were separately enriched in Schaedler Anaerobe Broth (Oxoid) at 37°C in an incubator (model# 10-140E, Quincy lab Inc) overnight (~ 16 hours) in anaerobic chamber (Coylab). The culture was diluted 100 fold and incubated at 37°C for 5 hours (E. faecalis) and 8 hours (C. scindens). The cells were pelleted at 6000 ×g for 3 minutes and washed with PBSc for 3 times. Cell numbers of the two species were estimated for loading by cell counting using INCYTO C-Chip (DHC-N01) under Leica DMI6000 microscope (Leica Microsystems) with a 20 x/0.4NA Leica objective. The two species were mixed at 5:1 ratio (C. scindens: E. faecalis, confirmed by separately plating the two species) in Schaedler Anaerobe Broth at a final density of $\sim 10^5$ CFU/mL, loaded onto SlipChip and incubated at 37°C for 24 hours for growth. Genomic DNA extracted from 18 µL of the same solution containing mixture of cells using QiaAmp kit (Qiagen) was used as nongrowth control. To perform plate wash, 4 µL of the same solution containing mixture of cells was plated on Schaedler Anaerobe medium with 2% (wt/vol) noble agar (Fisher Scientific) to achieve a final density of ~300 colonies (counted on day 3 after cultivation when both of the species reached saturation on an agar plate) to reduce interaction between colonies. The cultivar was collected by chip wash and plate wash. Plate wash was performed following a previously described protocol(6) with minor modifications. Cell scrapers (Fisher Scientific) were used to collect cultivar into 1 mL of GBSS buffer. 50 µL of the combined solution was centrifuged at 6000× g for 10 minutes to pellet the cells. Serial dilutions of genomic DNA from macroscale liquid culture of the two species quantified by Quanti-it DNA high sensitivity quantification kit (Invitrogen) were used to calibrate the qPCR machine. The reaction master mixture for qPCR was prepared by mixing 10 µL of 2X SsoFast EvaGreen Supermix, 1 µL of forward and reverse primer (10 μ mol L⁻¹), 1 μ L of template solution and 8 μ L of water (Fisher Scientific, BP 2470-1). For plate wash, ~1 ng/ μ L of genomic DNA was used for qPCR as we are interested in the relative ratio of C. scindens and E. faecalis. qPCR was performed on the Eco real-time PCR machine (Illumina, Inc, San Diego, CA) with ScinF4 (5'-CGTAACGCGCTCTTTCTTCG-3') and ScinR4 (5'-CCTTCCTCCAGGTTCTCCCT-3') for C. scindens and E.faecalis F (5'-CGC TTC TTT CCT CCC GAG T-3') and E.faecalis R (5'-GCC ATG CGG CAT AAA CTG-3'). The two pairs of primers are specific to the targeting species, which was confirmed by qPCR.

We cultivated the two strains separately on SlipChip or on agar plates. To monitor bacterial growth on agar plate, cells were plated on Schaedler Anaerobe Agar separately, incubated at 37 °C and imaged every 24 hours with a Leica MZ 16 stereoscope. The plating experiment was set up with more than three plates for each species. For each time point, one plate was taken out of the anaerobic chamber for imaging and discarded. To image bacterial growth on the SlipChip, bacterial cells from each species were loaded onto a "replica-SlipChip" described in the accompanying paper(3) at a final density of ~ 10^5 CFU mL⁻¹ in Schaedler Anaerobe broth. The device was incubated for 24 hours to allow growth of bacteria. The microcolonies were imaged under Leica DMI6000 microscope (Leica Microsystems) with a 20 x/0.7NA Leica objective and a Hamamatsu ORCA-ER camera with 1× coupler under bright field.

On-chip Cultivation of E. coli and Splitting of the Microcolonies

E. coli cells were enriched with 50 μ g mL⁻¹ of Ampicillin in LB at 34 °C overnight (12 hours) in a rotary shaking incubator at 200 rpm to reach stationary phase. To synchronize cells, overnight culture of each species was then diluted 100-fold and cultured with 10 μ g mL⁻¹ of Ampicillin and 40 μ mol L⁻¹ IPTG in LB media for 3 hrs. 1 mL culture of cells were then pelleted at 3000 ×g for 5 min and washed 5 times with 1 mL of 1× PBS buffer. Cells were finally suspended in 10 μ g mL⁻¹ of Ampicillin and 40 μ mol L⁻¹ IPTG in LB media and cell suspension was serially diluted with 10 μ g mL⁻¹ of Ampicillin and 40 μ mol L⁻¹ IPTG with 0.5% of ultra-low gelling temperature Type IX-A agarose (Sigma-Aldrich) in LB media and mixed to a final density of 2 × 10⁴ and 2 × 10³ CFU mL⁻¹ for *E. coli* strains with GFP and DsRed genes, respectively, and loaded onto replica-SlipChip as described in the accompanying paper(3). SlipChip was incubated at 34 °C for 3 hours and then split into two halves as described in the accompanying paper(3). The bottom half was kept on the holder for colony PCR and the top was preserved at 10 °C on Echo therm chilling plate (Torrey Pines Scientific, Carlsbad, CA) under oil in a Petri dish.

Depositing PCR Reagents on SlipChip

The reaction master mixture was prepared by mixing 100 μ L of 2X SsoFast EvaGreen Supermix, 1 μ L of forward (DSR_F, 5'-GGACGGCTCCTTCATCTACA-3', 100 μ mol L⁻¹) and reverse primer (DSR_R, 5'-GGTGATGTCCAGCTTGGAGT-3', 100 μ mol L⁻¹), 10 μ L of 10 μ g mL⁻¹ BSA solution, and 68 μ L of 2.5% (w/v) ultra-low gelling temperature agarose in water. This mixture was then loaded onto the SlipChip for depositing PCR reagents described in the SI of the accompanying paper (3) by replacing tetradecane in loading channels and this SlipChip for depositing PCR reagent was split to obtain 1,000 droplets deposited on one half of the SlipChip.

Combining the Replica-SlipChip with the PCR Chip

The PCR chip preloaded with PCR reagents was taken off the holder and combined with the bottom piece of the replica chip by aligning through-holes with the pins. A binder clip (5/32) inch capacity, 1/2 inch size, officemax, Itasca, IL) was used to clamp the two plates together, allowing the combined SlipChip to be removed from the holder and the oil without misalignment.

Fluorescence Imaging of PCR Results and E. coli with GFP and DsRed Fluorescent Proteins

Fluorescence images were acquired with a Leica DMI6000 microscope (Leica Microsystems) with a 10 x/0.4NA Leica objective and a Hamamatsu ORCA-ER camera with $1 \times$ coupler. An L5 filter with an exposure time of 500 ms was used to collect images. For quantitative analysis, fluorescent intensity of a fluorescence reference slide for L5 filter was recorded and used for background

correction. Images were acquired and analyzed by using Metamorph imaging system version 6.3r1 (Universal Imaging) and ImageJ by the National Institutes of Health (http://rsb.info.nih.gov/ij/download.html). Processing was applied equally to the entire image.

Preparation of M2GSC Medium

This protocol is adapted from reference (7).

1L M2GSC medium contains the following ingredients:

10 g of casitone, 2.5 g of yeast extract, 4 g of NaHCO₃, 2 g of cellobiose, 2 g of soluble starch, 300 mL of rumen fluid, 2 g of glucose, 1 g of cysteine, 0.45 g of K_2 HPO₄, 0.45g of KH₂PO₄, 0.9 g of (NH4)₂SO₄, 0.9 g of NaCl, 0.09 g of MgSO₄ 7H₂O, 0.09 g of CaCl₂, 15 g of Agar Noble and 1 mg of resazurin.

Preparation of M2LC medium

We prepare the basal medium containing: 10 g of casitone, 2.5 g of yeast extract, 4 g of NaHCO₃, 2 g of cellobiose, 2 g of soluble starch, 2 g of glucose, 1 g of cysteine, 0.45 g of K₂HPO₄, 0.45g of KH₂PO₄, 0.9 g of (NH4)₂SO₄, 0.9 g of NaCl, 0.09 g of MgSO₄ 7H₂O, 0.09 g of CaCl₂, 15 g of Agar Noble and 1 mg of resazurin in 700 mL of water.

We mixed 70 µL of the basal medium with 30 µL supernatant of autoclaved luminal sample.

Handling Frozen Stock Solutions of Bacterial Samples in an Anaerobic Chamber

10 μ L aliquots of homogenized brush samples and ~50 μ L aliquots of homogenized luminal samples were stored in -80 °C freezer. For cultivation, the brush sample was transferred from the freezer to an anaerobic chamber on dry ice with GasPak systems.

Microbial Cultivation from the Biopsy with M2GSC Medium and Performing Plate Wash

An aliquot of cecum brush sample was serially diluted in GBSS buffer. 18 μ L of the 10⁴ dilution was plated onto four M2GSC agar plates (4.5 μ L for each plate) yielding ~250 colonies per plate after three days of incubation at 37 °C (model# 10-140E, Quincy lab Inc) in an anaerobic chamber (Coylab). Plate wash was performed following a previously described protocol (6) with minor modifications. Cell scrapers were used to collect cultivar into 1 mL of GBSS buffer. The plate wash solutions from four plates were combined into a single tube and mixed by vortexing. 50 μ L of the combined solution was centrifuged at 6000× g for 10 minutes to pellet the cells. Genomic DNA was extracted using QiaAmp kit (Qiagen) and quantified by Quanti-it DNA high sensitivity quantification kit (Invitrogen). The experiment was carried out in triplicates. The volume of autoclaved luminal fluid was not enough to prepare plate medium; therefore we did not perform the bulk culture the sample with M2LC medium on agar plates.

Microbial Cultivation from the Biopsy with M2LC and M2GSC Medium and Performing Chip Wash

An aliquot of cecum brush sample was serially diluted in GBSS buffer and then in M2LC. 10^4 dilution of the brush sample was loaded onto a 3,200 well SlipChip (loading volume of 18 µL and is consistent with sample used the plate wash) and incubated (model# 10-140E, Quincy lab Inc) for three days at 37 °C in an anaerobic chamber (Coylab). Chip wash was performed and the chip wash solution was centrifuged at $6000 \times$ g for 10 minutes to pellet the cells. Genomic DNA was extracted using QiaAmp minikit (Qiagen) and quantified by Quanti-it DNA high sensitivity quantification kit (Invitrogen). The experiment was carried out with triplicate devices.

Designing Primers for 16S V1V3 rRNA Gene for Miseq High Throughput Sequencing

We chose high-throughput sequencing for three reasons: First, high-throughput sequencing can be used to profile the community at great depth, and is cost-effective and less labor-intensive than cloning of universally amplified PCR product and Sanger sequencing; Second, compared with testing with primers targeting different groups of microbes, high-throughput sequencing is intrinsically multiplexed and can be used to detect multiple targets simultaneously. This feature is well suited for the "Most Wanted" list, as 45 high priority targets are defined for human gut microbiome. Third, designing and validating primers or probes for specific targets at the resolution of individual OTUs for a complex community from short reads can be challenging for non-experts, and high-throughput sequencing can be used to retrieve the target of interest before the effort for designing target-specific primers.

The primers for variable region V1V3 of 16S rRNA gene was designed similar to that of V4 region of 16s rRNA gene (8, 9). Primer Prospector (10) was used to design the linker region with reference sequences from Greengenes (11) February 2013 release. Possible interactions between barcodes and new pad and linker regions that may yield secondary structures were also screened with Primer Prospector.

16S rRNA Gene Library Construction for Miseq High Throughput Sequencing

The library was prepared according to published protocol. 20 ng of genomic DNA extracted from chip wash solution with M2LC medium or plate wash solutions with M2GSC medium were used in each 50 μ L reaction mix. The mixture contained X μ L of template DNA (adjusted to 20 ng), (13.5-X) μ L of H₂O (Fisher Scientific, BP 2470), 20 μ L of 5 Primer Hot MasterMix (5 prime: cat # 2200410), and 1 μ L of Primer mix (10 μ M of Forward primer and barcoded Reverse primer). The PCR reaction was set up in triplicates and PCR product was purified by Agencourt AmPure XP beads (Beckman Coulter Inc, A63881) followed by Qiaquick PCR

purification kit (Qiagen). The purified PCR product was pooled in equal molar quantified by Kapa library quantification kit (Kapa Biosystems, KK4824) and sent for sequencing at GenoSeq Core of UCLA (Los Angeles, CA).

Data Analysis for High Throughput Sequencing of 16S V4 rRNA Gene

OTUs were chosen *de novo* with mothur (12) to identify candidate targets. The results were summarized as an OTU (Operational taxonomic unit) table. The OTU table from chip wash M2LC medium and plate wash with M2GSC medium was sub-sampled to 12599 reads per sample and summarized at genus level using QIIME (13). The relative abundance of each OTU from the two methods is presented in Fig. S4.

Data Analysis for High Throughput Sequencing of 16S V1V3 rRNA Gene

 2×250 bp paired end reads were assembled using PANDASeq (14) and de-replicated with usearch (15). The de-replicated reads were sorted by abundance and clustered at 97% identity. Chimeric reads were detected using UCHIME (16) with both *de novo* and reference-based methods. The filtered reads were then searched against the HMP's "Most Wanted" list for targets within the identity of 97% using usearch v6.0.293. Alignment of the sequence from chip wash with the sequence of OTU158 from the most wanted list is shown in Fig. S5. Detailed scripts are provided in the SI below.

Using qPCR to Quantify Bacterial Genomic DNA from the Total Bacteria and OTU158

Primers for PCR were ordered from Integrated DNA Technologies (Coralville, IA). SsoFast EvaGreen Supermix (2X) was purchased from Bio-Rad Laboratories (Hercules, CA).1.5 ng purified gDNA was used to prepare the reaction mixture of a total volume of 30 µL. Water (Fisher Scientific, BP 2470) was used as negative control. Universal primers for the V4 region of 16S rRNA gene (515F, 5'-GTGCCAGCMGCCGCGGTAA-3', 806R, 5'-GGACTACHVGGGTWTCTAAT-3') were used to quantify total bacterial load, and OTU158 specific primers (158F, 5'-AGA ATC TAC TGA AAG AGT TTT CGG A-3', 158R, 5'-TTC TAG AGG TAC CGT CTT CTG CT-3') were used to quantify the concentration of OTU158. The mixture was split into 3 aliquots and loaded onto the Eco real-time PCR machine (Illumina, Inc, San Diego, CA). Reactions were incubated for 2 min at 98 °C, followed by 40 cycles of 5 s at 98 °C, 3 s at 60 °C. Data analysis was performed using Eco software.

Using Splitting Technology and the On-chip PCR Method to isolate the bacterium: isolate microfluidicus 1

An aliquot of cecum brush sample was serially diluted in GBSS buffer and then in M2LC medium. 10^4 dilution of the brush sample was loaded onto a 1,000 well replica-SlipChip (3) and incubated (model# 10-140E, Quincy lab Inc) for two days at 37 °C in an anaerobic chamber (Coylab). The replica-SlipChip was split as described in the accompanying paper (3), and on-chip PCR was performed and analyzed as described above with the following modification: The PCR reaction master mixture was prepared by mixing 150 µL of KAPA 2G Robust Hot Start Readymix (KAPA BIOSYSTEMS), 1.5 µL of forward and 1.5 µL of reverse primer (100 µmol L⁻¹), 15 µL of 10 µg mL⁻¹ BSA solution, and 94.5 µL of 2.5% (w/v) ultra-low gelling temperature agarose in water, and 7.5 µL of 40X SYBR green (Sigma-Aldrich). The staining of cell material with SYBR green was observed and could be used to estimate the number of microcolonies grown on device could be estimated . Microbes from the PCR-positive wells on the plate for sample preservation was retrieved as described in the accompanying paper (3), and plated on M2GSC plate. After two days of incubation, the cluster of colonies was used for both colony PCR and streaking additional plates.

16S rRNA Gene Analysis for isolate microfluidicus 1

Genomic DNA for PCR amplification was isolated using QiaAmp kit (Qiagen) following the manufacturer's protocol with the following modification. We added a bead-beating step using lysing matrix B (MP Biomedicals 6911-500) that was shaken using a Mini-Beadbeater-16 (BioSpec Products, Inc.) for 1 min. The 16S rRNA gene was amplified by PCR using AccuPrimer Pfx DNA polymerase (Invitrogen). Primers 8F (5'-AGAGTTTGATCCTGGCTCAG-3') and 1492R (5'-GGTTACCTTGTTACGACTT-3') (17) were used for PCR amplification. PCR amplification was performed by Biorad thermocycler with 2 min incubation at 95 °C, followed by 34 cycles at 95 °C for 15s, 55 °C for 30s and 68 °C for 90s. Amplified PCR product was cloned into TOPO vector (Invitrogen) and transformed into TOPO10 *E. coli* cells (Invitrogen) on LB/Amp+ medium. The plates were incubated at 37 °C overnight and single colonies were picked for liquid culture. Plasmids were purified from cells using Qia miniprep kit (Qiagen). Plasmid DNA was then amplified by PCR with the same protocol as described above using M13F/M13R primers (Invitrogen). PCR products were purified using Qia quick PCR purification kit (Qiagen).

Sequencing PCR Products and Data Analysis

PCR products were sequenced by Laragen, Inc. (Culver City, CA) using T3 and T7 as sequencing primers (Invitrogen). The pairedend reads were assembled in Seqman Pro (DNASTAR) and manually trimmed to remove the adapters and PCR primers in Microsoft Word. 15 assembled sequences were aligned using muscle (18) and usearch (15). TEM was performed in the Jensen laboratory electron microscopy facility at the California Institute of Technology with 200 mesh formvar/ carbon grids on TECNAI 120 keV TEM (FEI, Hillsboro, OR) equipped with a Gatan 2k by 2k CCD camera for image acquisition.

Optical Microscopy

Optical microscopy of the isolate was obtained by suspending the cells in PBS buffer and imaged using a $63 \times /1.2$ NA Leica objective with a Leica DMI6000 microscope (Leica Microsystems) and a Hamamatsu ORCAER camera.

Ribosomal Database Project (RDP) classification of 16S rRNA gene of OTU158

Taxonomic assignment of the sequencing results for OTU158 (isolate microfluidicus 1) was generated using the online RDP classifier with 16S rRNA training set 9. The results are summarized below:

Classification on sequence of OTU158 retrieved from high throughput sequencing of V4 region of 16S rRNA gene: Bacteria(100);Firmicutes(100);Clostridia(100);Clostridiales(100);Ruminococcaceae(100); Oscillibacter(100);

Classification on sequence of OTU158 retrieved from high throughput sequencing of V1V3 region of 16S rRNA gene: Root(100);Bacteria(100);Firmicutes(100);Clostridia(100);Clostridiales(100);Ruminococcaceae(100);Oscillibacter(99);

Classification on sequence of two types of full length 16S rRNA gene of isolate microfluidicus 1 from Sanger sequencing: Root(100%) Bacteria(100%) Firmicutes(100%) Clostridia(100%) Clostridiales(100%) Ruminococcaceae(100%) Oscillibacter(75%); Root(100%) Bacteria(100%) Firmicutes(100%) Clostridia(100%) Clostridiales(100%) Ruminococcaceae(100%) Oscillibacter(84%);

Numbers in parentheses give the classification confidence level; threshold is 80%.

Phylogeny

Phylogenetic analyses of 16S rRNA gene sequences were performed using the software package ARB(19) as well as MrBayes (20). Automatic alignments of sequences obtained from our culture as well as from reference strains were manually refined within ARB. A consensus tree was constructed based on maximum-likelihood (ML) calculation (using the Hasegawa, Kishino and Yano substitution model), and by collapsing all nodes with parsimony bootstrap (5,000 iterations) support \leq 50% or Bayesian support below \leq 70%. Conditions for Bayesian inference were as follows: 2 parallel runs; 1,000,000 tree generations; sample frequency 100; final split frequency 0.007; potential scale reduction factor 1.006; burnin of 25% of sample. For phylogenetic analyses only sequences of cultured members of the *Clostridia* for which the 16S rRNA sequence was available were considered. Using a manually designed sequence filter we excluded highly variable in-del positions from the analysis, resulting in 1,371 alignment positions for tree calculations.

