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Proofs – By Contradiction

General Approach:

1.Suppose the statement to be proved is false, that 

is, suppose that the negation of the statement is 

true.

2.Show that this supposition leads logically to a 

contradiction.

3.Conclude that the statement to be proved is true.



Proofs – By Contradiction

General Approach:

We need to show P → Q. 

Assume ¬Q.

Then, we show that (P ∧ ¬Q) → (r ∧ ¬r) for some statement r.

Why this approach works?

• We showed that P ∧ ¬Q is always false (as it leads to a 

contradiction).

• Since P is given and is true, so ¬Q must be false.

• That means Q is true, which is the desired statement.

contradiction



Proofs – By Contradiction

General Approach:

We need to show P → Q. 

Assume ¬Q.

Then, we show that (P ∧ ¬Q) → (r ∧ ¬r) for some proposition r.

• Do you see any similarity / difference with the proof by 

contraposition?

• Which one is more general?

• Proof by contradiction is a very useful approach.



Proofs – By Contradiction

(Assuming negation of the given statement)

Assume there is at least one integer n that is both even and odd.

(Now try to deduce a contradiction)

Thus, n = 2a for some integer a (by the definition of even integer)

Similarly, n = 2b + 1 for some integer b (by the definition of odd)

Consequently,   2a = 2b + 1

And so,         2a – 2b = 1

2(a – b) = 1

a – b = 1/2

Since, a and b are integers, their difference must be integer. But, here 

(a – b) is not an integer, which is a contradiction. Hence, the given 

statement is true.

Prove: There is no integer that is both even and odd.



Proofs – By Contradiction

Prove: The sum of any rational number and any irrational number is irrational.

(Assuming negation of the given statement)

Assume there is rational number r and an irrational number i such that their sum is 

rational.

(Now try to deduce a contradiction)

𝑟 = 
𝑎

𝑏
, for some a and b (by the definition of rational numbers)

And, 𝑟 + 𝑖 =
𝑐

𝑑
, for some c and d (by our assumption)

So, 
𝑎

𝑏
+ 𝑖 = 

𝑐

𝑑

𝑖 = 
𝑐

𝑑
-
𝑎

𝑏
=

𝑏𝑐−𝑎𝑑

𝑏𝑑

Since a,b,c,d are integers, (bc – ad) is an integer and bd is also an integer. 

Moreover, bd ≠ 0 (by the zero product property).

This means that i is a rational number, which is a contradiction.

Thus, the given statement is true.



Proofs – By Contradiction

Prove: 

2 is an irrational number



Proofs – By Contradiction

Prove: 

There is no greatest integer.



Proofs – By Cases

Approach:

Simply break down the domain into a few different 

classes and then give a proof for each class.

Examples: 

1. Odd/even

2. < 0, =0, >0

3. Rational/irrational



Proofs – By Cases

Prove: For every integer x, the integer (x2-x) is even.

Case 1: x is even

1. Assume x is even

2. x = 2k for some integer k

3. (rest of proof for case of x is even…substitute and solve) 

Case 2: x is odd

1. Assume x is odd

2. x = 2k+1 for some integer k

3. (rest of proof for case of x is odd…substitute and solve)

We divide our domain into even and odd integers, prove the statement 

separately.

Since we have demonstrated that x2-x is an even integer in all 

possible cases, we can conclude that it is even. QED.



Proofs – By Cases

Prove: For any real numbers x and y, |x+y| ≤ |x| + |y|

We consider two separate cases: x+y ≥ 0 and x+y < 0.

Case 1: x+y ≥ 0 

Then, 

|x + y| = x + y 

≤ |x| + y

≤ |x|+|y|.

Recall:

Case 2: x+y < 0 

Then, 

|x + y| = -(x + y) 

= (-x) + (-y) 

≤ |x| + (-y) 

≤ |x|+|y|.



If and Only If (Iff) Proofs

Prove:

P if and only if Q

P ↔ Q

P and Q are equivalent statements

Approach: 

We need to prove both “directions”, that is 

P → Q 

and

Q → P.



If and Only If (Iff) Proofs

Prove: x is an odd integer if and only if x2 is an odd integer

If x is an odd integer, then x2 is an odd integer (P → Q)

x is odd, which means x = 2k + 1. Thus, 

x2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1. 

Since (2k2 + 2k) is an integer, x2 is odd by the definition of odd integer.

If x2 is an odd integer, then x is an odd integer (Q → P)

We can prove it using any of the approaches we learned, but by 

contraposition works nicely here. How?

We rather prove: if x is even, then x2 is even. (pretty easy)

Then, by contraposition, we have shown that, if x2 is odd then x is odd.

This way we have proven in both directions, and hence the given statement 

is true.



Counterexamples

• We can disprove a statement by finding an example/case 

for which the statement is false. Such an example is called 

a counterexample.

