Resilient Sensor Placement for Fault Localization in Water Distribution Networks

W. Abbas¹, L. Perelman², S. Amin³, and X. Koutsoukos¹

¹Vanderbilt University ²University of Texas Austin ³Massachusetts Institute of Technology

April 19, 2017

Motivation

• Leakages in Water Distribution Networks:

- significant economic losses
- extra costs for final consumers
- third-party damage and health risks
- Sensors' failures and attacks: Sensors for network monitoring can give errors due to
 - faults and failures
 - cyber attacks

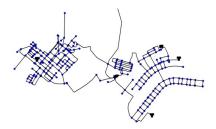
Main Objective

Sensor placement scheme that is efficient in terms of localizing pipe failures, and is also resilient to sensor errors.

April 19, 2017 2 / 28

Challenges

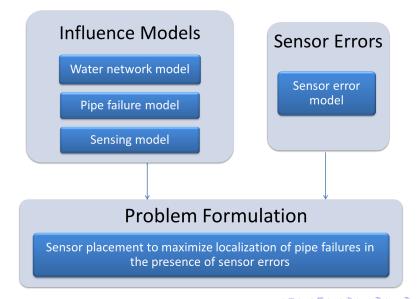
• Pipe failure uncertainty, budget constraints, uncertainty in sensing quality, event detection and localization.



Contributions

- Influence model to capture relationships between failure events and sensors.
- Optimal sensor placement to maximize localization of pipe failures with sensor errors as a combinatorial optimization problem.
- Exploring trade-offs between various system parameters, such as number of sensors, features extracted from failure signals, number of sensors with errors.

Overview



April 19, 2017 4 / 28

Influence Model

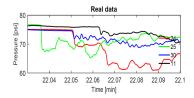
Water network G(V, E)

- Iinks E model pipes
- nodes V model junctions of pipes, reservoirs, sensors

Transient model for pipe failures

- Pipe bursts propagates as a pressure wave.
- High velocity $(500 1400[\frac{m}{s}])$.
- Wave signal dissipates depending on traveled distance, network topology and characteristics
- At different locations, pressure signals with different magnitudes, arrival times, and shapes are observed.





Sensing model

- Set of sensors: $S = \{S_1, \cdots, S_m\}$
- Set of events (pipe failures): $\mathcal{L} = \{\ell_1, \cdots, \ell_n\}$
- Set of features sensed in a transient signal: $\mathcal{Y} = \{1, \cdots, \eta\}$
- Each feature is represented by a boolean string.
- The output of a sensor i as a result of event ℓ_j :

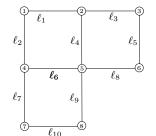
$$S_i(\ell_j) = \begin{bmatrix} s_1(\ell_j) & s_2(\ell_j) & \cdots & s_\eta(\ell_j) \end{bmatrix}$$

The array consisting of *m* sensor outputs for event ℓ_j is the signature of event ℓ_j :
 S(ℓ_i) = [S₁(ℓ_i) S₂(ℓ_i) ··· S_m(ℓ_i)]

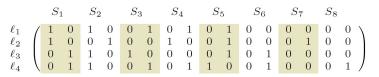
Influence Model

Example:

- Pipe length = 900[m]
- Wave propagation velocity = $1000 \left[\frac{m}{s}\right]$
- Wave dissipates after 1500[m].
- A sensor output consists of two bits, and has three possible outputs [0 0], [0 1], and [1 0].



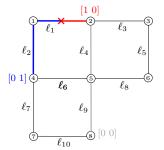
Influence matrix =



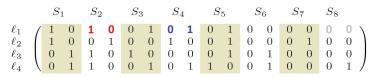
Influence Model

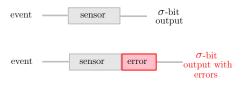
Example:

- Pipe length = 900[m]
- Wave propagation velocity = $1000\left[\frac{m}{s}\right]$
- Wave dissipates after 1500[m].
- A sensor output consists of two bits, and has three possible outputs [0 0], [0 1], and [1 0].



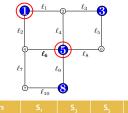
Influence matrix =





- **Error:** One or more of the output bits are flipped.
- Error sources: Sensor degradation, Cyber attacks
- At most *e* sensors can give incorrect outputs.

- Multiple sensor errors: Given a set of *m* sensors, at most *e* of them can give incorrect outputs for an event.
- Example: *e* = 2



Sensors	S ₁				S ₅		5 ₈	
correct op of $I_{\! 1}$	1	0	0	1	0	1	0	0
Possible o/p with 2 errors	0	1	1	0	1	0	0	0
with 2 errors								

Resilient sensor placement

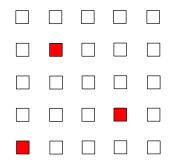
- How to place **m** sensors, each with a σ -bit output, to maximize the number of events that can be localized accurately, even if **e** of the deployed sensors give errors?
- At the same time, how can we evaluate such a sensor placement in water distribution networks?

Tradeoffs

What is the trade-off between **m**, **e**, σ , and the localization performance in the context of sensor placement for fault localization. In particular, fixing any two variables, what is the relationship between the remaining two?