Fluorescence in situ Hybridization

16S rRNA targeted FISH was carried out following established protocols (21). In brief, formaldehyde- and ethanol-fixed samples were hybridized at 46°C with FAM- and Cy3-labeled oligonucleotide probes for 16 hours in a formamide-containing humid chamber. To test whether cell wall digestion leads to an increase in fluorescence detection and/or labeling intensity, before hybridization samples were pre-treated with either (i) 10 mg mL⁻¹ lysozyme in TE buffer (1 h at 37°C in a humid chamber); (ii) 15 μ g mL⁻¹ proteinase K in TE buffer (10 min at room temperature, *i.e.* 23°C) followed by 0.01 M HCl (10 min at 23°C); or (iii) a 1:1 mix of acetone:methanol (15 min at 23°C). Formamide concentrations in the hybridization buffer were as recommended: 20-35% for probe mix EUB338 I-III (22, 23) and control probe NonEUB338 (24); 35% for probe Arch915 (25); 20% for probe EUK516 (22). The two newly designed probes Clostr183-I (AA<u>A</u> <u>G</u>AT CAT GCG ACC <u>T</u>CT) and Clostr183-II (AA<u>G</u> <u>A</u>AT CAT GCG ACC <u>C</u>CT) were hybridized at 15% (at concentrations >20% we did not observe any fluorescence signal). Via competition for the same binding site, these probes are able to distinguish between the two 16S rRNA gene sequence types obtained from our culture. After hybridization, slides were washed for 10 min in pre-warmed washing buffer at 48°C. Then, they were dipped into pre-cooled deionized water (4°C) and dried using pressurized air. Slides were mounted with DAPI/Citifluor and analyzed using an Olympus BX51 epifluorescence microscope. Fluorescence images were analyzed using the software provided by the microscope manufacturer and ImageJ by the National Institutes of Health (http://rsb.info.nih.gov/ij/download.html). No unspecific labeling was observed when control probe NonEUB338 (9) was applied to our samples.

Whole Genome Sequencing

The genome of isolate microfluidicus 1 was sequenced on Illumina Hiseq 2000 and assembled using a combination of velvet (26) and GapCloser (27). We obtained 83 contigs with N50 length of 131 kbp.

Scripts for Identifying Targets from "Most Wanted" list from paired-end Miseq reads

File name: get_target_all #!/bin/bash #file created on Dec 2, 2012 #Author= "Liang Ma" #Email= liangma.chem@gmail.com # usage example: get_target_all ~/Downloads/reads/ #set environmental variables #usearch program export u=/Users/Liang/scripts/usearch/usearch6.0.293_i86osx32_lm #reference database for UCHIME export UCHIME REFUDB=/Users/Liang/scripts/Database/gold.fa # fasta file of consensus sequence from most wanted list, high priority group export MostWanted=/Users/Liang/scripts/Database/MostWanted.fa export scriptsHome=/Users/Liang/scripts # \$1 is the folder containing fastq files with paired end reads cd \$1 for file in $(ls| grep .*R1.*\.fastq)$ do FN= (echo \$file|grep - o.*R) FileR="\$FN"2 001.fastq #assemble reads with pandaseq pandaseq -f \$file -r \$FileR -o 10 > "\$FN.fa" \$u -derep_fullength \$FN.fa -output "derep_\$FN.fa".fa -sizeout readname='results' mkdir -p \$FN\$readname cd \$FN\$readname \$scriptsHome/get_target1 ../"derep_\$FN.fa.fa" cd \$1 done File name: get_target1 #!/bin/bash #file created on Dec 2, 2012 #Author= "Liang Ma" #Email= liangma.chem@gmail.com # usage example: get_target1 reads.fa if [x\$1 == x]; then echo Missing FASTA filename >> /dev/stderr exit 1 fi if [x (x); then x); then echo Must set \\$UCHIME REFUDB >> /dev/stderr exit 1 fi if [x\$MostWanted == x]; then echo Must set \\$MostWanted >> /dev/stderr exit 1 fi # Sort by decreasing size \$u -sortbysize \$1 -output bysize.fa #cluster at 97% identity \$u -cluster smallmem bysize.fa -id 0.97 -sizein -sizeout -centroids 97.fa # Chimera filter with UCHIME de novo \$u -uchime_denovo 97.fa -chimeras ch.fa -nonchimeras nonch.fa -uchimeout denovo.uchime # Chimera filter with UCHIME ref \$u -uchime ref nonch.fa -db \$UCHIME REFUDB -nonchimeras filtered.fa -strand plus -uchimeout ref.uchime # find hits with MostWanted list \$u -usearch global filtered.fa -db \$MostWanted -id 0.97 -strand plus -fastapairs mostwanted.fastapairs

> Sequence of rrnA of 16S rRNA gene of isolate microfluidicus 1

> Sequence of rrnB of 16S rRNA gene of isolate microfluidicus 1

Fig. S1 Illustration of operation of the device showing how the bridging channels, vents and outlet for collection were used during chip wash. This schematic drawing uses a simplified design with fewer wells to illustrate the principle.

Fig. S2 Validation of the chip wash method with a model microorganism, *E. coli*. *E. coli* cells were loaded onto SlipChip with either medium for cultivation or a PBS buffer that does not support growth of cells. The cultivar was collected by chip wash method and DNA was extracted and quantified using qPCR. A 10,000-fold increase in the amount of DNA was observed between the condition that supports growth of *E. coli* vs. the non-growth control.

Fig. S3 Photograph showing time series of growth of *Clostridium scindens* and *Enterococcus faecalis* on agar plate. Scale bar is 1 mm.

Fig. S4 Bar chart of relative abundance of OTUs grouped at genus level from 16S rDNA V4 high throughput sequencing of chip wash cultivar with M2CSC. We observed that more *Clostridium XIII* and *Bifidobacterium* can be observed from the plate wash solution, while some members such as *Gordonibacter, Anaerostipes, Oscillibacter* and *Silanimonas* can only be observed from chip wash method.

TOP: Consensus sequence from member OTU_158_V1V3 of Most Wanted list BOTTOM: Consensus sequence from chip wash 16s rDNA V1V3 survey

Fig. S5 Identifying OTU158 from high throughput sequencing of V1V3 region of 16S rRNA gene of the chip wash solution. The sequence retrieved from high throughput sequencing aligned well with the consensus sequence of OTU158 from HMP's "Most Wanted" list.

GGGT GAGT AACGCGT GAGGAACCT GCCTT GAAGAGGGGGACAACAGTT GGAAACGACT	
TAATACCGCATGACGCATAGGGGTCGCATGATTTTTATGCCAAAGATTTATCGCTGAA	AG
AT GGCCT CGCGTCT GATTAGCT AGTT GGT GGGGT AAC GGCCCACCAAGGC GAC GAT CA	 \G
AGCCGGACT GAGAGGTT GAACGGCCACATT GGGACT GAGAT ACGGCCCAGACT CCT AC	 GG
GAGGCAGCAGTGGGGAATATTGGGCAATGGGCGCAAGCCTGACCCAGCAACGCCGCT	TT
AGGAAGAAGGCTTTCGGGTTGTAAACTTCTTTTAAGA 	

TOP: Consensus sequence from member OTU_158_V1V3 of Most Wanted list BOTTOM: Partial sequence from chip wash PCR with primers targeting OTU_158_V1V3

Fig. S6 Validating species specific primers for OTU158 by Sanger sequencing. The sequence retrieved from Sanger sequencing aligned well with the consensus sequence of OTU158 from HMP's "Most Wanted" list.

Fig. S7 qPCR with target specific primers (left) showing that the target was not present in chip wash solution of M2GSC nor in the blank negative control; Universal primers of 16s rDNA (right) showed that both chip wash contained bacterial genomic DNA and had a lower Cq value than the blank negative control. NC is negative control, and CW-M2GSC is chip wash with M2GSC medium.

Fig. S8 Chromatogram from Sanger sequencing of positive PCR product of the first scale-up culture with target-specific primers.

Fig. S9 Validating the scale-up colonies from the splitting SlipChip approach by Sanger sequencing of the positive PCR product of the first scale-up culture using universal primers. No contamination was observed, with minor heterogeneity at the beginning of the chromatogram.

Fig. S10 FISH visualization of bacterial cells within pure culture of isolate microfluidicus 1. All cells detected by the general bacterial probe mix EUB338 I-III are also detected via the newly designed Clostr183-I probe, targeting isolate microfluidicus 1. While some cells (as identified by DAPI) did not bind any of these two probes, no archaea or eukaryotes were detected. Thus, FISH-negative cells are likely sporulating cells with substantially decreased ribosome content as compared to log-phase cells. Scale bar is 10 µm.

Fig. S11 Optical microscopy of isolate microfluidicus 1. Scale bar is 20 µm.

Detailed Contribution Description

LM and RFI designed the experiment as described in Figure 1. LM designed, performed experiments, and analyzed the data in Figures 2, 4, and 5. LM and JK designed, performed experiments, and analyzed the data in Figure 3. RH designed and performed FISH experiments and phylogenetic analyses for Figure 6, wrote the corresponding Results and Discussion and Supporting Information sections, and helped to edit the paper. NH was involved in clinical specimen acquisition and preparation in Figure 5A. IH performed all procedures for clinical specimen acquisition in Figure 5A. EC designed the study and clinical operations in Figure 5A. MK helped with device infrastructure and performed the experiment in SI Figure 11.

otuID	otu 158 V1V3	otu 896 V1V3
priorityGroup	HIGH PRIORITY/MOST WANTED	HIGH PRIORITY/MOST WANTED
variableRegion	V1V3	V1V3
count454	14888	788
consensusLength	475	463
Ū.	ACGCTGGCGGCGTGCTTAACACATGCAAGTCGA	TGCTTAACACATGCAAGTCGAACGAGAATCTGCTG
	ACGAGAATCTACTGAAAGAGTTTTCGGACAATG	AAGGAGGATTCGTCCAACGGAAGTAGAGGAAAG
	GAAGTAGAGGAAAGTGGCGGACGGGTGAGTA	GGCGGACGGGTGAGTAACGCGTGAGGAACCTGC
	ACGCGTGAGGAACCTGCCTTGAAGAGGGGGAC	TTGAAGAGGGGGGACAACAGTTGGAAACGACTGC
	AACAGTTGGAAACGACTGCTAATACCGCATGAC	AATACCGCATGACGCATAGGGGTCGCATGATCTT
	GCATAGGGGTCGCATGATTTTTATGCCAAAGAT	ATGCCAAAGATTTATCGCTTCAAGATGGCCTCGCG
	TTATCGCTGAAAGATGGCCTCGCGTCTGATTAG	TCTGATTAGCTGGTTGGCGGGGTAACGGCCCACC
	CTAGTTGGTGGGGTAACGGCCCACCAAGGCGA	AGGCGACGATCAGTAGCCGGACTGAGAGGTTGAA
	CGATCAGTAGCCGGACTGAGAGGTTGAACGGC	CGGCCACATTGGGACTGAGATACGGCCCAGACTC
	CACATTGGGACTGAGATACGGCCCAGACTCCTA	TACGGGAGGCAGCAGTGGGGAATATTGGGCAAT
	CGGGAGGCAGCAGTGGGGAATATTGGGCAAT	GGCGCAAGCCTGACCCAGCAACGCCGCGTGAAG
	GGCGCAAGCCTGACCCAGCAACGCCGCGTGAA	AAGAAGGCTTTCGGGTTGTAAACTTCTTTTAAGAG
	GGAAGAAGGCTTTCGGGTTGTAAACTTCTTTTA	GGAAGAGCAGAAGACGGTACCTCTAGAATAAGCC
	AGAGGGAAGAGCAGAAGACGGTACCTCTAGAA	ACGGCTAACTACGTG
	TAAGCCACGGCTAACTACGTG	
consensusSequence		
	Root(100);Bacteria(100);Firmicutes(100);Clos	Root(100);Bacteria(100);Firmicutes(100);Clostri
	tridia(100);Clostridiales(100);Ruminococcace	dia(100);Clostridiales(100);Ruminococcaceae(1
rdpSummary	ae(100);Oscillibacter(99)	0);Oscillibacter(94)
UCHIMERefScore	0.038	0.0612
UCHIMEDenovoScore	0	0.1856
maxUCHIMEScore	0.038	0.1856
UCHIMEVerdict	neither	neither
toGoldGlobalPercentIdentity	90.59	88.44
toGoldGlobalBestHit	249174	32020
toGoldHumanGlobalPercentIdentity	87.29	88.44