• In other words, we can prove the statement 

“∀x P(x) is false” 

by finding a value of x for which P(x) is false. Such a value 

of x constitute a counterexample.

(By the way, can we prove a statement “∀x P(x) is true” through 

some examples?) 



Counterexamples

Prove that the statement “Every positive integer is the 

sum of the squares of two integers” is false.

• Since we are trying to “disprove” a statement, we can 

try to look for a counterexample. 

• Here 3 is a counterexample.

• Note that we have to formally show why 3 is a 

counterexample?

• In other words, we need to show that 3 cannot be 

written as the sum of the squares of two integers.



Counterexample Proof

Interesting and fun example: A 200 year old problem posed by Euler, was settled in 1966 by 

finding a counterexample. The paper also qualifies for one of the shortest (serious) papers in 

Mathematics.

Published in the Bulletin of the American Mathematical Society 72.6 (1966)



Some Proof Mistakes

What is wrong with this “proof”?

Theorem: If n2 is positive, then n is positive.

“ Proof ” 

Suppose that n2 is positive. Because the conditional 

statement 

“If n is positive, then n2 is positive” is true, 

we can conclude that n is positive.

(We are assuming if (P → Q), then (Q → P), which is incorrect in 

general.)



Some Proof Mistakes

What is wrong with this “proof”?

Theorem: If n is not positive, then n2 is not positive.

“ Proof ” 

Suppose that n is not positive. Because the conditional 

statement 

“If n is positive, then n2 is positive” is true, 

we can conclude that n2 is not positive.

(We are assuming if (P → Q), then (¬ P → ¬ Q), which is incorrect 

in general.)



Example of a Simple Elegant Proof

Finally, lets conclude and treat ourselves by looking at one of the 

simplest, most elegant proofs (presented some 2000 years ago).  

Theorem: There are infinitely many primes.

Lets prove it ….

(Also observe the flavor of contradiction, cases)



Example of a Simple Elegant Proof

Main Idea:

Assume we have a finite list of primes: 𝑝1, 𝑝2 , … , 𝑝𝑛

Lets consider a number 𝑁 = ( 𝑝1 𝑝2…𝑝𝑛 ) + 1.

Now this number is either prime or not.

Case 1: N is prime. 

It means our finite list was missing a prime.

Case 2: N is not a prime. 

It means N is divisible by some prime pi. If pi is not in our list, we again 

get a new prime and our list was not complete. So, we assume pi is in 

our list. Then,

𝑁

𝑝𝑖
= 

( 𝑝1𝑝2…𝑝𝑛 ) + 1

𝑝𝑖
= 

( 𝑝1𝑝2…𝑝𝑛 )

𝑝𝑖
+ 

1

𝑝𝑖
= (not an integer)

Thus, no prime in the list divides N. So, our list of primes is incomplete.



Subproof *

At some point in a proof, you decide you’d like to be able to derive a 
conditionality X → Y on a line, but you can’t figure out how. 

1. Add an assumption line consisting of X, then proceed using 

the rules.

2. Since X was only assumed (for the sake of showing X →Y), 

shift the lines of the derivation to the right.

3. Keep deriving lines until you derive Y. At this point, we don’t 

know whether X is actually true, since we just assumed it, 

but we have shown that:

if X were true, then Y would be true.

So the subproof shows that the conditional statement X →Y

can be validly inferred.

* Not in ZyBook.



Sub-proofs (Examples)

Prove: If a person has the flu then the person has fever and

headache. Therefore, a person with the flu has a fever.

L: Person has the flu. F: Person has fever.   H: Person has headache.

Prove: (L  (F  H))  (L  F) 

Statements Assumptions Reasons

1. L  (F  H) Premise

2. L Premise [L  F]

3. F  H Modus Ponens, 1, 2

4. F Simplification, 3

5. L  F Sub-proof: none of these lines can be used in the rest of the proof.  

Remember, we do not know the truth value of these propositions.

Indicate the intent



Sub-proofs*

Writing Style:

• When doing a sub-proof, indent the statements of the sub-
proof. 

• When you reach the conclusion, write down the sub-proof 
conclusion without indentation.

• Note that when the sub-proof is complete, the premise (of the 
sub-proof) is discharged.

* Not in ZyBook.

Nested Subproofs:

As long as the rules for subproofs are followed, a single proof can 

have more than one subproof, and can even have subproofs within 

subproofs. 



Sub-proofs (Examples)

Prove: (A  B)  (B  C  D)  (A  D) 

Statements Assumptions Reasons

1. A  B Premise

2. B  C  D Premise

3. A Premise [A  D]

4. B MP, 1, 3

5. B  C Addition, 4

6. D MP, 2, 5

7. A  D

Sub-proof


