Math 2371 Calc III Sample Test 3 - Solns

1. Evaluate the following line integrals:
(i) $\int_{C} x y d s$ where C counter clockwise direction along the circle $x^{2}+y^{2}=4$ from $(2,0)$ to $(0,2)$.

Soln. We use the parametrization $x=2 \cos t, y=2 \sin t$ where $t=0 \rightarrow \pi / 2$.
Now $\frac{d x}{d t}=-2 \sin t$ and $\frac{d y}{d t}=2 \cos t$ giving

$$
d s=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d x}{d t}\right)^{2}} d t=\sqrt{(-2 \sin t)^{2}+(2 \cos t)^{2}} d t=2 d t
$$

the line integral is

$$
\int_{0}^{\pi / 2} 8 \sin t \cos t d t=\left.4 \sin ^{2} t\right|_{0} ^{\pi / 2}=4
$$

(ii) $\int_{C}(x+y) d x-2 x d y$ where C is the parabola $y=x^{2}$ from $(0,0)$ to $(2,4)$.

Soln. If $y=x^{2}$ then $d y=2 x d x$ and the line integral becomes

$$
\int_{0}^{2}\left(x+x^{2}\right) d x-2 x \cdot 2 x d x=\int_{0}^{2}\left(x-3 x^{2}\right) d x=\frac{1}{2} x^{2}-\left.x^{3}\right|_{0} ^{2}=-6
$$

2. Is the following vector field conservative?

$$
\vec{F}=<2 x y, x^{2}+z^{2}, 2 y z>.
$$

Soln. Since $\nabla \times \vec{F}=0$ (you need to show this) then the vector field is conservative. Thus f exists such that $\vec{F}=\vec{\nabla} f$ so

$$
\begin{array}{ll}
f_{x}=2 x y & \Rightarrow f=x^{2} y+A(y, z) \\
f_{y}=x^{2}+z^{2} & \Rightarrow f=x^{2} y+y z^{2}+B(x, z) \\
f_{z}=2 y z & \Rightarrow f=y z^{2}+C(x, y)
\end{array}
$$

Therefore we see that

$$
f=x^{2} y+y z^{2}+c
$$

(we set $c=0$ for the next part) and

$$
\int_{C} 2 x y d x+\left(x^{2}+z^{2}\right) d y+2 y z d z=x^{2} y+\left.y z^{2}\right|_{(1,1,1)} ^{(2,3,4)}=58
$$

3. Evaluate the following line integral $\int_{C} 2 y d x+x d y+d z$ where C is the line joining $(0,1,2)$ to $(1,-2,2)$.

Soln. Here, we need the parametric equation that connects the points. If $P(0,1,2)$ to $Q(1,-2,2)$ are the points, the vector that connects the points is $\overrightarrow{P Q}=<1,-3,0>$ and the line is $x=0+t, y=1-3 t$ and $z=2$. To evaluate the line integral we need the differentials. These are $d x=d t, d y=-3 d t$ and $d z=0$. Thus the line integral becomes

$$
\int_{0}^{1} 2(1-3 t) d t+t(-3) d t=\int_{0}^{1}(2-9 t) d t=2 t-\left.\frac{9}{2} t^{2}\right|_{0} ^{1}=-\frac{5}{2}
$$

4. Green's Theorem is

$$
\int_{C} P d x+Q d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

Verify Green's Theorem where $\vec{F}=<y^{2}, x^{2}+2 x y>$ where R is the region bound by the curves $y=x^{2}, y=1$ and $x=0$ in $Q 1$ (see the figure below).

(a) \#4.

Soln. Here, we have three separate curves which we denote by C_{1}, C_{2} and C_{3}.
$C_{1}: \quad$ So $y=x^{2}, d y=2 x d x$ so $\int_{0}^{1} x^{4} d x+\left(x^{2}+2 x^{3}\right) 2 x d x=3 / 2$
$C_{2}:$ So $y=1, d y=0$ so $\int_{1}^{0} d x=-1$
$C_{3}:$ So $x=0, d x=0$ so $\int_{C_{3}} 0=0$
Thus $\int_{c} y^{2} d x+\left(x^{2}+2 x y\right) d y=3 / 2-1+0=1 / 2$.
For the second part, $P=y^{2}$ and $Q=x^{2}+2 x y$ then $Q_{x}-P_{y}=2 x+2 y-2 y=2 x$. Therefore

$$
\iint_{R}\left(Q_{x}-P_{y}\right) d A=\int_{0}^{1} \int_{x^{2}}^{1} 2 x d y d x=1 / 2
$$