toHmpStrainsGlobalBestHit80463432020toSilvaGlobalPercentIdentity98.9599.78toSilvaGlobalBestHitUnl08xzUnl022/rtoGreengenesNamedGlobalBestHit607206607206toGreengenesUnnamedGlobalPercentIdentity91.0891.16toGreengenesUnnamedGlobalBestHit244027812374maxFraction0.69798663489933maxFractionBodyHabitatStoolStool454_seqCounts_Buccal mucosa83454_seqCounts_Hard palate371454_seqCounts_Hard palate371454_seqCounts_Stoil110454_seqCounts_Stoilpiaval plaque00454_seqCounts_Palatine Tonsils60454_seqCounts_Subgingival plaque00454_seqCounts_Subgingival plaque01454_seqCounts_LAntrecubital fossa364415454_seqCounts_Antrecubital fossa34137454_seqCounts_R_Retrauricular crease1128454_seqCounts_R_Retrauricular crease1128454_seqCounts_R_Retrauricular crease12037454_seqCounts_R_Retrauricular crease2046454_seqCounts_Nationalin troitus440454_seqCounts_Nationalin troitus440454_seqCounts_Nationalin troitus440454_seqCounts_R_Retroauricular crease100454_seqCounts_R_Retroauricular crease2046454_seqCounts_R_Retroauricular crease2046454_seqCount	to Gold Human Global Best Hit	804634	32020
TosilvaGiobalPercentidentity 98.95 99.78 tosilvaGiobalBercentidentity 98.95 99.76 tosilvaGiobalBestHit Unl02xz Unl022fr toGreengenesNamedGiobalBestHit 607206 607206 toGreengenesUnnamedGiobalBestHit 607206 607206 toGreengenesUnnamedGiobalBestHit 244027 812374 maxFraction 0.6979866 0.3489933 maxFractionBodyHabitat Stool 3561 454_seqCounts_Stool 13561 709 454_seqCounts_Merci palate 37 1 454_seqCounts_Keratinized gingiva 3 0 454_seqCounts_Keratinized gingiva 3 0 454_seqCounts_Subgrigival plaque 0 0 454_seqCounts_Subgrigival plaque 0 0 454_seqCounts_Trorat 19 1 454_seqCounts_Interior nares 161 6 454_seqCounts_Intervaircular crease 112 8 454_seqCounts_Intervaircular crease 112 8 454_seqCounts_Intervaircular crease 112 8	toHMPStrainsGlobalPercentIdentity	87.29	88.44
Topological Solution United Stress United Stress Topological Solution 10.00000000000000000000000000000000000	toHmpStrainsGlobalBestHit	804634	32020
ToboreengenesNamedGlobalPercentIdentity 92.45 91.61 toGreengenesNamedGlobalBestHit 607206 607206 toGreengenesUnnamedGlobalPercentIdentity 91.08 91.16 toGreengenesUnnamedGlobalPercentIdentity 244027 812374 maxFraction 0.6979866 0.3489933 maxFractionBodyHabitat Stool Stool 454_seqCounts_Buccal mucosa 8 3 454_seqCounts_Hard palate 37 1 454_seqCounts_Palatine Tonsils 6 0 454_seqCounts_Veratined gingiva 3 0 454_seqCounts_Palatine Tonsils 6 0 454_seqCounts_Subgingival plaque 0 0 454_seqCounts_Subgingival plaque 0 0 454_seqCounts_Throat 19 1 454_seqCounts_Anterior nares 161 6 454_seqCounts_Anterior nares 12 8 454_seqCounts_Anterior nares 12 8 454_seqCounts_Anterior nares 12 8 454_seqCounts_Anterior nares 161 6	toSilvaGlobalPercentIdentity	98.95	99.78
toGreengenesNamedGlobalBestHit 607206 607206 toGreengenesUnnamedGlobalPercentIdentity 91.08 91.16 toGreengenesUnnamedGlobalBestHit 244027 812374 maxFraction 0.6979866 0.3489933 maxFractionBodyHabitat Stool 3561 454_seqCounts_Stool 13561 709 454_seqCounts_Mard palate 37 1 454_seqCounts_Keratinized gingiva 3 0 454_seqCounts_Keratinized gingiva 1 0 454_seqCounts_Subraignival plaque 0 0 454_seqCounts_Subraignival plaque 0 0 454_seqCounts_Subraignival plaque 0 0 454_seqCounts_Toroat 19 1 454_seqCounts_Interior nares 161 6 454_seqCounts_Lettrior nares 112 8 454_seqCounts_Lettrior nares 112 8 454_seqCounts_Lettrior nares 112 8 454_seqCounts_Lettrior nares 112 8 454_seqCounts_Retraincular crease 204 6	toSilvaGlobalBestHit	Unl08zxz	Unl022fr
bit Correngenes/UnnamedGlobalPercentIdentity 91.08 91.16 toGreengenes/UnnamedGlobalPercentIdentity 91.08 91.16 toGreengenes/UnnamedGlobalPestHit 244027 812374 maxFraction 0.6979866 0.3489933 maxFractionBodyHabitat Stool Stool 454_seqCounts_Stool 13561 709 454_seqCounts_Marchancesa 8 3 454_seqCounts_Hard palate 37 1 454_seqCounts_Keratinized gingva 3 6 454_seqCounts_Subgingval plaque 0 0 454_seqCounts_Subgingval plaque 0 0 454_seqCounts_Throat 19 1 454_seqCounts_Tongue dorsum 0 2 454_seqCounts_L_Antercubital fossa 364 15 454_seqCounts_L_Antercubital fossa 341 37 454_seqCounts_R_R transcultar crease 112 8 454_seqCounts_L_Antercubital fossa 341 37 454_seqCounts_N_R_R tertoarricular crease 204 6 454_seqCounts_N_R_R tertoarricular crease 204	toGreengenesNamedGlobalPercentIdentity	92.45	91.61
toGreengenesUnnamedGlobalBestHit 244027 812374 maxFraction 0.6979866 0.3489933 maxFractionBodyHabitat Stool Stool 454_seqCounts_Stool 13561 709 454_seqCounts_Hard palate 37 1 454_seqCounts_Hard palate 37 1 454_seqCounts_Hard palate 37 0 454_seqCounts_Variatine Tonsils 6 0 454_seqCounts_Saliva 11 0 454_seqCounts_Subgingival plaque 0 0 454_seqCounts_Tongue dorsum 19 1 454_seqCounts_Introar 15 5454 454_seqCounts_Anterobital fossa 364 15 454_seqCounts_R_Antecubital fossa 341 37 454_seqCounts_R_Retroauricular crease 112 8 454_seqCounts_R_Retroauricular crease 204 6 454_seqCounts_Notorauricular crease 204 6 454_seqCounts_Notorauricular crease 204 6 454_seqCounts_Notorauricular crease 204 6	toGreengenesNamedGlobalBestHit	607206	607206
maxFraction 0.6979866 0.3489933 maxFractionBodyHabitat Stool Stool 545, seqCounts_Stool 13561 709 454, seqCounts_Buccal mucosa 8 3 454, seqCounts_Keratinized gingiva 3 1 454, seqCounts_Keratinized gingiva 3 0 454, seqCounts_Keratinized gingiva 3 0 454, seqCounts_Keratinized gingiva 11 0 454, seqCounts_Subgrigival plaque 0 0 454, seqCounts_Subgrigival plaque 0 0 454, seqCounts_Toroat 19 1 454, seqCounts_Intorat 10 0 454, seqCounts_Intorat 10 2 454, seqCounts_Intorat forsa 364 15 454, seqCounts_Intervalital fossa 341 37 454, seqCounts_R Antervalital fossa 341 37 454, seqCounts_Netroir oranicular crease 104 0 454, seqCounts_Noterior fornix 10 0 454, seqCounts_Noterior fornix 10 0 454, se	toGreengenesUnnamedGlobalPercentIdentity	91.08	91.16
maxFractionBodyHabitat Stool Stool 454_seqCounts_Stool 13561 709 454_seqCounts_Marchan 8 3 454_seqCounts_Hard palate 37 1 454_seqCounts_keratinized gingva 3 6 454_seqCounts_Veratinized gingva 6 0 454_seqCounts_Veratinized gingva 11 0 454_seqCounts_Subragingval plaque 0 0 454_seqCounts_Subragingval plaque 0 0 454_seqCounts_Throat 19 1 454_seqCounts_I_Anterior nares 161 6 454_seqCounts_L_Antercubital fossa 364 15 454_seqCounts_R_Antercubital fossa 341 37 454_seqCounts_R_R_Retroauricular crease 112 8 454_seqCounts_R_R_Retroauricular crease 204 6 454_seqCounts_Netrior fornix 10 0 454_seqCounts_R_R_Retroauricular crease 204 6 454_seqCounts_Netrior fornix 10 0 454_seqCounts_Posterior fornix 10 0	toGreengenesUnnamedGlobalBestHit	244027	812374
454_seqCounts_Stool 13561 709 454_seqCounts_Buccal mucosa 8 3 454_seqCounts_Hard palate 37 1 454_seqCounts_keratinized gingiva 3 0 454_seqCounts_Palatine Tonsils 6 0 454_seqCounts_Palatine Tonsils 6 0 454_seqCounts_Subgingival plaque 0 0 454_seqCounts_Subgingival plaque 0 0 454_seqCounts_Throat 19 1 454_seqCounts_Anterior nares 161 6 454_seqCounts_Anterior nares 161 6 454_seqCounts_LAntecubital fossa 341 37 454_seqCounts_R_Antecubital fossa 341 37 454_seqCounts_R_Retroauricular crease 112 8 454_seqCounts_R_Retroauricular crease 204 6 454_seqCounts_Noterior fornix 10 0 454_seqCounts_Noterior fornix 10 0 454_seqCounts_Noterior fornix 10 0 454_seqCounts_Noterior fornix 10 0 454_seqCounts	maxFraction	0.6979866	0.3489933
1.5	maxFractionBodyHabitat	Stool	Stool
454_seqCounts_Hard palate 37 1 454_seqCounts_Keratinized gingiva 3 0 454_seqCounts_Palatine Tonsils 6 0 454_seqCounts_Subingival plaque 11 0 454_seqCounts_Subingival plaque 0 0 454_seqCounts_Subingival plaque 0 0 454_seqCounts_Subragingival plaque 0 0 454_seqCounts_Throat 19 1 454_seqCounts_Tongue dorsum 0 2 454_seqCounts_Anterior nares 161 6 454_seqCounts_L_Antercubital fossa 364 15 454_seqCounts_R_Antercubital fossa 341 37 454_seqCounts_R_R Retroauricular crease 112 8 454_seqCounts_N_R Retroauricular crease 204 6 454_seqCounts_N R_R tervaincular crease 204 6 454_seqCounts_Posterior fornix 10 0 454_seqCounts_Posterior fornix 10 0 454_seqCounts_Vaginal introitus 44 0 454_seqCounts_vaginal introitus 44 0	454_seqCounts_Stool	13561	709
454_seqCounts_Keratinized gingiva 3 0 454_seqCounts_Palatine Tonsils 6 0 454_seqCounts_Saliva 11 0 454_seqCounts_Subgingival plaque 0 0 454_seqCounts_Subgingival plaque 0 0 454_seqCounts_Subgingival plaque 0 0 454_seqCounts_Throat 19 1 454_seqCounts_Tongue dorsum 0 2 454_seqCounts_Anterior nares 161 6 454_seqCounts_LAntecubital fossa 364 15 454_seqCounts_R_Antecubital fossa 341 37 454_seqCounts_R_Retroauricular crease 112 8 454_seqCounts_R_Netroauricular crease 204 6 454_seqCounts_Vaginal 7 0 0 454_seqCounts_Posterior fornix 10 0 454_seqCounts_Vaginal introitus 0 454_seqCounts_Vaginal introitus 44 0 0 454_seqCounts_positive 0 454_seqCounts_water 0 0 0 0 454_seqCounts_uster 0	454_seqCounts_Buccal mucosa	8	3
454_seqCounts_Palatine Tonsils 6 0 454_seqCounts_Subplingival plaque 11 0 454_seqCounts_Subplingival plaque 0 0 454_seqCounts_Subplingival plaque 0 0 454_seqCounts_Subplingival plaque 0 0 454_seqCounts_Troroat 19 1 454_seqCounts_Tonzet 10 2 454_seqCounts_Interview names 161 6 454_seqCounts_L_Antecubital fossa 364 15 454_seqCounts_R_Antecubital fossa 341 37 454_seqCounts_R_Retroauricular crease 112 8 454_seqCounts_Notlerior fornix 10 0 454_seqCounts_Notlerior fornix 10 0 454_seqCounts_Notlerior fornix 10 0 454_seqCounts_Notlerior fornix 10 0 454_seqCounts_Notlerior fornix 0 0 454_seqCounts_positive 0 0 454_seqCounts_tonsterior fornix 10 0 454_seqCounts_tonsterior fornix 0 0 454_seqCoun	454_seqCounts_Hard palate	37	1
34_seqCounts_Saliva 11 0 454_seqCounts_Subgingival plaque 0 0 454_seqCounts_Subgingival plaque 0 0 454_seqCounts_Supragingival plaque 0 0 454_seqCounts_Throat 19 1 454_seqCounts_Tongue dorsum 0 2 454_seqCounts_Anterior nares 161 6 454_seqCounts_L_Antecubital fossa 364 15 454_seqCounts_L_Antecubital fossa 341 37 454_seqCounts_R_Retroauricular crease 204 6 454_seqCounts_Net R_Retroauricular crease 204 6 454_seqCounts_Net R_Retroauricular crease 204 6 454_seqCounts_Net R_Retroauricular crease 204 6 454_seqCounts_Posterior fornix 10 0 454_seqCounts_Posterior fornix 10 0 454_seqCounts_positive 0 0 454_seqCounts_vaginal introitus 44 0 454_seqCounts_bater 0 0 454_seqCounts_bater 0 0 454_seqc	454_seqCounts_Keratinized gingiva	3	0
Jackgoonts_Subgingival plaque 0 454_seqCounts_Subgingival plaque 0 454_seqCounts_Throat 19 454_seqCounts_Throat 19 454_seqCounts_Tongue dorsum 0 454_seqCounts_Tongue dorsum 0 454_seqCounts_Anterior nares 161 454_seqCounts_LAntecubital fossa 364 454_seqCounts_LAntecubital fossa 341 454_seqCounts_R_Antecubital fossa 341 454_seqCounts_R_Antecubital fossa 341 454_seqCounts_R_Retroauricular crease 204 454_seqCounts_Noticular crease 204 454_seqCounts_Voltarion 7 454_seqCounts_Voltarion 0 454_seqCounts_Voltarion 0 454_seqCounts_Voltarion 0 454_seqCounts_Voltarion 0 454_seqCounts_voltarion 0 454_seqCounts_positive 0 454_seqCounts_woltar 0 454_seqCounts_woltar 0 454_seqCounts_tonts_stool 0 454_seqCounts_woltar 0 454_seqCounts_woltar	454_seqCounts_Palatine Tonsils	6	0
454_seqCounts_Supragingival plaque 0 0 454_seqCounts_Throat 19 1 454_seqCounts_Throat 0 2 454_seqCounts_Incervent 0 2 454_seqCounts_Intervior nares 161 6 454_seqCounts_L_netrobuilal fossa 364 15 454_seqCounts_R_Antervior nares 112 8 454_seqCounts_R_Antervior laforsa 341 37 454_seqCounts_R_Antervior rease 204 6 454_seqCounts_R_Antervior nares 10 0 454_seqCounts_R_Antervior nares 10 0 454_seqCounts_R_Antervior nares 0 0 454_seqCounts_R_Antervior nares 10 0 454_seqCounts_Net vaginal introitus 44 0 454_seqCounts_positive 0 0 0 454_seqCounts_water 0 0 0 454_subjectCounts_Stool 104 52 2	454_seqCounts_Saliva	11	0
454_seqCounts_Throat 19 1 454_seqCounts_Tongue dorsum 0 2 454_seqCounts_Tongue dorsum 0 2 454_seqCounts_Tongue dorsum 0 2 454_seqCounts_Interior nares 161 6 454_seqCounts_L_Antecubital fossa 364 15 454_seqCounts_L_Retroauricular crease 112 8 454_seqCounts_R_Retroauricular crease 204 6 454_seqCounts_RRetroauricular crease 204 6 454_seqCounts_Mid vagina 7 0 454_seqCounts_Vaginal introitus 10 0 454_seqCounts_vaginal introitus 44 0 454_seqCounts_positive 0 0 454_seqCounts_water 0 0 454_subjectCounts_Stool 104 52	454_seqCounts_Subgingival plaque	0	0
454_seqCounts_Tongue dorsum 0 2 454_seqCounts_Anterior nares 161 6 454_seqCounts_L_Anterolital fossa 364 15 454_seqCounts_L_Anterolital fossa 341 37 454_seqCounts_R_Anterolital fossa 341 37 454_seqCounts_R_Retroauricular crease 204 6 454_seqCounts_R_Retroauricular crease 204 6 454_seqCounts_R_Retroauricular crease 204 0 454_seqCounts_Vagina 7 0 454_seqCounts_Vaginal introitus 44 0 454_seqCounts_positive 0 0 454_seqCounts_positive 0 0 454_seqCounts_totater 0 5 <td>454_seqCounts_Supragingival plaque</td> <td>0</td> <td>0</td>	454_seqCounts_Supragingival plaque	0	0
454_seqCounts_Anterior nares 161 6 454_seqCounts_L_Antecubital fossa 364 15 454_seqCounts_L_Retroauricular crease 112 8 454_seqCounts_R_Antecubital fossa 341 37 454_seqCounts_R_Anteroital fossa 341 37 454_seqCounts_R_Anteroital fossa 204 6 454_seqCounts_N_Anteroital fossa 10 0 454_seqCounts_N_Mid vagina 7 0 454_seqCounts_Posterior fornix 10 0 454_seqCounts_posterior fornix 0 0 454_seqCounts_positive 0 0 454_seqCounts_positive 0 0 454_subjectCounts_Stool 104 52	454_seqCounts_Throat	19	1
454_seqCounts_L_Antecubital fossa 364 15 454_seqCounts_L_Retroauricular crease 112 8 454_seqCounts_R_Antecubital fossa 341 37 454_seqCounts_R_Retroauricular crease 204 6 454_seqCounts_R_Retroauricular crease 204 6 454_seqCounts_PRetroauricular crease 204 6 454_seqCounts_Protectior fornix 10 0 454_seqCounts_Vaginal introitus 44 0 454_seqCounts_positive 0 0 454_seqCounts_water 0 0 454_subjectCounts_Stool 104 52	454_seqCounts_Tongue dorsum	0	2
454_seqCounts_L_Retroauricular crease 112 8 454_seqCounts_R_Antecubital fossa 341 37 454_seqCounts_R_Retroauricular crease 204 6 454_seqCounts_R_Retroauricular crease 204 6 454_seqCounts_R_Retroauricular crease 204 0 454_seqCounts_Posterior fornix 10 0 454_seqCounts_Vaginal introitus 44 0 454_seqCounts_positive 0 0 454_seqCounts_water 0 0 454_subjectCounts_Stool 104 52	454_seqCounts_Anterior nares	161	6
454_seqCounts_R_Antecubital fossa 341 37 454_seqCounts_R_Retroauricular crease 204 6 454_seqCounts_Nid vagina 7 0 454_seqCounts_Posterior fornix 10 0 454_seqCounts_Vaginal introitus 44 0 454_seqCounts_Vaginal introitus 44 0 454_seqCounts_vaginal introitus 0 0 454_seqCounts_vaginal introitus 0 0 454_seqCounts_vaginal introitus 0 0 454_seqCounts_tostive 0 0 454_seqCounts_tostive 0 0 454_seqCounts_tostive 0 2 454_subjectCounts_Stool 104 52	454_seqCounts_L_Antecubital fossa	364	15
Jackgotte Particular crease 204 6 454_seqCounts_RRetroauricular crease 204 6 454_seqCounts_Mid vagina 7 0 454_seqCounts_Notivagina 10 0 454_seqCounts_Vaginal introitus 44 0 454_seqCounts_positive 0 0 454_seqCounts_water 0 0 454_subjectCounts_Stool 104 52	454_seqCounts_L_Retroauricular crease	112	8
454_seqCounts_Mid vagina 7 0 454_seqCounts_Posterior fornix 10 0 454_seqCounts_Vaginal introitus 44 0 454_seqCounts_vaginal introitus 0 0 454_seqCounts_vaginal introitus 0 0 454_seqCounts_vaginal 0 0 454_seqCounts_water 0 0 454_subjectCounts_Stool 104 52	454_seqCounts_R_Antecubital fossa	341	37
454_seqCounts_Posterior fornix 10 0 454_seqCounts_Vaginal introitus 44 0 454_seqCounts_positive 0 0 454_seqCounts_positive 0 0 454_seqCounts_positive 0 0 454_supertCounts_Stool 104 52 454_subjectCounts_Buccal mucosa 5 2	454_seqCounts_R_Retroauricular crease	204	6
454_seqCounts_Vaginal introitus 44 0 454_seqCounts_positive 0 0 454_seqCounts_water 0 0 454_subjectCounts_Stool 104 52 454_subjectCounts_Buccal mucosa 5 2	454_seqCounts_Mid vagina	7	0
454_seqCounts_positive 0 0 454_seqCounts_water 0 0 454_subjectCounts_Stool 104 52 545_subjectCounts_Buccal mucosa 5 2	454_seqCounts_Posterior fornix	10	0
Jack seqCounts water 0 0 454_seqCounts_stool 104 52 454_subjectCounts_Stool 5 2	454_seqCounts_Vaginal introitus		0
454_subjectCounts_Stool 104 52 454_subjectCounts_Buccal mucosa 5 2	454_seqCounts_positive	0	0
454_subjectCounts_Buccal mucosa 5 2	454_seqCounts_water	-	0
	454_subjectCounts_Stool		52
454_subjectCounts_Hard palate 9 1	454_subjectCounts_Buccal mucosa		2
	454_subjectCounts_Hard palate	9	1

454_subjectCounts_Keratinized gingiva 454_subjectCounts_Palatine Tonsils 454_subjectCounts_Saliva 454_subjectCounts_Subgingival plaque 454_subjectCounts_Supragingival plaque 454_subjectCounts_Throat 454_subjectCounts_Tongue dorsum 454_subjectCounts_Anterior nares 454_subjectCounts_L_Antecubital fossa 454_subjectCounts_L_Retroauricular crease 454_subjectCounts_R_Antecubital fossa 454_subjectCounts_R_Retroauricular crease 454_subjectCounts_Mid vagina 454_subjectCounts_Posterior fornix 454_subjectCounts_Vaginal introitus 454_subjectCounts_positive 454_subjectCounts_water 454_subjectfractions_Stool 454_subjectfractions_Buccal mucosa 454_subjectfractions_Hard palate 454_subjectfractions_Keratinized gingiva 454_subjectfractions_Palatine Tonsils 454_subjectfractions_Saliva 454_subjectfractions_Subgingival plaque 454_subjectfractions_Supragingival plaque 454_subjectfractions_Throat 454_subjectfractions_Tongue dorsum 454_subjectfractions_Anterior nares 454_subjectfractions_L_Antecubital fossa 454_subjectfractions_L_Retroauricular crease 454_subjectfractions_R_Antecubital fossa 454_subjectfractions_R_Retroauricular crease 454_subjectfractions_Mid vagina 454_subjectfractions_Posterior fornix

0.6979866 0.035714287 0.06666667 0.021276595 0.028368793 0.045801528 0.022222223 0.1294964 0.16058394 0.084415585 0.15 0.07096774 0.02739726 0.028169014

9

0

0

-0.3489933 0.014285714 0.007407407 0.007407407 0.006896552 0.021582734 0.04379562 0.019480519 0.035714287

