

 \overline{r}

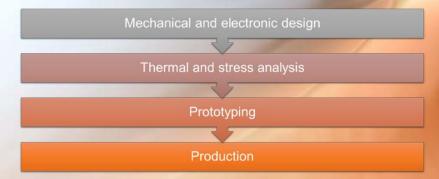
European Thermodynamics Limited Intelligent Thermal Management

TE Modules Production and Control: Present and Future

Kevin Simpson

European Thermodynamics Ltd: an introduction

- Founded in 2001. Private Ltd Co. 1
- Bespoke thermal management М
- 26 full and part-time staff 1

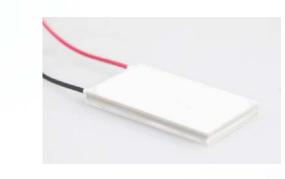

R&D department (6 Researchers) &

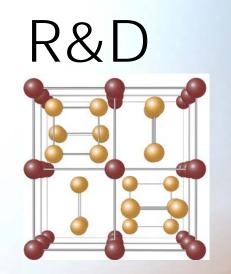
Engineering (8 Engineers and 2 Technicians)

- €5m annual turnover
- R&D projects part-funded by: 1

BESPOKE DEVELOPMENT FOR THERMAL MANAGEMENT

LEADING SECTORS



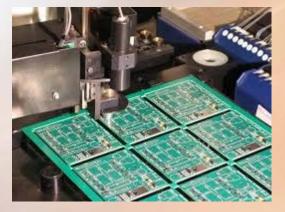


New products

Wireless energy harvesting kit New thermoelectric cooler modules

Novel thermoelectric materials

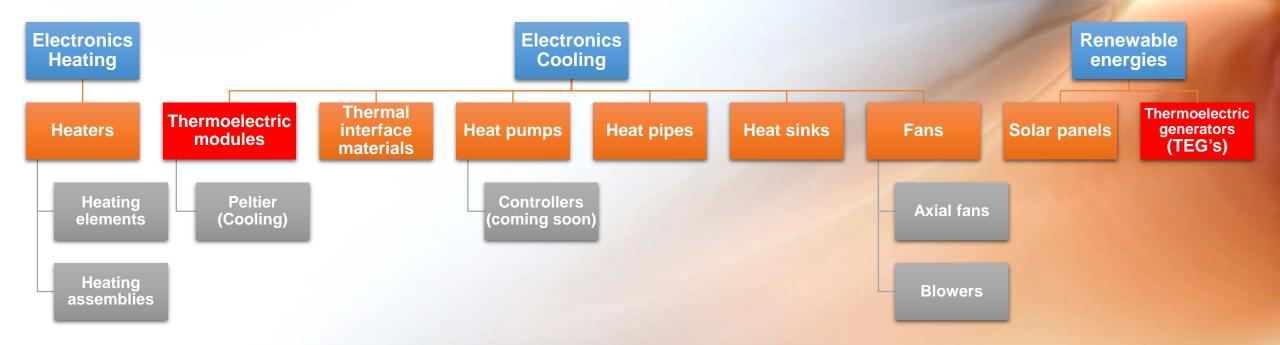
Flexible TEGs



Temperature controller

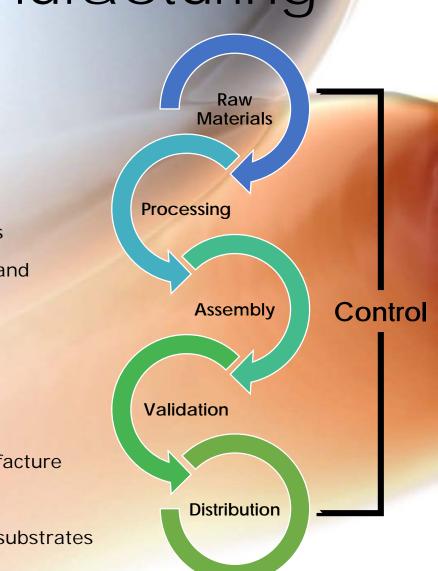
Adaptive

Thermoelectric assembly



PCB/TEG fabrication

TEG reliability analysis


Products

Current Research into Manufacturing

Aims:

- Establish a UK supply chain for Thermoelectric module manufacture
- Bespoke and unique module design and fabrication
- Increase material efficiency and production autonomy
- Novel thermoelectric materials to exploit alternative markets through USPs
 - Powder formulation, Sintering Process, Metallisation, Cutting, Joining and module assembly
- Design and manufacture high reliability devices
- M Projects:
 - PrinTEG-Automated production line for TEGs
 - ElectroTEG-Electrodeposition of TE material to increase efficiency of manufacture
 - Prestege-Screen printing of thermoelectric pastes. Flexible substrates
 - Enhanced-Ink jet printing of TE inks. Complex module designs on flexible substrates

Control Stages

Material Consolidation Thermoelectric Pellets Machining Thermoelectric Device Assembling

Seebeck

Control Methods

- Thermal Conductivity
- Electrical Resistivity
- Mechanical Testing

- M Dimensional Control
- Contact Resistance
- Metallisation Barriers

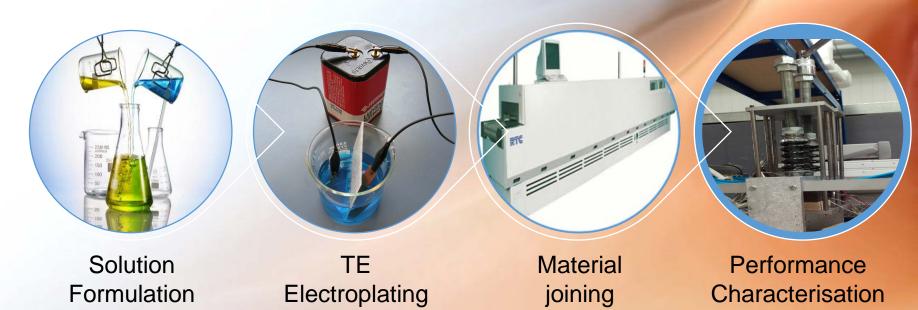
- Marman Method
- M AC Resistance
- Module Performance