0.006451613

454 subjectfractions Vaginal introitus	0.13235295	lo
454 subjectfractions positive	0	0
454 subjectfractions water	0	0
454_RelativeAbundanceStool	0.007333881	3.07E-04
454_RelativeAbundanceBuccal mucosa	0.00000398	9.16E-07
454_RelativeAbundanceHard palate	0.0000995	9.62E-07
454_RelativeAbundanceKeratinized gingiva	0.00000379	0
454_RelativeAbundancePalatine Tonsils	0.00000542	0
454_RelativeAbundanceSaliva	0.0000109	0
454_RelativeAbundanceSubgingival plaque	0	0
454_RelativeAbundanceSupragingival plaque	0	0
454_RelativeAbundanceThroat	0.0000492	7.04E-07
454_RelativeAbundanceTongue dorsum	0	8.48E-07
454_RelativeAbundanceAnterior nares	0.00013	5.07E-06
454_RelativeAbundanceL_Antecubital fossa	0.000338	8.00E-06
454_RelativeAbundanceL_Retroauricular crease	0.000153	4.02E-06
454_RelativeAbundanceR_Antecubital fossa	0.000878	3.11E-05
454_RelativeAbundanceR_Retroauricular crease	0.0001	9.22E-07
454_RelativeAbundanceMid vagina	0.00000316	0
454_RelativeAbundancePosterior fornix	0.00000454	0
454_RelativeAbundanceVaginal introitus	0.0000574	0
454_RelativeAbundancepositive	0	0
454_RelativeAbundancewater	0	0

opens, q. start, q. end, s. start, s. end, evalue, bit score										
#apply filter: percent identity greater	or equal to	97%. and	d alignr	nent	length	greater	or ea	ual to 2	50	
gi 319500066 gb HQ792927.1	99.86	1453	2	0	1	1453	1	1453	0	2673
gi 261261403 gb GQ897250.1	99.72	1453	4	0	1	1453	19	1471	0	266
gi 261261244 gb GQ897091.1	99.72	1453	4	0	1	1453	19	1471	0	266
gi 126112143 gb EF401832.1	99.66	1453	5	0	1	1453	21	1473	0	265
gi 126111973 gb EF401662.1	99.66	1453	5	0	1	1453	21	1473	0	265
gi 126111971 gb EF401660.1	99.66	1453	5	0	1	1453	21	1473	0	265
gi 126111482 gb EF401171.1	99.66	1453	5	0	1	1453	21	1473	0	265
gi 126111445 gb EF401134.1	99.66	1453	5	0	1	1453	21	1473	0	265
gi 126111306 gb EF400995.1	99.66	1453	5	0	1	1453	21	1473	0	265
gi 126111276 gb EF400965.1	99.66	1453	5	0	1	1453	21	1473	0	265
gi 126111154 gb EF400843.1	99.66	1453	5	0	1	1453	21	1473	0	265
gi 261261148 gb GQ896995.1	99.59	1453	6	0	1	1453	19	1471	0	265
gi 126112165 gb EF401854.1	99.59	1453	6	0	1	1453	21	1473	0	265
gi 126111704 gb EF401393.1	99.59	1453	6	0	1	1453	21	1473	0	265
gi 126111580 gb EF401269.1	99.59	1453	6	0	1	1453	21	1473	0	265
gi 126111559 gb EF401248.1	99.59	1453	6	0	1	1453	21	1473	0	265
gi 126111536 gb EF401225.1	99.59	1453	6	0	1	1453	21	1473	0	265
gi 126111075 gb EF400764.1	99.59	1453	6	0	1	1453	21	1473	0	265
gi 319493440 gb HQ786301.1	99.52	1453	7	0	1	1453	1	1453	0	264
gi 261261697 gb GQ897544.1	99.52	1453	7	0	1	1453	19	1471	0	264
gi 261261684 gb GQ897531.1	99.52	1453	7	0	1	1453	19	1471	0	264
gi 261261500 gb GQ897347.1	99.52	1453	7	0	1	1453	19	1471	0	264
gi 261261113 gb GQ896960.1	99.52	1453	7	0	1	1453	19	1471	0	264

gi 126115125 gb EF404805.1	99.52	1453	7	0	1	1453	22	1474	0	2645	
gi 126111760 gb EF401449.1	99.52	1453	7	0	1	1453	21	1473	0	2645	
gi 126111328 gb EF401017.1	99.52	1453	7	0	1	1453	21	1473	0	2645	
gi 126111235 gb EF400924.1	99.52	1453	7	0	1	1453	21	1473	0	2645	
gi 126111138 gb EF400827.1	99.52	1453	7	0	1	1453	21	1473	0	2645	
gi 319495953 gb HQ788814.1	99.93	1434	1	0	20	1453	1	1434	0	2643	
gi 126111646 gb EF401335.1	99.52	1453	6	1	1	1453	21	1472	0	2643	
gi 126111403 gb EF401092.1	99.52	1453	6	1	1	1453	21	1472	0	2643	
gi 126111287 gb EF400976.1	99.52	1453	6	1	1	1453	21	1472	0	2643	
gi 261262538 gb GQ898389.1	99.45	1453	8	0	1	1453	20	1472	0	2639	
gi 261262369 gb GQ898220.1	99.45	1453	8	0	1	1453	20	1472	0	2639	
gi 126115648 gb EF405325.1	99.45	1453	8	0	1	1453	22	1474	0	2639	
gi 126115366 gb EF405043.1	99.45	1453	8	0	1	1453	22	1474	0	2639	
gi 126115362 gb EF405039.1	99.45	1453	8	0	1	1453	22	1474	0	2639	
gi 126111838 gb EF401527.1	99.45	1453	8	0	1	1453	21	1473	0	2639	
gi 6456061 gb AF132255.1	99.52	1452	3	4	4	1453	24	1473	0	2639	
gi 319482775 gb HQ775636.1	99.52	1449	7	0	5	1453	1	1449	0	2638	
gi 319499423 gb HQ792284.1	99.45	1450	8	0	2	1451	1	1450	0	2634	
gi 319488021 gb HQ780882.1	99.65	1441	5	0	4	1444	3	1443	0	2634	
gi 261262337 gb GQ898188.1	99.38	1453	9	0	1	1453	20	1472	0	2634	
gi 261261861 gb GQ897712.1	99.38	1453	9	0	1	1453	19	1471	0	2634	
gi 126115512 gb EF405189.1	99.38	1453	9	0	1	1453	22	1474	0	2634	
gi 126115207 gb EF404884.1	99.38	1453	9	0	1	1453	22	1474	0	2634	
gi 126112029 gb EF401718.1	99.38	1453	9	0	1	1453	21	1473	0	2634	
gi 126111899 gb EF401588.1	99.38	1453	9	0	1	1453	21	1473	0	2634	
gi 126111893 gb EF401582.1	99.38	1453	9	0	1	1453	21	1473	0	2634	
gi 126111713 gb EF401402.1	99.38	1453	9	0	1	1453	21	1473	0	2634	
gi 126111061 gb EF400750.1	99.38	1453	9	0	1	1453	21	1473	0	2634	
gi 319487719 gb HQ780580.1	99.38	1450	9	0	4	1453	1	1450	0	2628	
gi 261262554 gb GQ898405.1	99.31	1453	10	0	1	1453	20	1472	0	2628	
gi 126112132 gb EF401821.1	99.31	1453	10	0	1	1453	21	1473	0	2628	
gi 126112111 gb EF401800.1	99.31	1453	10	0	1	1453	21	1473	0	2628	
gi 126112073 gb EF401762.1	99.31	1453	10	0	1	1453	21	1473	0	2628	
gi 126112033 gb EF401722.1	99.31	1453	10	0	1	1453	21	1473	0	2628	
	-		-		-	-				-	

Table S2

Database: nr

searching for 16S rRNA gene of

Fields:subject ids, % identity, alignment length, mismatches, gap

Caecococcus microfluidicus isolated in this paper in nr database by BLAST

gi 126112002 gb EF401691.1	99.31	1453	10	0	1	1453	21	1473
gi 126111979 gb EF401668.1	99.31	1453	10	0	1	1453	21	1473
gi 126111925 gb EF401614.1	99.31	1453	10	0	1	1453	21	1473
gi 126111813 gb EF401502.1	99.31	1453	10	0	1	1453	21	1473
gi 126111660 gb EF401349.1	99.31	1453	10	0	1	1453	21	1473
gi 126111649 gb EF401338.1	99.31	1453	10	0	1	1453	21	1473
gi 126111596 gb EF401285.1	99.31	1453	10	0	1	1453	21	1473
gi 126111542 gb EF401231.1	99.31	1453	10	0	1	1453	21	1473
gi 126111535 gb EF401224.1	99.31	1453	10	0	1	1453	21	1473
gi 126111465 gb EF401154.1	99.31	1453	10	0	1	1453	21	1473
gi 126111399 gb EF401088.1	99.31	1453	10	0	1	1453	21	1473
gi 126111378 gb EF401067.1	99.31	1453	10	0	1	1453	21	1473
gi 126111376 gb EF401065.1	99.31	1453	10	0	1	1453	21	1473
gi 126111363 gb EF401052.1	99.31	1453	10	0	1	1453	21	1473
gi 126111353 gb EF401042.1	99.31	1453	10	0	1	1453	21	1473
gi 126111323 gb EF401012.1	99.31	1453	10	0	1	1453	21	1473
gi 126111201 gb EF400890.1	99.31	1453	10	0	1	1453	21	1473
gi 126111135 gb EF400824.1	99.31	1453	10	0	1	1453	21	1473
gi 126111085 gb EF400774.1	99.31	1453	10	0	1	1453	21	1473
gi 319490773 gb HQ783634.1	99.31	1450	10	0	4	1453	1	1450
gi 261261792 gb GQ897639.1	99.24	1453	11	0	1	1453	19	1471
gi 126115092 gb EF404772.1	99.24	1453	11	0	1	1453	22	1474
gi 126114933 gb EF404613.1	99.24	1453	11	0	1	1453	22	1474
gi 126112161 gb EF401850.1	99.24	1453	11	0	1	1453	21	1473
gi 126112160 gb EF401849.1	99.24	1453	11	0	1	1453	21	1473
gi 126112061 gb EF401750.1	99.24	1453	11	0	1	1453	21	1473
gi 126111968 gb EF401657.1	99.24	1453	11	0	1	1453	21	1473
gi 126111930 gb EF401619.1	99.24	1453	11	0	1	1453	21	1473
gi 126111902 gb EF401591.1	99.24	1453	11	0	1	1453	21	1473
gi 126111879 gb EF401568.1	99.24	1453	11	0	1	1453	21	1473
gi 126111753 gb EF401442.1	99.24	1453	11	0	1	1453	21	1473
gi 126111737 gb EF401426.1	99.24	1453	11	0	1	1453	21	1473
gi 126111613 gb EF401302.1	99.24	1453	11	0	1	1453	21	1473
gi 126111405 gb EF401094.1	99.24	1453	11	0	1	1453	21	1473

gi 126111362 gb EF401051.1	99.24	1453	11	0	1	1453	21	1473	0	2623	
gi 319488801 gb HQ781662.1	99.24	1452	10	1	2	1452	1	1452	0	2619	
gi 319499925 gb HQ792786.1	99.44	1441	8	0	13	1453	1	1441	0	2617	
gi 319492434 gb HQ785295.1	99.17	1454	11	1	1	1453	2	1455	0	2617	
gi 319488912 gb HQ781773.1	99.24	1450	11	0	4	1453	1	1450	0	2617	
gi 261262501 gb GQ898352.1	99.17	1451	12	0	3	1453	20	1470	0	2617	
gi 261260989 gb GQ896836.1	99.17	1453	12	0	1	1453	19	1471	0	2617	
gi 126111846 gb EF401535.1	99.17	1453	12	0	1	1453	21	1473	0	2617	
gi 126111498 gb EF401187.1	99.17	1453	12	0	1	1453	21	1473	0	2617	
gi 126111494 gb EF401183.1	99.17	1453	12	0	1	1453	21	1473	0	2617	
gi 126111063 gb EF400752.1	99.17	1453	12	0	1	1453	21	1473	0	2617	
gi 126115692 gb EF405369.1	99.17	1453	11	1	1	1453	22	1473	0	2615	
gi 319484767 gb HQ777628.1	99.38	1442	9	0	12	1453	1	1442	0	2614	
gi 319494580 gb HQ787441.1	99.17	1450	12	0	4	1453	1	1450	0	2612	
gi 261261902 gb GQ897753.1	99.11	1453	13	0	1	1453	19	1471	0	2612	
gi 261261832 gb GQ897683.1	99.11	1453	13	0	1	1453	18	1470	0	2612	
gi 126111936 gb EF401625.1	99.11	1453	13	0	1	1453	21	1473	0	2612	
gi 126111726 gb EF401415.1	99.11	1453	13	0	1	1453	21	1473	0	2612	
gi 126111600 gb EF401289.1	99.11	1453	13	0	1	1453	21	1473	0	2612	
gi 126111231 gb EF400920.1	99.11	1453	13	0	1	1453	21	1473	0	2612	
gi 18644507 gb AF371798.1	99.58	1431	4	2	1	1430	21	1450	0	2612	
gi 319494186 gb HQ787047.1	99.17	1448	12	0	4	1451	1	1448	0	2608	
gi 319493693 gb HQ786554.1	99.1	1451	13	0	3	1453	1	1451	0	2608	
gi 240005432 gb GQ158590.1	99.17	1448	12	0	6	1453	1	1448	0	2608	
gi 319499385 gb HQ792246.1	99.37	1439	8	1	9	1446	1	1439	0	2606	
gi 319494484 gb HQ787345.1	99.24	1444	11	0	1	1444	5	1448	0	2606	
gi 319499757 gb HQ792618.1	99.24	1443	11	0	5	1447	1	1443	0	2604	
gi 319466460 gb HQ759321.1	99.24	1440	11	0	14	1453	1	1440	0	2601	
gi 319500228 gb HQ793089.1	99.17	1444	12	0	7	1450	1	1444	0	2601	
gi 319500039 gb HQ792900.1	99.37	1435	9	0	1	1435	3	1437	0	2601	
gi 319494363 gb HQ787224.1	99.03	1450	14	0	4	1453	1	1450	0	2601	
gi 126115689 gb EF405366.1	98.97	1453	15	0	1	1453	22	1474	0	2601	
gi 126115469 gb EF405146.1	98.97	1453	15	0	1	1453	22	1474	0	2601	
gi 126115408 gb EF405085.1	98.97	1453	15	0	1	1453	22	1474	0	2601	
	-				-	-					

gi 319517965 gb HQ810826.1	9
gi 319494413 gb HQ787274.1	1
gi 319489028 gb HQ781889.1	
gi 240006081 gb GQ159239.1	
gi 126115476 gb EF405153.1	
gi 126115363 gb EF405040.1	
gi 319495888 gb HQ788749.1	1
gi 319494567 gb HQ787428.1	
gi 319494832 gb HQ787693.1	9
gi 319466750 gb HQ759611.1	9
gi 319487696 gb HQ780557.1	9
gi 240006082 gb GQ159240.1	9
gi 240006079 gb GQ159237.1	9
gi 319493543 gb HQ786404.1	
gi 319488000 gb HQ780861.1	9
gi 240006083 gb GQ159241.1	9
gi 170522519 gb EU531967.1	9
gi 319496000 gb HQ788861.1	9
gi 319494044 gb HQ786905.1	9
gi 319487727 gb HQ780588.1	9
gi 319485110 gb HQ777971.1	9
gi 319449343 gb HQ742204.1	
gi 324959751 gb HQ716104.1	9
gi 240006080 gb GQ159238.1	9
gi 319517807 gb HQ810668.1	9
gi 319494034 gb HQ786895.1	9
gi 319499806 gb HQ792667.1	1
gi 319495841 gb HQ788702.1	9
gi 319466752 gb HQ759613.1	9
gi 319466850 gb HQ759711.1	9
gi 319487726 gb HQ780587.1	9
gi 319466599 gb HQ759460.1	1
gi 319500123 gb HQ792984.1	9
gi 110446538 gb DQ806753.1	9

99.03	1449	14	0	3	1451	1	1449	0	2599	
99.17	1442	12	0	12	1453	1	1442	0	2597	
99.1	1444	13	0	10	1453	1	1444	0	2595	
98.9	1453	16	0	1	1453	1	1453	0	2595	
98.9	1453	16	0	1	1453	22	1474	0	2595	
98.9	1453	16	0	1	1453	22	1474	0	2595	
99.24	1438	10	1	17	1453	1	1438	0	2593	
99.1	1443	13	0	11	1453	1	1443	0	2593	
99.17	1439	12	0	1	1439	8	1446	0	2591	
99.37	1430	9	0	19	1448	1	1430	0	2591	
99.03	1444	14	0	1	1444	7	1450	0	2590	
98.83	1453	17	0	1	1453	1	1453	0	2590	
98.83	1454	15	2	1	1453	1	1453	0	2590	
99.1	1440	13	0	14	1453	1	1440	0	2588	
99.03	1443	14	0	1	1443	10	1452	0	2588	
98.83	1453	16	1	1	1453	1	1452	0	2588	
99.17	1438	10	2	1	1438	1	1436	0	2588	
99.16	1436	12	0	18	1453	1	1436	0	2586	
99.03	1441	14	0	1	1441	4	1444	0	2584	
98.89	1447	16	0	2	1448	1	1447	0	2584	
98.96	1444	15	0	10	1453	1	1444	0	2584	
99.1	1438	13	0	1	1438	1	1438	0	2584	
98.76	1453	18	0	1	1453	19	1471	0	2584	
98.76	1454	15	3	1	1453	1	1452	0	2582	
98.96	1437	15	0	17	1453	1	1437	0	2571	
98.96	1436	15	0	18	1453	1	1436	0	2569	
98.75	1443	18	0	11	1453	1	1443	0	2566	
98.88	1434	16	0	18	1451	1	1434	0	2560	
98.54	1441	20	1	4	1443	1	1441	0	2543	
98.33	1440	24	0	12	1451	1	1440	0	2527	
98.33	1436	22	2	1	1436	3	1436	0	2518	
98.52	1423	19	2	12	1434	2	1422	0	2510	
97.99	1445	28	1	1	1445	6	1449	0	2507	
99.56	1368	6	0	1	1368	32	1399	0	2494	

1	gi 219533792 gb FJ510597.1	99.63	1364	5	0	2	1365	13	1376	0	2492
	gi 319499960 gb HQ792821.1	97.65	1448	34	0	4	1451	1	1448	0	2486
	gi 110446177 gb DQ806392.1	99.42	1370	6	2	1	1368	33	1402	0	2484
	gi 388933029 gb JQ188146.1	99.85	1350	2	0	1	1350	1	1350	0	2483
	gi 388933200 gb JQ188317.1	99.85	1350	2	0	1	1350	1	1350	0	2483
	gi 388932914 gb JQ188031.1	99.85	1350	2	0	1	1350	1	1350	0	2483
	gi 110441168 gb DQ800768.1	99.42	1368	8	0	1	1368	33	1400	0	2483
	gi 319466572 gb HQ759433.1	98.71	1397	18	0	5	1401	1	1397	0	2481
	gi 219534086 gb FJ510891.1	99.49	1363	7	0	1	1363	10	1372	0	2479
	gi 388928035 gb JQ183152.1	99.78	1350	3	0	1	1350	1	1350	0	2477
	gi 388935405 gb JQ190522.1	99.78	1350	3	0	1	1350	1	1350	0	2477
	gi 388933350 gb JQ188467.1	99.78	1350	3	0	1	1350	1	1350	0	2477
	gi 388933228 gb JQ188345.1	99.78	1350	3	0	1	1350	1	1350	0	2477
	gi 110449771 gb DQ809986.1	99.34	1368	9	0	1	1368	32	1399	0	2477
	gi 110449667 gb DQ809882.1	99.34	1368	9	0	1	1368	33	1400	0	2477
	gi 110448825 gb DQ809040.1	99.34	1368	9	0	1	1368	21	1388	0	2477
	gi 110436401 gb DQ796001.1	99.34	1368	9	0	1	1368	21	1388	0	2477
	gi 388933272 gb JQ188389.1	99.7	1352	2	2	1	1350	1	1352	0	2473
	gi 219531115 gb FJ507920.1	99.63	1354	5	0	12	1365	1	1354	0	2473
	gi 388931523 gb JQ186640.1	99.7	1350	4	0	1	1350	1	1350	0	2471
	gi 388935595 gb JQ190712.1	99.7	1350	4	0	1	1350	1	1350	0	2471
	gi 388935367 gb JQ190484.1	99.7	1350	4	0	1	1350	1	1350	0	
	gi 388935044 gb JQ190161.1	99.7	1350	4	0	1	1350	1	1350	0	2471
	gi 219536114 gb FJ512919.1	99.34	1365	9	0	1	1365	11	1375	0	2471
	gi 219531116 gb FJ507921.1	99.34	1365	9	0	1	1365	11	1375	0	2471
	gi 192988166 gb EU778163.1	99.27	1368	10	0	1	1368	33	1400	0	2471
	gi 192981066 gb EU775089.1	99.27	1368	10	0	1	1368	33	1400	0	2471
	gi 192976430 gb EU772453.1	99.27	1368	10	0	1	1368	33	1400	0	2471
	gi 169278176 gb EU462701.1	99.27	1368	10	0	1	1368	21	1388	0	2471
	gi 169278092 gb EU462617.1	99.27	1368	10	0	1	1368	21	1388	0	2471
	gi 110441305 gb DQ800905.1	99.27	1368	10	0	1	1368	33	1400	0	2471
	gi 110436243 gb DQ795843.1	99.27	1368	10	0	1	1368	33	1400	0	2471
	gi 388933965 gb JQ189082.1	99.7	1350	3	1	1	1350	1	1349	0	2470
	gi 219531114 gb FJ507919.1	99.34	1365	8	1	1	1365	11	1374	0	2470

gi 388928800 gb JQ183917.1	99.63
gi 388935165 gb JQ190282.1	99.63
gi 388934187 gb JQ189304.1	99.63
gi 219536113 gb FJ512918.1	99.27
gi 192981058 gb EU775081.1	99.2
gi 110446130 gb DQ806345.1	99.2
gi 62764679 gb AY985189.1	99.63
gi 219533341 gb FJ510146.1	99.27
gi 110449111 gb DQ809326.1	99.2
gi 388931569 gb JQ186686.1	99.56
gi 388931221 gb JQ186338.1	99.56
gi 388930259 gb JQ185376.1	99.56
gi 388928405 gb JQ183522.1	99.56
gi 388934145 gb JQ189262.1	99.56
gi 388933765 gb JQ188882.1	99.56
gi 219536112 gb FJ512917.1	99.19
gi 219536107 gb FJ512912.1	99.19
gi 219536108 gb FJ512913.1	99.19
gi 219533791 gb FJ510596.1	99.19
gi 192976454 gb EU772477.1	99.12
gi 169278049 gb EU462574.1	99.12
gi 110449321 gb DQ809536.1	99.12
gi 219533340 gb FJ510145.1	99.19
gi 214017356 gb FJ362969.1	99.41
gi 219533343 gb FJ510148.1	99.26
gi 169276654 gb EU461179.1	99.05
gi 388929811 gb JQ184928.1	99.48
gi 388928407 gb JQ183524.1	99.48
gi 388935013 gb JQ190130.1	99.48
gi 388935324 gb JQ190441.1	99.48
gi 388932549 gb JQ187666.1	99.48
gi 219536106 gb FJ512911.1	99.12
gi 192981007 gb EU775030.1	99.05
gi 110448398 gb DQ808613.1	99.05

99.63 1350 5 0 1 1350 1 1350 0 2466 99.63 1350 5 0 1 1350 1 1350 0 2466 99.27 1368 11 0 1 1368 3 1400 0 2466 99.2 1368 11 0 1 1368 3 1400 0 2466 99.2 1368 11 0 1 1350 1 1350 0 2464 99.2 1364 10 1 1 1 333 1391 0 2464 99.56 1350 6 0 1 1350 1 1350 0 2464 99.56 1350 6 0 1 1350 1 1350 0 2460 99.56 1350 6 0 1 1350 1 1350 2 2460 <t< th=""><th>99.63</th><th>1350</th><th>5</th><th>0</th><th>1</th><th>1350</th><th>1</th><th>1350</th><th>0</th><th>2466</th><th></th></t<>	99.63	1350	5	0	1	1350	1	1350	0	2466	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	99.63	1350	5	0	1	1350	1	1350	0	2466	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	99.63	1350	5	0	1	1350	1	1350	0	2466	
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	99.27	1365	10	0	1	1365	11	1375	0	2466	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	99.2	1368	11	0	1	1368	33	1400	0	2466	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	99.2	1368	11	0	1	1368	4	1371	0	2466	
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	99.63	1350	5	0	1	1350	1	1350	0	2466	
99.56 1352 4 2 1 1350 1 1352 0 2462 99.56 1350 6 0 1 1350 1 1350 0 2460 99.56 1350 6 0 1 1350 1 1350 0 2460 99.56 1350 6 0 1 1350 1 1350 0 2460 99.56 1350 6 0 1 1350 1 1350 0 2460 99.59 1365 11 0 1 1365 11 1375 0 2460 99.19 1365 11 0 1 1365 11 375 0 2460 99.19 1365 11 0 1 1365 1 2460 99.12 1368 12 0 1 1368 3 1400 2 2460 99.12 1368	99.27	1364	10	0	1	1364	11	1374	0	2464	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	99.2	1368	10	1	1	1368	33	1399	0	2464	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	99.56	1352	4	2	1	1350	1	1352	0	2462	
99.56 1350 6 0 1 1350 1 1350 0 2460 99.56 1350 6 0 1 1350 1 1350 0 2460 99.56 1350 6 0 1 1350 1 1350 0 2460 99.19 1365 11 0 1 1365 11 375 0 2460 99.19 1365 11 0 1 1365 11 375 0 2460 99.19 1365 11 0 1 1365 11 375 0 2460 99.12 1368 12 0 1 1368 31 1400 0 2460 99.12 1368 12 0 1 1368 31 400 2 2460 99.12 1368 12 0 1 1360 1 3150 0 2455	99.56	1350	6	0	1	1350	1	1350	0	2460	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	99.56	1350	6	0	1	1350	1	1350	0	2460	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	99.56	1350	6	0	1	1350	1	1350	0	2460	
99.19 1365 11 0 1 1365 11 1375 0 2460 99.19 1365 11 0 1 1365 11 1375 0 2460 99.19 1365 11 0 1 1365 11 1375 0 2460 99.19 1365 11 0 1 1365 11 1375 0 2460 99.12 1368 12 0 1 1368 31 400 0 2460 99.12 1368 12 0 1 1368 31 400 0 2460 99.12 1368 12 0 1 1368 31 400 0 2450 99.12 1368 12 0 1 1364 11 1375 0 2457 99.41 1355 8 0 1 1350 1 351 0 2457 <tr< td=""><td>99.56</td><td>1350</td><td>6</td><td>0</td><td>1</td><td>1350</td><td>1</td><td>1350</td><td>0</td><td>2460</td><td></td></tr<>	99.56	1350	6	0	1	1350	1	1350	0	2460	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	99.56	1350	6	0	1	1350	1	1350	0	2460	
99.19 1365 11 0 1 1365 11 1375 0 2460 99.19 1365 11 0 1 1365 11 1375 0 2460 99.12 1368 12 0 1 1368 31 1400 0 2460 99.12 1368 12 0 1 1368 31 1400 0 2460 99.12 1368 12 0 1 1368 31 1400 0 2460 99.12 1368 12 0 1 1368 31 400 0 2450 99.12 1368 11 0 1 1361 1 3150 0 2450 99.14 1355 8 0 1 1365 1 1355 0 2457 99.05 1350 1 1350 1 1350 0 2455 99.48 1	99.19	1365	11	0	1	1365	11	1375	0	2460	
99.19 1365 11 20 1 1365 11 1375 0 2460 99.12 1368 12 0 1 1368 31 1400 0 2460 99.12 1368 12 0 1 1368 21 138 0 2460 99.12 1368 12 0 1 1368 31 400 0 2460 99.12 1368 12 0 1 1368 31 400 0 2450 99.12 1368 12 0 1 1356 1 355 0 2459 99.41 1355 8 0 1 1355 1 355 0 2457 99.43 1350 10 0 2 1 1 350 0 2457 99.48 1350 7 0 1 1350 1 350 2455 99.48	99.19	1365	11	0	1	1365	11	1375	0	2460	
99.12 1368 12 0 1 1368 31 1400 0 2460 99.12 1368 12 0 1 1368 21 1388 0 2460 99.12 1368 12 0 1 1368 33 1400 0 2450 99.12 1368 11 0 1 1364 33 1400 0 2450 99.14 1355 8 0 1 1355 1 1355 0 2459 99.41 1355 8 0 1 1354 11 1374 0 2457 99.05 1370 10 0 5 1364 11 1370 0 2457 99.48 1350 7 0 1 1350 1 1350 0 2455 99.48 1350 7 0 1 1350 1 1350 0 2455	99.19	1365	11	0	1	1365	11	1375	0	2460	
99.12 1368 12 0 1 1368 21 1388 0 2460 99.12 1368 12 0 1 1368 33 1400 0 2460 99.19 1364 11 0 1 1364 11 1374 0 2459 99.19 1355 8 0 1 1355 1 1355 0 2459 99.26 1350 10 0 5 1364 15 0 2457 99.05 1370 11 2 1 1368 21 1390 0 2455 99.48 1350 7 0 1 1350 1 1350 0 2455 99.48 1350 7 0 1 1350 1 1350 0 2455 99.48 1350 7 0 1 1350 1 2455 99.48 1350 7	99.19	1365	11	0	1	1365	11	1375	0	2460	
99.12 1368 12 0 1 1368 33 1400 0 2460 99.19 1364 11 0 1 1364 11 1364 11 1364 11 1364 11 1374 0 2459 99.41 1355 0 0 5 1364 15 1374 0 2457 99.26 1360 10 0 5 1364 15 1374 0 2457 99.26 1370 11 2 1 1368 21 1390 0 2457 99.48 1350 7 0 1 1350 1 1350 0 2455 99.48 1350 7 0 1 1350 1 1350 2455 99.48 1350 7 0 1 1350 1 1350 2455 99.48 1350 7 0 1 1350 1<	99.12	1368	12	0	1	1368	33	1400	0	2460	
99.19 1364 11 0 1 1364 11 1374 0 2459 99.41 1355 8 0 1 1355 1 1355 0 2459 99.26 1360 10 0 5 1364 15 1374 0 2457 99.05 1370 11 2 1 1368 21 1390 0 2457 99.48 1351 6 1 1 1350 1 350 0 2455 99.48 1350 7 0 1 1350 1 1350 0 2455 99.48 1350 7 0 1 1350 1 1350 0 2455 99.48 1350 7 0 1 1350 1 1350 0 2455 99.48 1350 7 0 1 1350 1 1350 0 2455									~		
99.41 1355 8 0 1 1355 1 1355 0 2459 99.26 1360 10 0 5 1364 15 1374 0 2457 99.05 1370 11 2 1 1368 21 190 0 2457 99.48 1350 6 1 1 1350 1 1351 0 2455 99.48 1350 7 0 1 1350 1 1350 0 2455 99.48 1350 7 0 1 1350 1 1350 0 2455 99.48 1350 7 0 1 1350 1 1350 0 2455 99.48 1350 7 0 1 1350 1 2455 99.48 1350 7 0 1 1350 1 1351 0 2455 99.48 1350	99.12	1368	12	0	1	1368	33	1400	0	2460	
99.26 1360 10 0 5 1364 15 1374 0 2457 99.05 1370 11 2 1 1368 21 1390 0 2457 99.48 1350 6 1 1 1350 1 1350 0 2455 99.48 1350 7 0 1 1350 1 1350 0 2455 99.48 1350 7 0 1 1350 1 1350 0 2455 99.48 1350 7 0 1 1350 1 1350 0 2455 99.48 1350 7 0 1 1350 1 1350 0 2455 99.48 1350 7 0 1 1350 1 1350 0 2455 99.48 1350 7 0 1 1365 11 1375 0 2455	99.19	1364	11		1	1364	11	1374	0	2459	
99.05 1370 11 2 1 1368 21 1390 0 2457 99.48 1351 6 1 1 1350 1 1351 0 2455 99.48 1350 7 0 1 1350 1 1350 0 2455 99.48 1350 7 0 1 1350 1 1350 0 2455 99.48 1350 7 0 1 1350 1 1350 0 2455 99.48 1351 6 1 1 1350 1 1350 0 2455 99.48 1351 6 1 1 1350 1 1350 0 2455 99.48 1351 6 1 1 1350 1 1351 0 2455 99.12 1365 12 0 1 1365 11 1375 0 2455	99.41	1355	8	0	1	1355	1	1355	0	2459	
99.48 1351 6 1 1 1350 1 1351 0 2455 99.48 1350 7 0 1 1350 1 1350 0 2455 99.48 1350 7 0 1 1350 1 1350 0 2455 99.48 1350 7 0 1 1350 1 1350 0 2455 99.48 1351 6 1 1 1350 1 1350 0 2455 99.48 1351 6 1 1 1350 1 1350 0 2455 99.48 1351 6 1 1 1350 1 1351 0 2455 99.12 1365 12 0 1 1368 137 0 2455 99.05 1368 13 0 1 1368 1375 0 2455	99.26	1360	10		5	1364	15	1374	0	2457	
99,48 1350 7 0 1 1350 1 1350 0 2455 99,48 1350 7 0 1 1350 1 1350 0 2455 99,48 1350 7 0 1 1350 1 1350 0 2455 99,48 1350 7 0 1 1350 1 1350 0 2455 99,48 1351 6 1 1 1350 1 1351 0 2455 99,12 1365 12 0 1 1365 11 1375 0 2455 99,05 1368 13 0 1 1368 25 1392 0 2455											
99.48 1350 7 0 1 1350 1 1350 2 2455 99.48 1350 7 0 1 1350 1 1350 0 2455 99.48 1351 6 1 1 1350 1 1350 0 2455 99.48 1351 6 1 1 1350 1 1350 0 2455 99.48 1350 1 1350 1 1350 0 2455 99.12 1365 12 0 1 1365 11 1375 0 2455 99.05 1368 13 0 1 1368 25 1392 0 2455	99.48	1351	6	1	1	1350	1	1351	0	2455	
99.48 1350 7 0 1 1350 1 1350 2 2455 99.48 1351 6 1 1 1350 1 1351 0 2455 99.12 1365 12 0 1 1365 11 1375 0 2455 99.05 1368 13 0 1 1368 1375 0 2455	99.48	1350	7	0	1	1350	1	1350	0	2455	
99.48 1351 6 1 1 1350 1 1351 0 2455 99.12 1365 12 0 1 1365 11 1375 0 2455 99.05 1368 13 0 1 1368 25 1392 0 2455	99.48	1350		0	1	1350	1	1350	0	2455	
99.12 1365 12 0 1 1365 11 1375 0 2455 99.05 1368 13 0 1 1368 25 1392 0 2455	99.48	1350	7	0	1	1350	1	1350	0	2455	
99.05 1368 13 0 1 1368 25 1392 0 2455	99.48	1351	6	1	1	1350	1	1351	0	2455	
	99.12	1365	12	0	1	1365	11	1375	0	2455	
99.05 1368 13 0 1 1368 21 1388 0 2455											
	99.05	1368	13	0	1	1368	21	1388	0	2455	

i 62760514 gb AY981024.1	99.48	1350	7	0	1	1350	1	1350	0	2455	
i 388935424 gb JQ190541.1	99.41	1354	4	4	1	1350	1	1354	0	2453	
i 219536110 gb FJ512915.1	99.12	1364	12	0	2	1365	13	1376	0	2453	
i 219535544 gb FJ512349.1	99.12	1364	12	0	2	1365	11	1374	0	2453	
i 219533017 gb FJ509822.1	99.12	1364	12	0	1	1364	11	1374	0	2453	
i 219533015 gb FJ509820.1	99.19	1361	11	0	4	1364	14	1374	0	2453	
i 388930479 gb JQ185596.1	99.41	1350	8	0	1	1350	1	1350	0	2449	
i 388930251 gb JQ185368.1	99.41	1350	8	0	1	1350	1	1350	0	2449	
i 388928126 gb JQ183243.1	99.41	1350	8	0	1	1350	1	1350	0	2449	
i 388934631 gb JQ189748.1	99.41	1350	8	0	1	1350	1	1350	0	2449	
i 388934877 gb JQ189994.1	99.41	1350	8	0	1	1350	1	1350	0	2449	
i 388934922 gb JQ190039.1	99.41	1350	8	0	1	1350	1	1350	0	2449	
i 388934445 gb JQ189562.1	99.41	1350	8	0	1	1350	1	1350	0	2449	
i 388933151 gb JQ188268.1	99.41	1350	8	0	1	1350	1	1350	0	2449	
i 322160786 gb JF175380.1	99.41	1350	8	0	1	1350	1	1350	0	2449	
i 219535545 gb FJ512350.1	99.12	1363	11	1	3	1365	12	1373	0	2449	
i 219533789 gb FJ510594.1	99.05	1366	11	2	1	1365	11	1375	0	2449	
i 219533342 gb FJ510147.1	99.12	1362	12	0	3	1364	13	1374	0	2449	
i 214018748 gb FJ364361.1	99.26	1356	10	0	1	1356	21	1376	0	2449	
i 169291316 gb EU475841.1	98.98	1368	14	0	1	1368	21	1388	0	2449	
i 110436585 gb DQ796185.1	98.98	1368	14	0	1	1368	21	1388	0	2449	
i 62764715 gb AY985225.1	99.41	1350	8	0	1	1350	1	1350	0	2449	
i 62763312 gb AY983822.1	99.41	1350	8	0	1	1350	1	1350	0	2449	
i 388933707 gb JQ188824.1	99.41	1350	6	2	1	1348	1	1350	0	2447	
i 219533339 gb FJ510144.1	99.19	1358	11	0	7	1364	6	1363	0	2447	
i 219533338 gb FJ510143.1	99.05	1364	13	0	1	1364	11	1374	0	2447	
i 110436110 gb DQ795710.1	99.05	1364	13	0	1	1364	33	1396	0	2447	
i 388934590 gb JQ189707.1	99.33	1352	7	2	1	1350	1	1352	0	2446	
i 219531117 gb FJ507922.1	99.26	1354	10	0	12	1365	1	1354	0	2446	
i 388934888 gb JQ190005.1	99.26	1356	4	6	1	1350	1	1356	0	2444	
i 388934140 gb JQ189257.1	99.33	1351	8	1	1	1350	1	1351	0	2444	
i 388933499 gb JQ188616.1	99.33	1350	9	0	1	1350	1	1350	0	2444	
i 322160776 gb JF175370.1	99.33	1350	9	0	1	1350	1	1350	0	2444	
i 219535543 gb FJ512348.1	98.97	1365	14	0	1	1365	11	1375	0	2444	

gi

gi 219531288 gb FJ508093.1	99.33	1350	9	0	1	1350	16	1365	0	2444
gi 219531287 gb FJ508092.1	99.33	1350	9	0	1	1350	16	1365	0	2444
gi 219531286 gb FJ508091.1	99.33	1350	9	0	1	1350	16	1365	0	2444
gi 219531284 gb FJ508089.1	99.33	1350	9	0	1	1350	16	1365	0	2444
gi 219531285 gb FJ508090.1	99.33	1350	9	0	1	1350	16	1365	0	2444
gi 214022757 gb FJ368373.1	99.19	1356	11	0	1	1356	1	1356	0	2444
gi 214018691 gb FJ364304.1	99.19	1356	11	0	1	1356	1	1356	0	2444
gi 192968905 gb EU764690.1	99.33	1350	9	0	1	1350	1	1350	0	2444
gi 62765741 gb AY986251.1	99.33	1350	9	0	1	1350	1	1350	0	2444
gi 62764956 gb AY985466.1	99.33	1350	9	0	1	1350	1	1350	0	2444
gi 219536109 gb FJ512914.1	98.97	1364	14	0	2	1365	13	1376	0	2442
gi 219536105 gb FJ512910.1	98.97	1365	13	1	1	1365	11	1374	0	2442
gi 219531289 gb FJ508094.1	99.41	1346	8	0	1	1346	16	1361	0	2442
gi 219531118 gb FJ507923.1	99.19	1355	11	0	11	1365	1	1355	0	2442
gi 388928236 gb JQ183353.1	99.26	1352	8	2	1	1350	1	1352	0	2440
gi 388934843 gb JQ189960.1	99.26	1352	8	2	1	1350	1	1352	0	2440
gi 388933452 gb JQ188569.1	99.26	1353	7	3	1	1350	1	1353	0	2440
gi 62765667 gb AY986177.1	99.26	1352	8	2	1	1350	1	1352	0	2440
gi 388931911 gb JQ187028.1	99.26	1350	10	0	1	1350	1	1350	0	2438
gi 388931775 gb JQ186892.1	99.26	1350	10	0	1	1350	1	1350	0	2438
gi 388931727 gb JQ186844.1	99.26	1350	10	0	1	1350	1	1350	0	2438
gi 388930236 gb JQ185353.1	99.26	1350	10	0	1	1350	1	1350	0	2438
gi 388928164 gb JQ183281.1	99.26	1350	10	0	1	1350	1	1350	0	2438
gi 388928479 gb JQ183596.1	99.26	1351	9	1	1	1350	1	1351	0	2438
gi 388928666 gb JQ183783.1	99.26	1350	10	0	1	1350	1	1350	0	2438
gi 388935278 gb JQ190395.1	99.26	1350	10	0	1	1350	1	1350	0	2438
gi 388934715 gb JQ189832.1	99.26	1350	10	0	1	1350	1	1350	0	2438
gi 388934682 gb JQ189799.1	99.26	1350	10	0	1	1350	1	1350	0	2438
gi 388933162 gb JQ188279.1	99.33	1347	9	0	4	1350	4	1350	0	2438
gi 388933068 gb JQ188185.1	99.26	1350	10	0	1	1350	1	1350	0	2438
gi 388930723 gb JQ185840.1 ;gi 388	99.26	1350	10	0	1	1350	1	1350	0	2438
gi 219535542 gb FJ512347.1	98.9	1365	15	0	1	1365	11	1375	0	2438
gi 219533788 gb FJ510593.1	98.9	1365	15	0	1	1365	11	1375	0	2438
gi 219531276 gb FJ508081.1	99.26	1350	10	0	1	1350	16	1365	0	2438