Test Rig

Prestege & Enhanced Screen/Ink-Jet Printed TEGs

- Utilising established manufacturing techniques applied into reproducible/scalable TEG manufacture
- Reduced material wastage
- Validation of controlled characteristics:
 - Bespoke Seebeck test rig
 - 4 point probe sheet electrical resistivity

Silk Screen Printing

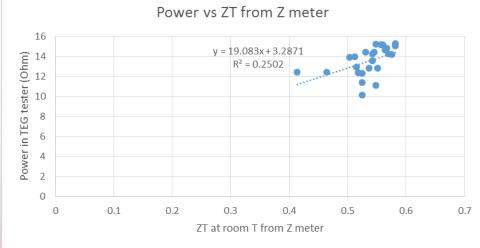

Ink-Jet Printing

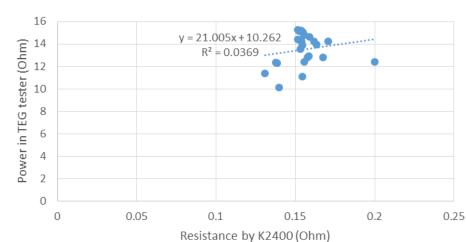
Firing/Sintering

Seebeck Characterisation Electrical Characterisation

ElectroTEG Electrodeposited TEGs

- Developing novel plating formulation
- Low cost and scalable process
- Reduced material wastage
- Full prototype module characterisation:
 - AC resistance
 - Power performance
 - Harman measurements
 - Hall measurements


PrinTEG: Control Within Fabrication Process


Accuracy and reliability:

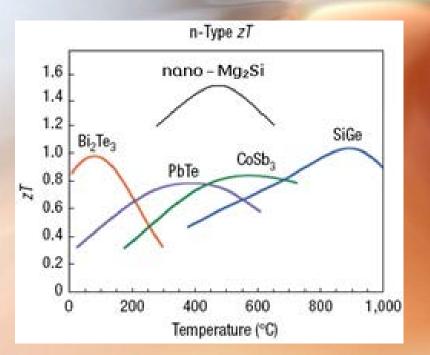
- Placement accuracy to approximately $\pm 20\mu$ m.
- Minimum spacing 100µm.
- Higher: Voltage, fill-factor/power density.
- ✓ 200 pellets placed accurately.
- Minimal human interaction.
- Continuous production process.
- Approximately 4 minutes to accurately position pellets for a module.
- ✓ Validation:
 - Pickup inspection-Single pellets.
 - Cyberoptics, optical inspection-macroscopic inspection.

PrinTEG: Control Within Fabrication Process

- For industrial production levels, inline characterisation techniques must be developed for quality control
- ✓ Necessary requirements:
 - M Quick measurement
 - Mon-destructive
 - 🖌 Accurate
 - Able to extrapolate from measurement
- Current issues arise with correlation between different measurement techniques e.g.:
 - TEG matched power point value (slow/offline)
 - Z-meter/Harman measurement (quick/inline)
 - 4-point probe resistance (quick/inline)
 - AC Resistance (quick/inline)

Device Performance

- ETL has carried out a literature review on module characterisation techniques used by manufacturing companies worldwide
- There is no standard method for accelerated lifetime tests
 - M The variation in test methods lead to non comparable data
- Many follow a variety of military standards designed for general electrical systems
- The difficulty in unifying lifecycle testing is that there are a multitude of applications that thermoelectric modules are used for
- We propose defining a set of lifecycle testing methods which are compatible for a variety of general applications
- ✓ This will benefit end users and material developers


Thermal cycling test rig developed to assess reliability-

- Non-unified test categories:
 - Mechanical shock
 - Vibration
 - M Shear force
 - Migh temperature soak
 - M Thermal cycling
 - Thermal shock
 - Market Temperature gradient

Desirable Material Characteristics

- Characteristics for determining suitability of new materials to realise material-prototype and prototype-mass production transition:
 - Material abundance and low toxicity
 - Estimated cost of processing and manufacturing route
 - Average ZT or peak ZT
 - Thermal stability > Ease of joining
 - Ease of metallisation
 - Mechanical characteristics (as a structural component)
 - Tailoring properties based on proposed use
 - E.g. Balancing power factor with thermal conductivity based on heat source and sink properties

Problems to Overcome

- Directions for determining performance of new materials
 - Estimated cost of processing and manufacturing route
 - Average ZT or peak ZT
 - Consider feedback from module lifetime cycling
- Inline characterisation issues: Devising a method which can take a quick measurement that accurately represents quality of a device
- Standardising methods for characterisation throughout supply chain and manufacturing
 - Promote accurate comparisons for a range of general systems/applications
 - ✓ Continuity/traceability
- End user confidence in UK supplied thermoelectric modules

Challenges

- Oxidation
- Metallisation
- M BiTe replacement
- Mechanical strength
- ✓ Brazing formulations
- ▶ N and P type performance matching
- Thermal stress problem
- Low cost process development
- Module reliability/material stability
- Interfacing (materials or direct application)