gi 219531277 gb FJ508082.1 ;gi 219	99.26	1350	10	0	1	1350	16	1365	0	2438
gi 214017889 gb FJ363502.1	99.12	1356	12	0	1	1356	1	1356	0	2438
gi 214017490 gb FJ363103.1	99.12	1356	12	0	1	1356	1	1356	0	2438
gi 192970039 gb EU765824.1	99.26	1350	10	0	1	1350	1	1350	0	2438
gi 192968817 gb EU764602.1	99.26	1350	10	0	1	1350	1	1350	0	2438
gi 192968594 gb EU764379.1	99.26	1350	10	0	1	1350	1	1350	0	2438
gi 192981510 gb EU775533.1	98.83	1368	16	0	1	1368	33	1400	0	2438
gi 169285159 gb EU469684.1	98.83	1368	16	0	1	1368	32	1399	0	2438
gi 62759235 gb AY979745.1 ;gi 3889	99.26	1350	10	0	1	1350	1	1350	0	2438
gi 62765196 gb AY985706.1	99.26	1350	10	0	1	1350	1	1350	0	2438
gi 62765128 gb AY985638.1	99.26	1350	10	0	1	1350	1	1350	0	2438
gi 62765091 gb AY985601.1	99.26	1351	8	2	1	1350	1	1350	0	2438
gi 62764908 gb AY985418.1	99.26	1350	10	0	1	1350	1	1350	0	2438
gi 62764829 gb AY985339.1	99.26	1350	10	0	1	1350	1	1350	0	2438
gi 62763469 gb AY983979.1	99.26	1350	10	0	1	1350	1	1350	0	2438
gi 62763277 gb AY983787.1	99.26	1350	10	0	1	1350	1	1350	0	2438
gi 62757651 gb AY978161.1	99.26	1350	10	0	1	1350	1	1350	0	2438
gi 62757223 gb AY977733.1	99.26	1351	8	2	1	1350	1	1350	0	2438
gi 322160944 gb JF175538.1	99.26	1350	9	1	1	1350	1	1349	0	2436
gi 322153252 gb JF167846.1	99.26	1350	9	1	1	1350	1	1349	0	2436
gi 219533790 gb FJ510595.1	98.9	1365	14	1	1	1365	11	1374	0	2436
gi 219531275 gb FJ508080.1	99.26	1349	10	0	2	1350	17	1365	0	2436
gi 214018920 gb FJ364534.1	98.83	1367	16	0	1	1367	1	1367	0	2436
gi 388931650 gb JQ186767.1	99.19	1352	9	2	1	1350	1	1352	0	2435
gi 219533344 gb FJ510149.1	98.97	1360	14	0	5	1364	15	1374	0	2435
gi 219533016 gb FJ509821.1	99.04	1357	13	0	8	1364	17	1373	0	2435
gi 219532157 gb FJ508962.1	98.9	1363	14	1	1	1363	11	1372	0	2435
gi 62765608 gb AY986118.1	99.19	1353	8	3	1	1350	1	1353	0	2435
gi 62765449 gb AY985959.1	99.19	1352	9	2	1	1350	1	1352	0	2435
gi 388931501 gb JQ186618.1	99.19	1350	11	0	1	1350	1	1350	0	2433
gi 388928698 gb JQ183815.1	99.19	1350	11	0	1	1350	1	1350	0	2433
gi 388928240 gb JQ183357.1	99.19	1350	11	0	1	1350	1	1350	0	2433
gi 388935772 gb JQ190889.1	99.19	1350	11	0	1	1350	1	1350	0	2433
gi 388934425 gb JQ189542.1	99.19	1350	11	0	1	1350	1	1350	0	2433

gi 322146999 gb JF161593.1	99.19	1350	11	0	1	1350	1	1350	0	2433
gi 219531283 gb FJ508088.1	99.19	1350	11	0	1	1350	16	1365	0	2433
gi 219531282 gb FJ508087.1	99.19	1350	11	0	1	1350	16	1365	0	2433
gi 214021126 gb FJ366742.1	99.26	1348	9	1	10	1356	35	1382	0	2433
gi 214020057 gb FJ365672.1	99.26	1347	10	0	10	1356	2	1348	0	2433
gi 192980034 gb EU774057.1	98.76	1368	17	0	1	1368	21	1388	0	2433
gi 62765226 gb AY985736.1 ;gi 1929	99.19	1350	11	0	1	1350	1	1350	0	2433
gi 62765100 gb AY985610.1	99.19	1350	11	0	1	1350	1	1350	0	2433
gi 62765074 gb AY985584.1	99.19	1350	11	0	1	1350	1	1350	0	2433
gi 62764776 gb AY985286.1	99.19	1350	11	0	1	1350	1	1350	0	2433
gi 62763468 gb AY983978.1	99.19	1350	11	0	1	1350	1	1350	0	2433
gi 62763355 gb AY983865.1	99.19	1350	11	0	1	1350	1	1350	0	2433
gi 62759806 gb AY980316.1 ;gi 3889	99.19	1350	11	0	1	1350	1	1350	0	2433
gi 62757414 gb AY977924.1	99.19	1350	11	0	1	1350	1	1350	0	2433
gi 219531272 gb FJ508077.1	99.26	1346	10	0	1	1346	16	1361	0	2431
gi 219531273 gb FJ508078.1	99.26	1346	10	0	1	1346	16	1361	0	2431
gi 219531270 gb FJ508075.1	99.26	1346	10	0	1	1346	16	1361	0	2431
gi 214026068 gb FJ371687.1	99.04	1355	13	0	1	1355	1	1355	0	2431
gi 214018797 gb FJ364410.1	98.83	1364	16	0	1	1364	1	1364	0	2431
gi 62763276 gb AY983786.1	99.19	1350	10	1	1	1350	1	1349	0	2431
gi 388928008 gb JQ183125.1	99.11	1353	9	3	1	1350	1	1353	0	2429
gi 219531290 gb FJ508095.1	99.26	1345	10	0	1	1345	16	1360	0	2429
gi 219531280 gb FJ508085.1	99.26	1345	10	0	1	1345	16	1360	0	2429
gi 219531268 gb FJ508073.1	99.26	1345	10	0	1	1345	16	1360	0	2429
gi 388931810 gb JQ186927.1	99.11	1351	11	1	1	1350	1	1351	0	2427
gi 388931288 gb JQ186405.1	99.11	1350	12	0	1	1350	1	1350	0	2427
gi 388928632 gb JQ183749.1	99.11	1351	10	2	1	1350	1	1350	0	2427
gi 388928637 gb JQ183754.1	99.11	1350	12	0	1	1350	1	1350	0	2427
gi 388930665 gb JQ185782.1	99.11	1351	10	2	1	1350	1	1350	0	2427
gi 388928400 gb JQ183517.1	99.11	1350	12	0	1	1350	1	1350	0	2427
gi 388935714 gb JQ190831.1	99.11	1354	5	6	2	1350	3	1354	0	2427
gi 388934827 gb JQ189944.1	99.11	1350	12	0	1	1350	1	1350	0	2427
gi 388933351 gb JQ188468.1	99.11	1350	12	0	1	1350	1	1350	0	2427
gi 319484570 gb HQ777431.1	97.6	1417	32	2	19	1435	1	1415	0	2427

	99.11	4050		ol	ч					
gi 322160977 gb JF175571.1		1350	12	-	1	1350	1	1350	0	2427
gi 219535541 gb FJ512346.1	98.75 98.97	1365 1357	17 13	0 1	1	1365 1356	11 1	1375 1357	0	2.127
gi 214026245 gb FJ371864.1 gi 192970466 gb EU766251.1	98.97	1357	13	0	1	1356	1	1357	0	
101				-					~	
gi 192970348 gb EU766133.1	99.11	1350	12	0	1	1350	1	1350	0	
gi 192968537 gb EU764322.1	99.11	1350	12	0	1	1350	1	1350	0	
gi 192966307 gb EU762092.1	99.11	1350	12	0	1	1350	1	1350	0	
gi 192966162 gb EU761947.1	99.11	1350	12	0	1	1350	1	1350	0	
gi 169278050 gb EU462575.1	98.68	1368	18	0	1	1368	21	1388	0	
gi 110433710 gb DQ793310.1	98.68	1368	18	0	1	1368	21	1388	0	
gi 62759181 gb AY979691.1	99.11	1350	12	0	1	1350	1	1350	0	
gi 62765793 gb AY986303.1	99.11	1350	12	0	1	1350	1	1350	0	
gi 62764702 gb AY985212.1	99.11	1350	12	0	1	1350	1	1350	0	
gi 388934664 gb JQ189781.1	99.04	1354	9	4	1	1350	1	1354	0	
gi 322147187 gb JF161781.1	99.11	1350	11	1	1	1350	1	1349	0	
gi 219531281 gb FJ508086.1	99.11	1350	11	1	1	1350	16	1364	0	
gi 219531274 gb FJ508079.1	99.18	1346	11	0	1	1346	16	1361	0	
gi 219531271 gb FJ508076.1	99.18	1346	11	0	1	1346	16	1361	0	
gi 219531269 gb FJ508074.1	99.18	1346	11	0	1	1346	16	1361	0	-
gi 219531279 gb FJ508084.1	99.11	1349	10	2	1	1348	16	1363	0	
gi 62764920 gb AY985430.1	99.04	1353	10	3	1	1350	1	1353	0	
gi 388930615 gb JQ185732.1	99.04	1350	13	0	1	1350	1	1350	0	
gi 388930442 gb JQ185559.1	99.04	1350	13	0	1	1350	1	1350	0	
gi 388929030 gb JQ184147.1	99.04	1350	13	0	1	1350	1	1350	0	2422
gi 388928543 gb JQ183660.1	99.04	1351	11	2	1	1350	1	1350	0	2422
gi 219533787 gb FJ510592.1	98.68	1366	16	2	1	1365	11	1375	0	2422
gi 214026073 gb FJ371692.1	98.89	1356	15	0	1	1356	1	1356	0	2422
gi 192970627 gb EU766412.1	99.04	1350	13	0	1	1350	1	1350	0	2422
gi 192970356 gb EU766141.1	99.04	1351	12	1	1	1350	1	1351	0	2422
gi 192969098 gb EU764883.1	99.04	1350	13	0	1	1350	1	1350	0	2422
gi 192981375 gb EU775398.1	98.61	1368	19	0	1	1368	32	1399	0	2422
gi 169287503 gb EU472028.1	98.61	1368	19	0	1	1368	33	1400	0	2422
gi 110437813 gb DQ797413.1	98.61	1368	19	0	1	1368	21	1388	0	2422
gi 110437539 gb DQ797139.1	98.61	1368	19	0	1	1368	33	1400	0	2422

gi 62759154 gb AY979664.1	99.04	1350	13	0	1	1350	1	1350
gi 62759099 gb AY979609.1	99.04	1350	13	0	1	1350	1	1350
gi 62765862 gb AY986372.1	99.04	1350	13	0	1	1350	1	1350
gi 62765215 gb AY985725.1	99.04	1350	13	0	1	1350	1	1350
gi 322147075 gb JF161669.1	99.04	1350	12	1	1	1350	1	1349
gi 192967875 gb EU763660.1	98.97	1354	10	4	1	1350	1	1354
gi 62764708 gb AY985218.1	98.97	1354	10	4	1	1350	1	1354
gi 388934798 gb JQ189915.1	98.96	1352	12	2	1	1350	1	1352
gi 192970605 gb EU766390.1	98.97	1353	11	3	1	1350	1	1353
gi 192988214 gb EU778185.1	98.54	1371	17	3	1	1368	9	1379
gi 110441542 gb DQ801142.1	98.54	1371	17	3	1	1368	9	1379
gi 388930601 gb JQ185718.1	98.96	1351	12	2	1	1350	1	1350
gi 388928546 gb JQ183663.1	98.96	1352	11	3	1	1350	1	1351
gi 388928362 gb JQ183479.1	98.96	1350	14	0	1	1350	1	1350
gi 388934972 gb JQ190089.1	98.96	1351	13	1	1	1350	1	1351
gi 319498064 gb HQ790925.1	98.4	1375	20	2	23	1396	1	1374
gi 219531266 gb FJ508071.1	99.11	1344	12	0	1	1344	16	1359
gi 214022030 gb FJ367646.1	98.82	1356	16	0	1	1356	1	1356
gi 192970585 gb EU766370.1	99.04	1349	10	3	1	1346	1	1349
gi 192970493 gb EU766278.1	98.96	1351	13	1	1	1350	1	1351
gi 192966008 gb EU761793.1	98.96	1352	11	3	1	1350	1	1351
gi 169285267 gb EU469792.1	98.54	1368	20	0	1	1368	33	1400
gi 169278106 gb EU462631.1	98.54	1369	18	2	1	1368	21	1388
gi 169278096 gb EU462621.1	98.54	1368	20	0	1	1368	21	1388
gi 169276721 gb EU461246.1	98.54	1368	20	0	1	1368	33	1400
gi 110445418 gb DQ805633.1	98.54	1369	19	1	1	1368	21	1389
gi 214018755 gb FJ364368.1	98.82	1355	16	0	1	1355	1	1355
gi 388932925 gb JQ188042.1	98.89	1352	13	2	1	1350	1	1352
gi 169291281 gb EU475806.1	98.47	1370	19	2	1	1368	21	1390
gi 388935011 gb JQ190128.1	98.89	1350	15	0	1	1350	1	1350
gi 388933914 gb JQ189031.1	98.82	1355	11	5	1	1350	1	1355
gi 388933284 gb JQ188401.1	98.82	1355	11	5	1	1350	1	1355
gi 219536111 gb FJ512916.1	98.61	1364	14	5	3	1365	12	1371
gi 192965883 gb EU761668.1	98.82	1355	11	5	1	1350	1	1355
•	• •							•

gi 110445082 gb DQ805297.1	98.39	1370	20	2	1	1368	4	1373	0	2407	
gi 388935520 gb JQ190637.1	98.82	1351	15	1	1	1350	1	1351	0	2405	
gi 388935228 gb JQ190345.1	98.81	1350	16	0	1	1350	1	1350	0	2405	
gi 214026130 gb FJ371749.1	99.18	1335	11	0	1	1335	1	1335	0	2405	
gi 214017608 gb FJ363221.1	98.67	1356	18	0	1	1356	1	1356	0	2405	
gi 214017504 gb FJ363117.1	98.67	1356	18	0	1	1356	1	1356	0	2405	
gi 192972226 gb EU768011.1	98.89	1348	13	2	1	1346	1	1348	0	2405	
gi 169282771 gb EU467296.1	99.1	1338	12	0	14	1351	1	1338	0	2405	
gi 219532455 gb FJ509260.1	98.6	1359	17	2	1	1359	11	1367	0	2403	
gi 214026456 gb FJ372075.1	99.03	1340	13	0	17	1356	3	1342	0	2403	
gi 192970718 gb EU766503.1	98.74	1354	13	4	1	1350	1	1354	0	2403	
gi 192980909 gb EU774932.1	98.32	1368	23	0	1	1368	21	1388	0	2399	
gi 192980191 gb EU774214.1	99.1	1335	12	0	1	1335	21	1355	0	2399	
gi 388930741 gb JQ185858.1	98.67	1354	14	4	1	1350	1	1354	0	2398	
gi 388930096 gb JQ185213.1	98.67	1355	13	4	1	1350	1	1355	0	2398	
gi 388928799 gb JQ183916.1	98.67	1355	13	5	1	1350	1	1355	0	2398	
gi 192970812 gb EU766597.1	98.67	1355	13	5	1	1350	1	1355	0	2398	
gi 214023970 gb FJ369588.1	99.03	1336	13	0	1	1336	9	1344	0	2396	
gi 192980961 gb EU774984.1	98.25	1368	24	0	1	1368	33	1400	0	2394	
gi 219531267 gb FJ508072.1	98.88	1340	14	1	1	1340	16	1354	0	2390	
gi 322145055 gb JF159649.1	98.59	1351	18	1	1	1350	1	1351	0	2388	
gi 214018819 gb FJ364432.1	98.45	1356	21	0	1	1356	1	1356	0	2388	
gi 192968638 gb EU764423.1	98.53	1356	14	6	1	1350	1	1356	0	2388	
gi 388930393 gb JQ185510.1	98.38	1362	10	12	1	1350	1	1362	0	2383	
gi 192981465 gb EU775488.1	98.1	1368	26	0	1	1368	33	1400	0	2383	
gi 110437046 gb DQ796646.1	98.1	1370	23	3	1	1368	33	1401	0	2383	
gi 169278195 gb EU462720.1	98.03	1368	27	0	1	1368	21	1388	0	2377	
gi 169278110 gb EU462635.1	98.03	1368	27	0	1	1368	21	1388	0	2377	
gi 62765348 gb AY985858.1	98.31	1363	10	13	1	1350	1	1363	0	2377	
gi 214026121 gb FJ371740.1	98.23	1356	24	0	1	1356	21	1376	0	2372	
gi 169285018 gb EU469543.1	98.66	1339	17	1	1	1339	1	1338	0	2372	
gi 214026227 gb FJ371846.1	98.51	1345	15	5	17	1356	1	1345	0	2368	
gi 192970133 gb EU765918.1	98.3	1353	19	4	1	1350	1	1352	0	2368	
gi 322145018 gb JF159612.1	98.3	1350	22	1	1	1350	1	1349	0	2364	

gi|192970441|gb|EU766226.1| gi|169278124|gb|EU462649.1| gi|214018742|gb|FJ364355.1| gi|388928549|gb|JQ183666.1| gi|388934849|gb|JQ189966.1| gi|319487794|gb|HQ780655.1| gi|192981006|gb|EU775029.1| gi|110446384|gb|DQ806599.1| gi|110438803|gb|DQ798403.1| gi|192969094|gb|EU764879.1| gi|110440827|gb|DQ800427.1| gi|110449954|gb|DQ810169.1| gi|388928120|gb|JQ183237.1| gi|110441294|gb|DQ800894.1| gi|192970021|gb|EU765806.1| gi|110436797|gb|DQ796397.1| gi|169282930|gb|EU467455.1| gi|61620028|gb|AY850435.1| gi|169287428|gb|EU471953.1| gi|169282916|gb|EU467441.1| gi|169287473|gb|EU471998.1| gi|169285037|gb|EU469562.1| gi|110436563|gb|DQ796163.1| gi|214017950|gb|FJ363563.1| gi|84626925|gb|DQ339838.1| gi|22324751|gb|AF530344.1| gi|62753295|gb|AY920178.1| gi|298391468|gb|HM478330.1| gi|298391173|gb|HM478035.1| gi|298390963|gb|HM477825.1| gi|298390562|gb|HM477424.1| gi|298390543|gb|HM477405.1| gi|298389976|gb|HM476838.1| gi|298389938|gb|HM476800.1|

98.16	1357	18	7	1	1350	1	1357	0	2361	
99.54	1293	6	0	76	1368	1	1293	0	2355	
98.5	1332	20	0	1	1332	1	1332	0	2350	
97.87	1361	17	12	1	1350	1	1360	0	2342	
97.67	1375	7	25	1	1350	1	1375	0	2338	
97.45	1374	29	6	84	1453	65	1436	0	2338	
97.51	1368	34	0	1	1368	33	1400	0	2338	
99.46	1285	7	0	84	1368	90	1374	0	2335	
99.38	1288	6	2	67	1352	15	1302	0	2333	
97.78	1354	22	8	5	1350	6	1359	0	2327	
99.69	1272	4	0	97	1368	1	1272	0	2327	
97.37	1368	33	3	1	1368	25	1389	0	2324	
97.3	1368	17	20	1	1350	1	1366	0	2303	
97.01	1370	37	3	1	1368	33	1400	0	2300	
99.45	1266	5	2	87	1350	93	1358	0	2298	
99.29	1261	8	1	109	1368	1	1261	0	2278	
97.3	1335	35	1	1	1335	34	1367	0	2265	
99.52	1243	6	0	67	1309	9	1251	0	2263	
99.05	1261	9	3	111	1368	1	1261	0	2259	
97.22	1331	36	1	1	1331	35	1364	0	2252	
97.13	1288	32	3	84	1368	88	1373	0	2169	
98.94	1130	12	0	222	1351	136	1265	0	2021	
97.39	1148	29	1	222	1368	235	1382	0	1953	
100	1049	0	0	307	1355	1	1049	0	1938	
100	1038	0	0	325	1362	1	1038	0	1917	
99.81	1038	0	1	325	1362	1	1036	0	1905	
99.42	1039	4	2	325	1362	1	1038	0	1884	
100	1001	0	0	345	1345	1	1001	0	1849	
100	1001	0	0	345	1345	1	1001	0	1849	
100	1001	0	0	345	1345	1	1001	0	1849	
100	1001	0	0	344	1344	1	1001	0	1849	
100	1001	0	0	345	1345	1	1001	0	1849	
100	1001	0	0	345	1345	1	1001	0	1849	
100	1001	0	0	345	1345	1	1001	0	1849	
-	-									

gi 298389589 gb HM476451.1	100	1001	0	0	344	1344	1	1001	0	1849	
gi 298389422 gb HM476284.1	100	1001	0	0	345	1345	1	1001	0	1849	
gi 298389379 gb HM476241.1	100	1001	0	0	344	1344	1	1001	0	1849	
gi 298389231 gb HM476093.1	100	1001	0	0	345	1345	1	1001	0	1849	
gi 298388837 gb HM475699.1	100	1001	0	0	345	1345	1	1001	0	1849	
gi 258688844 emb FP083306.1	100	1001	0	0	344	1344	1	1001	0	1849	
gi 258688642 emb FP083302.1	100	1001	0	0	345	1345	1	1001	0	1849	
gi 258688592 emb FP083252.1	100	1001	0	0	345	1345	1	1001	0	1849	
gi 258687382 emb FP082637.1	100	1001	0	0	344	1344	1	1001	0	1849	
gi 258687350 emb FP082605.1	100	1001	0	0	344	1344	1	1001	0	1849	
gi 258687324 emb FP082579.1	100	1001	0	0	344	1344	1	1001	0	1849	
gi 258685368 emb FP081817.1	100	1001	0	0	345	1345	1	1001	0	1849	
gi 258685243 emb FP075647.1	100	1001	0	0	345	1345	1	1001	0	1849	
gi 258684705 emb FP075308.1	100	1001	0	0	345	1345	1	1001	0	1849	
gi 258684256 emb FP075075.1	100	1001	0	0	345	1345	1	1001	0	1849	
gi 258684063 emb FP081284.1	100	1001	0	0	345	1345	1	1001	0	1849	
gi 258683838 emb FP081059.1	100	1001	0	0	344	1344	1	1001	0	1849	
gi 258681398 emb FP084863.1	100	1001	0	0	345	1345	1	1001	0	1849	
gi 258681389 emb FP084854.1	100	1001	0	0	345	1345	1	1001	0	1849	
gi 258680819 emb FP084484.1	100	1001	0	0	345	1345	1	1001	0	1849	
gi 258680338 emb FP078738.1	100	1001	0	0	344	1344	1	1001	0	1849	
gi 258680294 emb FP078694.1	100	1001	0	0	344	1344	1	1001	0	1849	
gi 298392754 gb HM479616.1	99.9	1001	1	0	345	1345	1	1001	0	1844	
gi 298391479 gb HM478341.1	99.9	1001	1	0	344	1344	1	1001	0	1844	
gi 298391366 gb HM478228.1	99.9	1001	1	0	344	1344	1	1001	0	1844	
gi 298390465 gb HM477327.1	99.9	1001	1	0	345	1345	1	1001	0	1844	
gi 298390259 gb HM477121.1	99.9	1001	1	0	345	1345	1	1001	0	1844	
gi 298389656 gb HM476518.1	99.9	1001	1	0	345	1345	1	1001	0	1844	
gi 298389217 gb HM476079.1	99.9	1001	1	0	345	1345	1	1001	0	1844	
gi 258684984 emb FP081632.1	99.9	1001	1	0	344	1344	1	1001	0	1844	
gi 258684844 emb FP075447.1	99.9	1001	1	0	345	1345	1	1001	0	1844	
gi 258680857 emb FP084518.1	99.9	1001	1	0	344	1344	1	1001	0	1844	
gi 258679890 emb FP078489.1	99.9	1001	1	0	345	1345	1	1001	0	1844	
gi 258679841 emb FP078441.1	99.9	1001	1	0	344	1344	1	1001	0	1844	
•											

gi|258685337|emb|FP081786.1| gi|258680032|emb|FP078631.1| gi|258679945|emb|FP078544.1| gi|258682949|emb|FP080298.1| gi|258681405|emb|FP084870.1| gi|258681365|emb|FP084830.1| gi|258680303|emb|FP078703.1| gi|258688156|emb|FP083014.1| gi|258687287|emb|FP082542.1| gi|258689133|emb|FP077748.1| gi|258679670|emb|FP078270.1| gi|62753249|gb|AY920132.1| gi|258689128|emb|FP077743.1| gi|258690090|emb|FP078109.1| gi|258679990|emb|FP078589.1| gi|258679817|emb|FP078417.1| gi|62753277|gb|AY920160.1| gi|310840978|gb|GU105506.1| gi|258680809|emb|FP084474.1| gi|298392763|gb|HM479625.1| gi|258684129|emb|FP074949.1| gi|258688530|emb|FP083190.1| gi|258688471|emb|FP083131.1| gi|258687267|emb|FP082522.1| gi|258680259|emb|FP078659.1| gi|258679892|emb|FP078491.1| gi|258679706|emb|FP078306.1| gi|258687656|emb|FP082713.1| gi|310841110|gb|GU105638.1| gi|298392813|gb|HM479675.1| gi|258684733|emb|FP075336.1| gi|258680334|emb|FP078734.1| gi|258680314|emb|FP078714.1|

gi|258679682|emb|FP078282.1|

99.9	1001	1	0	345	1345	1	1001	0	1844
99.8	1001	2	0	344	1344	1	1001	0	1838
99.8	1001	2	0	344	1344	1	1001	0	1838
99.8	1001	2	0	345	1345	1	1001	0	1838
99.7	1001	3	0	344	1344	1	1001	0	1832
99.7	1001	3	0	345	1345	1	1001	0	1832
99.7	1001	3	0	345	1345	1	1001	0	1832
99.7	1001	3	0	344	1344	1	1001	0	1832
99.5	1001	5	0	344	1344	1	1001	0	1821
99.1	1001	9	0	345	1345	1	1001	0	1799
98.8	1001	12	0	344	1344	1	1001	0	1783
98.8	1003	8	2	345	1345	1	1001	0	1783
97.69	1039	21	2	325	1362	1	1037	0	1783
98.6	1001	14	0	344	1344	1	1001	0	1772
98.5	1001	15	0	345	1345	1	1001	0	1766
98.5	1001	15	0	344	1344	1	1001	0	1766
98.3	1001	17	0	344	1344	1	1001	0	1755
97.02	1039	27	3	325	1362	1	1036	0	1744
99.07	968	9	0	27	994	1	968	0	1738
97.9	1002	20	1	344	1344	1	1002	0	1733
97.8	1001	22	0	345	1345	1	1001	0	1727
97.8	1001	22	0	345	1345	1	1001	0	1727
97.7	1001	23	0	344	1344	1	1001	0	1722
97.7	1001	23	0	344	1344	1	1001	0	1722
97.7	1001	23	0	345	1345	1	1001	0	1722
97.7	1002	21	2	345	1345	1	1001	0	1722
97.7	1001	23	0	345	1345	1	1001	0	1722
97.6	1002	22	2	344	1344	1	1001	0	1716
97.5	1001	25	0	344	1344	1	1001	0	1711
98.75	961	12	0	27	987	1	961	0	1709
97.4	1001	24	2	344	1344	1	999	0	1703
97.4	1001	24	2	344	1344	1	999	0	1703
97.3	1001	27	0	344	1344	1	1001	0	1700
97.3	1001	27	0	345	1345	1	1001	0	1700

g 258860175 cmb F0084224.1 97.3 1001 25 2 344 1344 1 999 0 1698 g 310840972 gb GU105500.1 99.36 60 0 27 961 1 935 0 1698 g 310841151 gb GU105631.1 99.57 925 4 0 511 1435 1 1000 0 1688 g 25868064 cmb F077679.1 977 1001 30 0 345 1345 1 1000 0 1681 g 138040973 gb GU105501.1 99.04 936 9 0 2.7 962 1 936 0 1679 g 310840975 gb GU105503.1 98.83 942 11 0 2.7 958 1 932.0 1672 g 310840975 gb GU105503.1 98.82 936 10 0 2.7 958 1 932.0 1672 g 310840975 gb GU105504.1 99.03 92 90 2.7 958 1 932.0 1664 g 310841112 gb GU105640.1 99.03 92 90	gi 310840826 gb GU105354.1	98.95	949	10	0	27	975	1	949	0	1698
B B	gi 258680175 emb FP084224.1	97.3	1001	25	2	344	1344	1	999	0	1698
j j< j<< <thj<< th=""> <t< td=""><td>gi 310840972 gb GU105500.1 </td><td>99.36</td><td>935</td><td>6</td><td>0</td><td>27</td><td>961</td><td>1</td><td>935</td><td>0</td><td>1694</td></t<></thj<<>	gi 310840972 gb GU105500.1	99.36	935	6	0	27	961	1	935	0	1694
gi 2586837.34 emb FPO75519.1 97 1001 30 0 345 1345 1 1001 0 16833 gi 258689064 emb FPO77679.1 97.01 1004 23 7 345 1345 1 1000 0 1681 gi 310840973 gb GU0550.11 99.04 936 9 27 962 1 936 0 1679 gi 310840975 gb GU05503.1 98.93 936 10 0 27 962 1 936 0 1672 gi 310840976 gb GU05504.1 98.82 936 11 0 27 954 1 928 0 1664 gi 310841031 gb 1060 1663 gi 310841031 gb 1 101 0 1657 gi 310841031 gb 1 101 0 1657 gi 31084173 gb	gi 310841115 gb GU105643.1	98.94	944	10	0	32	975	2	945	0	1688
b g 23 7 345 1345 1 1000 0 1681 g 130840973 gb 1004 23 7 345 1345 1 1000 0 1681 g 130840973 gb GU105501.1 99.04 936 9 0 27 962 1 936 0 1679 g 1310840975 gb GU105503.1 98.83 936 10 0 27 952 1 936 0 1674 g 1310840976 gb GU105503.1 99.03 92 9 0 27 954 1 928 0 1664 g 130841076 gb GU105640.1 99.03 928 9 0 27 954 1 918 0 1664 g 13048111 gb GU105651.1 99.24 918 7 0 4 941 1 913 0	gi 73427009 gb DQ144095.1	99.57	925	4	0	511	1435	1	925	0	1687
g 310840973 gb GU105501.1 99.04 936 9 0 27 962 1 936 0 1679 g 310840973 gb GU105501.1 98.83 942 11 0 27 962 1 9436 0 1679 g 310840927 gb GU105455.1 99.03 932 9 0 27 962 1 936 0 1672 g 310840927 gb GU105455.1 99.03 932 9 0 27 952 1 936 0 1662 g 310841112 gb GU105621.1 97.72 967 20 2 7 954 1 928 0 1664 g 310841112 gb GU105621.1 97.72 967 20 2 7 952 1 916 0 1663 g 310841131 gb GU105651.1 99.12 912 8 2 97 1453 1 947 0 1633 g 310841037 gb GU105561.1 99.12 913 8 0 2	gi 258681714 emb FP079519.1	97	1001	30	0	345	1345	1	1001	0	1683
gi 310840928 gb GU105456.1 98.83 942 11 0 27 968 1 942 0 1679 gi 310840975 jb GU105503.1 98.93 936 10 0 27 962 1 936 0 1672 gi 310840976 jb GU105504.1 98.82 936 11 0 27 952 1 936 0 1672 gi 31084112 jb GU105504.1 99.03 928 9 0 27 954 1 928 0 1663 gi 310841173 jb GU105504.1 97.72 97 2 2 792 1 966 1663 gi 310841173 jb GU10555.1 99.12 913 8 0 29 941 1 913 0 1642 gi 313084173 jb JQ79915.1 97.12 910 8 <	gi 258689064 emb FP077679.1	97.01	1004	23	7	345	1345	1	1000	0	1681
g 310840975 gb Gutto5503.1 98.93 99.6 10 0 27 952 1 93.6 0 1674 gi 310840975 gb Gutto5503.1 99.03 932 9 0 27 952 1 93.6 0 1672 gi 310840976 gb Gutto5504.1 98.82 936 11 0 27 952 1 93.6 0 1664 gi 310841131 gb Gutto5640.1 99.03 92 9 92 7 954 1 28 0 1664 gi 310841131 gb Gutto5621.1 97.72 967 20 2 27 992 1 966 0 1663 gi 310841137 gb Gutto5701.1 99.34 912 4 2 88 1 111 0 1650 gi 3108410871 gb Gutto5701.1 99.34 912 91 8 0 27 938 1 91.1 0 1637	gi 310840973 gb GU105501.1	99.04	936	9	0	27	962	1	936	0	1679
gi 310840927 [gb GU105455.1 99.03 92 9 0 27 958 1 932.0 1672 gi 310840927 [gb GU105455.1 99.03 928 9 0 27 952 1 932.0 1672 gi 310841172 [gb GU105601.1 99.03 928 9 0 27 952 1 936.0 1664 gi 310841112 [gb GU105621.1 97.72 967 20 2 27 992 1 96.0 1663 gi 310841173 [gb GU105555.1 99.24 918 7 0 24 941 1 913.0 1642 gi 333385719 [gb GU105555.1 99.12 91 8 0 27 936 1 910 0 1633 gi 310841163 [gb GU105691.1 98.91 915 10 0 27 <	gi 310840928 gb GU105456.1	98.83	942	11	0	27	968	1	942	0	1679
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	gi 310840975 gb GU105503.1	98.93	936	10	0	27	962	1	936	0	1674
gi 310841112 gb GU105640.1 99.03 928 9 0 27 954 1 928 0 1664 gi 310841103 gb GU105621.1 97.72 967 20 2 27 992 1 966 0 1633 gi 310841111 gb GU10563.1 99.24 918 7 0.2 24 941 1 913 0 1627 gi 310841173 gb GU10555.1 99.12 913 8 0 29 941 1 913 0 1633 gi 310840256 gb GU10556.1 99.12 910 8 0 27 936 1 910 0 1633 gi 310840866 gb GU105394.1 99.01 912 90 27 936 1 910 0 1633 gi 310840866 gb GU105394.1 99.01 915	gi 310840927 gb GU105455.1	99.03	932	9	0	27	958	1	932	0	1672
gi 310841093 gb GU105621.1 97.72 967 20 2 27 992 1 966 0 1663 gi 3108411031 gb GU105621.1 99.24 918 7 0 24 941 1 918 0 1657 gi 310841113 gb GU105505.1 99.34 912 4 2 28 938 1 911 0 1650 gi 3108411037 gb GU105505.1 99.12 913 8 0 27 936 1 947 0 1633 gi 310840926 gb GU105505.1 99.12 910 8 0 27 936 1 910 0 1637 gi 310840926 gb GU105508.1 99.12 9 0 27 938 1 912 0 1635 gi 3100840980 gb GU105508.1 99.39 01	gi 310840976 gb GU105504.1	98.82	936	11	0	27	962	1	936	0	1668
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	gi 310841112 gb GU105640.1	99.03	928	9	0	27	954	1	928	0	1664
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	gi 310841093 gb GU105621.1	97.72	967	20	2	27	992	1	966	0	1663
B 1 9 12 91 8 0 29 941 1 913 0 1642 g 330841037 [gb GU105565.1 97.89 948 18 2 507 1433 1 947 0 1632 g 310840036 [gb GU105691.1 99.12 910 8 0 27 936 1 910 0 1637 g 310840086 [gb GU105691.1 98.91 915 10 0 27 938 1 912 0 1635 g 310840086 [gb GU105508.1 99.01 912 9 0 27 938 1 912 0 1635 g 310840980 [gb GU105508.1 99.33 901 6 0 27 927 1 901 0 1631 g 310841348 [gb GU105570.1 99.48 8915 11 0 24 928 1 905 1 623 g 310840790 [gb GU105507.1 99.44 894 0 <t< td=""><td>gi 310841111 gb GU105639.1 </td><td>99.24</td><td>918</td><td>7</td><td>0</td><td>24</td><td>941</td><td>1</td><td>918</td><td>0</td><td>1657</td></t<>	gi 310841111 gb GU105639.1	99.24	918	7	0	24	941	1	918	0	1657
	gi 310841173 gb GU105701.1	99.34	912	4	2	28	938	1	911	0	1650
gi 310840926 gb GU105454.1 99.12 910 8 0 27 936 1 910 0 1637 gi 3108410526 gb GU105454.1 99.12 910 0 27 936 1 915 0 0 27 941 1 915 0 1635 gi 310840866 gb GU105394.1 99.01 912 9 0 27 938 1 912 0 1635 gi 310840986 gb GU105508.1 99.33 901 6 0 27 938 1 910 0 1631 gi 310842043 gb GU10570.1 99.12 90.5 8 0 24 928 1 90.5 0 1628 gi 310840979 gb <gu10576.1< th=""> 99.12 90.5 8 0 27 920 1 894 0 1624 gi<310840807</gu10576.1<>	gi 310841037 gb GU105565.1	99.12	913	8	0	29	941	1	913	0	1642
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	gi 383385719 gb JQ799156.1	97.89	948	18	2			1	947	0	
gi 310840866 [gb GU105394.1 99.01 91 9 0 27 938 1 912 0 1635 gi 310836892 [gb GU101394.1 99.55 897 4 0 29 925 1 897 0 1635 gi 310836892 [gb GU101420.1 99.55 897 4 0 29 925 1 897 0 1635 gi 310840360 [gb GU105501.1 99.3 901 6 0 27 928 1 905 0 1628 gi 310841348 [gb GU10571.1 99.4 894 5 0 24 928 1 905 0 1624 gi 310840286 [gb GU107426.1 98.9 908 10 0 31 938 1 908 10 612 gi 310840807 [gb [GU105384.1] 99.77 880 2 26 905 1 880	gi 310840926 gb GU105454.1	99.12	910	8	0	27	936	1	910	0	1637
gi 310836892 [gb GU101420.1 99.55 897 4 0 29 925 1 897 0 1635 gi 310836892 [gb GU101420.1 99.33 901 6 0 27 927 1 901.0 1631 gi 310842043 [gb GU105576.1 99.12 905 8 0 24 928 1 905 0 1628 gi 310840979 [gb GU105576.1 99.42 905 8 0 24 928 1 1624 gi 310842093 [gb GU105576.1 99.4 894 5 0 27 920 1 894 0 1624 gi 310840283 [gb GU107426.1 98.9 908 10 0 31 938 1 908 0 1624 gi 310840807 [gb GU105333.1 99.77 881 2 0 28 908 1 1615 gi	gi 310841163 gb GU105691.1				0	27		1		0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	gi 310840866 gb GU105394.1	99.01	912	9	0	27		1	912	0	1635
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	gi 310836892 gb GU101420.1	99.55	897	4	0	29	925		897	0	1635
b g 1 90.12 90.5 8 0 24 928 1 90.5 0 628 g 310841348 [gb] GU105876.1 99.44 894 5 0 27 920 1 894 0 1624 g 310840379 [gb] GU105507.1 99.44 894 5 0 27 920 1 894 0 1624 g 310842889 [gb] GU107426.1 98.9 908 10 0 31 938 1 906 1626 g 3108408607 [gb] GU105335.1 99.77 881 2 0 26 905 1 880 0 1615 g 310840867 [gb] GU105335.1 99.77 880 2 0 26 905 1 880 0 1615 g 310841256 [gb] GU10535.1 99.77 880 2 0 26 905 1 880 0 1615 g 310841256 [gb] GU105784.1 98.4 898 10 0 28 <td< td=""><td>gi 310840980 gb GU105508.1 </td><td>99.33</td><td>901</td><td>6</td><td></td><td>27</td><td>-</td><td></td><td>901</td><td>0</td><td>1631</td></td<>	gi 310840980 gb GU105508.1	99.33	901	6		27	-		901	0	1631
gi 310840979 gb GU105507.1 99.44 894 5 0 27 920 1 894 0 1624 gi 310842898 gb GU107546.1 98.9 906 10 0 31 938 1 908 0 1622 gi 310842858 gb GU107346.1 99.77 881 2 0 28 908 1 881 0 1616 gi 310840807 ib GU105335.1 99.77 880 2 0 26 905 1 880 0 1615 gi 310841256 ib GU105335.1 99.44 889 5 0 1 889 27 915 0 1615 gi 310841256 ib GU105784.1 98.89 10 0 28 925 1 898 0 1604 gi 310842899 jb GU107427.1 98.36 912		98.8		11	0	24				0	1629
gi 310842898 [gb] GU107426.1 98.9 908 10 0 31 938 1 908 0 1622 gi 310840856 [gb] GU107384.1 99.77 881 2 0 28 908 1 880 0 1652 gi 310840856 [gb] GU105384.1 99.77 880 2 0 28 908 1 880 0 1615 gi 239620487 [gb] Fl651880.1 99.44 889 5 0 1 889 27 915 0 1615 gi 130842261 [gb] Fl651880.1 99.44 889 5 0 28 925 1 89 0 1641 gi 1239620493 [gb] Fl651886.1 99.21 889 7 0 1 889 27 915 0 1604 gi 310842289 [gb [GU107477.1] 98.36 912 15 0 27 935 1 6104	gi 310841348 gb GU105876.1	99.12	905	8	0			1	905	0	1628
B B C <thc< th=""> <thc< th=""> <thc< th=""> <thc< th=""></thc<></thc<></thc<></thc<>					-					-	
gi 310840807 [gb GU105335.1] 99.77 880 2 0 26 905 1 880 0 1615 gi 239620487 [gb F1651880.1] 99.44 889 5 0 1 889 27 915 0 1615 gi 310841256 [gb GU105784.1] 98.89 898 10 0 28 925 1 898 0 1604 gi 239620493 [gb F1651886.1] 99.21 889 7 0 1 889 27 15 0 1604 gi 310842899 [gb GU107427.1] 98.36 912 15 0 27 938 1 912 0 1604		98.9	908		0	31		1		0	1622
Bi 239620487 [gb] [F1651880.1] 99.44 889 5 0 1 889 27 915 0 1615 gi 310841256 [gb] [GU105784.1] 98.89 898 10 0 28 925 1 898 0 1604 gi 239620493 [gb] [F6151886.1] 99.21 889 7 0 1 889 27 915 0 1604 gi 310842289 [gb] [GU107427.1] 98.36 912 15 0 27 938 1 912 0 1604		99.77	881		0			1		0	
B D I B B D I B B D I B B D I I B D I I D I I D I I D I D I D I D I D I D I D I D I D I D I D I D D I D D D D <thd< th=""> <thd< th=""> <thd< th=""> <thd< th=""></thd<></thd<></thd<></thd<>	gi 310840807 gb GU105335.1	99.77	880	2	0	26	905	1	880	0	1615
gi 239620493 gi 7 0 1 889 27 915 0 1604 gi 310842899 gb GU107427.1 98.36 912 15 0 27 938 1 912.0 1604				-		-				0	1615
gi 310842899 gb GU107427.1 98.36 912 15 0 27 938 1 912 0 1602	gi 310841256 gb GU105784.1	98.89			0	28				0	
	gi 239620493 gb FJ651886.1	99.21	889	7	0	1	889	27	915	0	1604
gi 310842632 gb GU107160.1 98.78 900 11 0 27 926 1 900 0 1602										0	
	gi 310842632 gb GU107160.1	98.78	900	11	0	27	926	1	900	0	1602

gi 310838465 gb GU102993.1
gi 310842230 gb GU106758.1
gi 310843290 gb GU107818.1
gi 310842840 gb GU107368.1
gi 310841113 gb GU105641.1
gi 291331103 gb GU957635.1
gi 310842044 gb GU106572.1
gi 310841152 gb GU105680.1
gi 310840857 gb GU105385.1
gi 291328328 gb GU954860.1
gi 310841879 gb GU106407.1
gi 295651187 gb HM013421.1
gi 239620005 gb FJ651398.1
gi 291328488 gb GU955020.1
gi 310841909 gb GU106437.1
gi 239619923 gb FJ651316.1
gi 169279765 gb EU464290.1
gi 291331104 gb GU957636.1
gi 239620484 gb FJ651877.1
gi 239620008 gb FJ651401.1
gi 310839154 gb GU103682.1
gi 310841445 gb GU105973.1
gi 291328286 gb GU954818.1
gi 239620488 gb FJ651881.1
gi 239619382 gb FJ650775.1
gi 310840977 gb GU105505.1
gi 291328529 gb GU955061.1
gi 310842046 gb GU106574.1
gi 310841342 gb GU105870.1
gi 310838205 gb GU102733.1
gi 310837149 gb GU101677.1
gi 310835970 gb GU100498.1
gi 291331110 gb GU957642.1
gi 239619213 gb FJ650606.1

	98.89	897	10	0	24	920	1	897	0	1602	
	98.88	896	10	0	24	919	1	896	0	1600	
	99.77	868	2	0	24	891	1	868	0	1592	
	98.45	905	13	1	28	931	1	905	0	1592	
	98.55	898	13	0	29	926	1	898	0	1587	
	98.88	889	10	0	1	889	27	915	0	1587	
	98.66	894	12	0	24	917	1	894	0	1585	
	98.77	892	10	1	27	918	1	891	0	1585	
	98.55	897	13	0	28	924	1	897	0	1585	
	99.43	873	5	0	1	873	29	901	0	1585	
	99.54	868	4	0	33	900	2	869	0	1581	
	98.76	889	11	0	1	889	28	916	0	1581	
	98.76	889	11	0	1	889	16	904	0	1581	
	98.76	889	10	1	2	889	3	891	0	1580	
	99.54	866	4	0	27	892	1	866	0	1578	
	99.42	869	5	0	21	889	1	869	0	1578	
	98.02	908	18	0	461	1368	18	925	0	1578	
	98.65	889	12	0	1	889	27	915	0	1576	
	98.65	889	12	0	1	889	27	915	0	1576	
	98.65	889	12	0	1	889	17	905	0	1576	
	98.98	879	9	0	27	905	1	879	0	1574	
	99.77	857	2	0	21	877	1	857	0	1572	
	98.54	889	13	0	1	889	28	916	0	1570	
	98.54	889	13	0	1	889	27	915	0	1570	
	98.54	889	13	0	1	889	27	915	0	1570	
	99.42	864	5	0	27	890	1	864	0	1568	
	98.43	889	14	0	1	889	28	916	0	1565	
	98.53	885	13	0	24	908	1	885	0	1563	
	99.77	852	2	0	24	875	1	852	0	1563	
	98.32	892	13	2	25	916	1	890	0	1563	
	99.42	860	5	0	33	892	3	862	0	1561	
	99.3	863	6	0	29	891	1	863	0	1561	
	98.31	889	15	0	1	889	27	915	0	1559	
	98.31	888	15	0	1	888	27	914	0	1557	

1									i i	ı r	
gi 310842067 gb GU106595.1	99.53	854	4	0	24	877	1	854	0		
gi 310841114 gb GU105642.1	99.3	860	6	0	29	888	1	860	0	1555	
gi 239619393 gb FJ650786.1	98.63	877	12	0	1	877	27	903	0	1554	
gi 529080432 gb KF229853.1	98.96	866	9	0	24	889	1	866	0	1550	
gi 310840808 gb GU105336.1	98.74	872	11	0	27	898	1	872	0	1550	
gi 239619345 gb FJ650738.1	98.63	874	12	0	1	874	27	900	0	1548	
gi 310841380 gb GU105908.1	99.53	849	4	0	29	877	1	849	0	1546	
gi 291331651 gb GU958183.1	97.98	890	16	2	1	889	28	916	0	1543	
gi 310838473 gb GU103001.1	99.64	843	3	0	24	866	1	843	0	1541	
gi 310839536 gb GU104064.1	98.62	870	10	2	24	892	1	869	0	1539	
gi 291331102 gb GU957634.1	99.41	848	5	0	42	889	1	848	0	1539	
gi 239620288 gb FJ651681.1	98.73	866	11	0	1	866	11	876	0	1539	
gi 310838146 gb GU102674.1	98.73	866	10	1	25	890	1	865	0	1537	
gi 529083001 gb KF232422.1	98.62	867	12	0	1	867	23	889	0	1535	
gi 529080529 gb KF229950.1	98.84	861	10	0	2	862	1	861	0	1535	
gi 291329410 gb GU955942.1	98.73	864	11	0	1	864	14	877	0	1535	
gi 529080654 gb KF230075.1	99.06	854	8	0	1	854	21	874	0	1533	
gi 310841035 gb GU105563.1	98.5	868	13	0	28	895	1	868	0	1531	
gi 169287659 gb EU472184.1	97.44	898	23	0	471	1368	1	898	0	1531	
gi 310838633 gb GU103161.1	99.64	837	3	0	33	869	3	839	0	1530	
gi 310842151 gb GU106679.1	99.4	840	5	0	27	866	1	840	0	1524	
gi 310842099 gb GU106627.1	99.4	840	5	0	27	866	1	840	0	1524	
gi 310841955 gb GU106483.1	99.4	840	5	0	24	863	1	840	0	1524	
gi 310841878 gb GU106406.1	99.4	840	5	0	24	863	1	840	0	1524	
gi 310838817 gb GU103345.1	99.64	834	3	0	29	862	1	834	0	1524	
gi 310838576 gb GU103104.1	99.52	837	3	1	27	863	1	836	0	1522	
gi 310841036 gb GU105564.1	98.38	865	14	0	28	892	1	865	0	1520	
gi 164454293 dbj AB265290.1	97.53	889	21	1	478	1366	1	888	0	1519	
gi 310841954 gb GU106482.1	99.05	845	8	0	33	877	1	845	0	1517	
gi 310841907 gb GU106435.1	99.4	835	5	0	29	863	1	835	0	1515	
gi 310838717 gb GU103245.1	99.52	833	3	1	33	865	3	834	0	1515	
gi 310833518 gb GU098046.1	99.52	832	4	0	33	864	1	832	0	1515	
gi 310841908 gb GU106436.1	99.28	837	6	0	27	863	1	837	0	1513	
gi 118136060 gb EF071471.1	98.82	849	10	0	1	849	20	868	0	1513	

gi 310841536 gb GU106064.1	99.16	838	7	0	29	866	1	838	0	1509	
gi 310841078 gb GU105606.1	99.17	839	6	1	27	864	1	839	0	1509	
gi 310838778 gb GU103306.1	99.16	838	7	0	28	865	1	838	0	1509	
gi 310841959 gb GU106487.1	99.28	835	5	1	29	863	1	834	0	1507	
gi 310841378 gb GU105906.1	99.05	840	8	0	24	863	1	840	0	1507	
gi 310842517 gb GU107045.1	98.15	863	16	0	27	889	1	863	0	1506	
gi 310833629 gb GU098157.1	98.82	845	10	0	22	866	1	845	0	1506	
gi 310840786 gb GU105314.1	98.93	840	9	0	27	866	1	840	0	1502	
gi 310839537 gb GU104065.1	98.81	843	10	0	24	866	1	843	0	1502	
gi 310841875 gb GU106403.1	98.47	851	13	0	27	877	1	851	0	1500	
gi 310840855 gb GU105383.1	98.7	845	11	0	27	871	1	845	0	1500	
gi 310837024 gb GU101552.1	98.36	856	11	3	27	879	1	856	0	1500	
gi 310838419 gb GU102947.1	99.88	814	1	0	50	863	4	817	0	1498	
gi 110440903 gb DQ800503.1	99.04	835	8	0	1	835	33	867	0	1498	
gi 310842583 gb GU107111.1	98.36	852	14	0	25	876	1	852	0	1496	
gi 310840877 gb GU105405.1	98.81	840	10	0	27	866	1	840	0	1496	
gi 310837892 gb GU102420.1	98.81	840	10	0	24	863	1	840	0	1496	
gi 310833517 gb GU098045.1	99.16	831	7	0	33	863	1	831	0	1496	
gi 310842068 gb GU106596.1	98.24	854	15	0	24	877	1	854	0	1495	
gi 399141153 gb JQ265125.1	98.69	842	10	1	38	878	1	842	0	1493	
gi 310842262 gb GU106790.1	99.39	823	5	0	21	843	1	823	0	1493	
gi 310833423 gb GU097951.1	99.16	829	7	0	36	864	4	832	0	1493	
gi 310842231 gb GU106759.1	98.58	843	12	0	24	866	1	843	0	1491	
gi 310842154 gb GU106682.1	98.69	840	11	0	24	863	1	840	0	1491	
gi 310842135 gb GU106663.1	98.69	840	11	0	27	866	1	840	0	1491	
gi 310842045 gb GU106573.1	98.69	840	11	0	24	863	1	840	0	1491	
gi 310841956 gb GU106484.1	98.69	840	11	0	24	863	1	840	0	1491	
gi 310842138 gb GU106666.1	98.57	840	12	0	27	866	1	840	0	1485	
gi 310838495 gb GU103023.1	99.03	828	8	0	24	851	1	828	0	1485	
gi 239620227 gb FJ651620.1	98.34	844	14	0	35	878	2	845	0	1482	
gi 399141562 gb JQ265534.1	98.68	835	9	2	1	833	65	899	0	1480	
gi 310842150 gb GU106678.1	98.57	837	12	0	27	863	1	837	0	1480	
gi 310842101 gb GU106629.1	98.45	840	13	0	24	863	1	840	0	1480	
gi 310842097 gb GU106625.1	98.45	840	13	0	27	866	1	840	0	1480	

gi 310841108 gb GU105636.1	97.79	861	14	5	39	895	2	861	0	1480	
gi 310837285 gb GU101813.1	98.91	828	9	0	24	851	1	828	0	1480	

References:

- 1. Schmidt TM (http://microbiomes.umms.med.umich.edu/wp-content/uploads/2012/08/media_and_buffer_used_ for_culturing_human_gut_microbiome.pdf)
- 2. Shen F, Du WB, Davydova EK, Karymov MA, Pandey J, Ismagilov RF (2010) Nanoliter multiplex PCR arrays on a SlipChip. *Anal. Chem.* 82(11):4606-4612.
- 3. Liang Ma SSD, Mikhail A. Karymov, Qichao Pan, Stefano Begolo, and Rustem F. Ismagilov (2014) Individually addressable arrays of replica microbial cultures enabled by splitting SlipChips. *Integr Biol*, In Press. DOI: 10.1039/C4IB00109E.
- 4. Lane DJ (1991) 16S/23S rRNA sequencing. in Nucleic Acid Techniques in Bacterial Systematics. Eds Stackebrandt E, Goodfellow M (Wiley, New York), pp 115–175.
- 5. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16s rrna. *Appl. Environ. Microbiol.* 59(3):695-700.
- 6. Stevenson BS, Eichorst SA, Wertz JT, Schmidt TM, Breznak JA (2004) New strategies for cultivation and detection of previously uncultured microbes. *Appl. Environ. Microbiol.* 70(8):4748-4755.
- 7. Miyazaki K, Martin JC, Marinsek-Logar R, Flint HJ (1997) Degradation and utilization of xylans by the rumen anaerobe Prevotella bryantii (formerly P. ruminicola subsp. brevis) B(1)4. *Anaerobe* 3(6):373-381.
- 8. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2010) Global patterns of 16s rrna diversity at a depth of millions of sequences per sample. *Proceedings of the National Academy of Sciences*.
- 9. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the illumina HiSeq and MiSeq platforms. *Isme Journal* 6(8):1621-1624.
- 10. Walters WA, Caporaso JG, Lauber CL, Berg-Lyons D, Fierer N, Knight R (2011) Primerprospector: *De novo* design and taxonomic analysis of barcoded polymerase chain reaction primers. *Bioinformatics* 27(8):1159-1161.
- 11. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16s rRNA gene database and workbench compatible with arb. *Appl. Environ. Microbiol.* 72(7):5069-5072.
- 12. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: Opensource, platform-independent, community-supported software for describing and comparing microbial communities. *Applied and Environmental Microbiology* 75(23):7537-7541.
- 13. Kuczynski J, Stombaugh J, Walters WA, Gonzalez A, Caporaso JG, Knight R (2012) Using qiime to analyze 16s rRNA gene sequences from microbial communities. *Current protocols in microbiology* Chapter 1:Unit 1E.5.-Unit 1E.5.
- 14. Masella A, Bartram A, Truszkowski J, Brown D, Neufeld J (2012) PANDAseq: Paired-end assembler for illumina sequences. *BMC Bioinformatics* 13(1):31.
- 15. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. *Bioinformatics* 26(19):2460-2461.
- 16. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. *Bioinformatics* 27(16):2194-2200.
- 17. Turner S, Pryer KM, Miao VPW, Palmer JD (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small submit rRNA sequence analysis. *Journal of Eukaryotic Microbiology* 46(4):327-338.
- 18. Edgar RC (2004) Muscle: Multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Research* 32(5):1792-1797.
- 19. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüßmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) Arb: A software environment for sequence data. *Nucleic Acids Research* 32(4):1363-1371.
- 20. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* 19(12):1572-1574.
- 21. Stoecker K, Daims H, Wagner M (2005) Fluorescence *in situ* hybridization for the detection of prokaryotes. *Molecular microbial ecology*, eds Osborn AMSmith CJ (Bios Advanced Methods), pp 213-239.

- 22. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNAtargeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. *Appl Environ Microbiol* 56(6):1919-1925.
- 23. Daims H, Bruhl A, Amann R, Schleifer KH, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all *Bacteria*: Development and evaluation of a more comprehensive probe set. *Syst Appl Microbiol* 22(3):434-444.
- 24. Wallner G, Amann R, Beisker W (1993) Optimizing fluorescent *in situ* hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. *Cytometry* 14(2):136-143.
- 25. Stahl DA, Amann R (1991) Development and application of nucleic acid probes. *Nucleic acid techniques in bacterial systematics*, eds Stackebrandt EG, Goodfellow M (John Wiley & Sons Ltd., Chichester, New York), pp 205-248.
- 26. Zerbino DR, Birney E (2008) Velvet: Algorithms for *de novo* short read assembly using de Bruijn graphs. *Genome Research* 18(5):821-829.
- 27. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung DW, Yiu S-M, Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam T-W, Wang J (2012) Soapdenovo2: An empirically improved memory-efficient short-read *de novo* assembler. *GigaScience* 1(1):18-18.