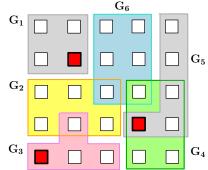
Group testing

- Set of elements out of which few are 'defective'.
- Determine the defective elements efficiently.



Group testing

- Set of elements out of which few are 'defective'.
- Determine the defective elements efficiently.



Query: Does G_i contain a defective element? Answer: 'Yes' or 'No'.

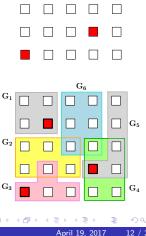
Group testing (GT)

- Set of elements with some defective ones.
- Elements are divided into groups.
- Questions are asked, "if G_i contains a defective element?"
- Answers are either "yes" or "no".
- Non-adaptive group testing (NAGT)
 - All groups are made a priori.
- NAGT with Unreliable Tests
 - Some questions answered incorrectly.

Results

- Necessary queries: $O((d^2/\log d)\log n)$
- Sufficient queries: $O(d^2 \log n)$

(e.g., Macula 1997, Porat and Rothschild 2011, Mazumdar and Mohajer 2014) 🖪 🗆 🕨



 \mathbf{G}_2

 G_3

NAGT

- elements
- defective elements
- groups
- tests (queries)
- unreliable tests

Resilient sensor placement

- pipes
- pipes with failures
- sensors
- sensors outputs
- sensors outputs with errors

However, there is a major difference.

- Typically in NAGT, any set of elements can be grouped together to make a test.
- In sensor placement, groups (tests) are coming from the physical system, i.e., any set of pipes cannot be grouped together.

Localization of Events

- Each sensor has a σ -bit output, $S_i(\ell_x)$
- Array of sensors' outputs is $S(\ell_x) = \begin{bmatrix} S_1(\ell_x) & \cdots & S_{tot}(\ell_x) \end{bmatrix}.$
- Hamming distance: $H(S(\ell_x), S(\ell_y))$

• Example:

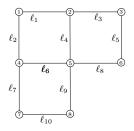
• Assume $\sigma = 2$, then four possible outputs:

$$a = [0 \ 0], \ b = [0 \ 1], \ c = [1 \ 0], \ and d = [1 \ 1].$$

$$S(\ell_1) = \left[\begin{array}{cccc} c & b & b & b & a & a \end{array}
ight]$$

$$S(\ell_2) = \begin{bmatrix} c & b & a & c & b & a & b \\ H(S(\ell_1), S(\ell_2)) = 4 \end{bmatrix}$$

• In the case of **no errors**, sensors' output *S* is always a signature of some event.



 ℓ_x can be distinguished from ℓ_y as long as the Hamming distance between $S(\ell_x)$ and $S(\ell_y)$ is at least one. Select *m* sensors (budget) such that the number of event pairs ℓ_x, ℓ_y whose signatures have a Hamming distance of at least one is maximized.

Influence matrix =

	S_1	S_2	S_3	S_4	S_5	S_6	S_7	s_8
ℓ_1	c	c	b	b	b	a	a	a^{s_8}
ℓ_2	c	b	a	c	b	a	b	a
ℓ_3	b	c	c	a	b	b	a	a
ℓ_4	b	c	b	b	c	b	a	$egin{array}{c} a \\ b \end{array}$

Pair-wise Influence matrix =

	S_1	S_2	S_3	S_4	S_5	S6	S_7	S_8
$\ell_{1,2}$	0	1	1	1	0	0	1	$\begin{bmatrix} s_8 \\ 0 \end{bmatrix}$
$\ell_{1,3}$	1	0	1	1	0	1	0	0
$\ell_{1,4}$	1	0	0	0	1	1	0	1
$\ell_{2,3}$	1	1	1	1	0	1	1	0 1 0

Maximum coverage problem (MCP):

Given a set of elements U, a collection C of subset of U, that is
 C = {C₁, · · · , C_t}, where C_i ⊂ U, and a positive integer m; then select a sub-collection C_s ⊂ C containing m subsets (C_i's) such that the union of subsets in C_s is maximized.

Sensor Placement for Localization

For the sensor placement problem,

- \mathcal{U} : set of all pair-wise events.
- C_i : set of pair-wise events 'detected' by the i^{th} sensor,
- $C = \{C_1, C_2, \cdots, C_{tot}\}.$

Optimal sensor placement

Finding an optimal sensor placement that maximizes the localization of events is equivalent to solving the maximum coverage problem.

- It is well known that MCP is **NP-hard**.
- Greedy approach gives the best approximation algorithm.¹
- For faster implementation, the overall event space (set of all pair-wise events) can be reduced.²
- 1. Vazirani, Approximation Algorithms, 2001.
- Perleman, Abbas, Amin, and Koutsoukos, Sensor placement for fault location identication in water networks: a minimum test cover approach, Automatica, 2016.

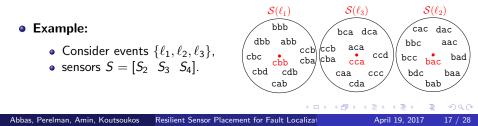
イロト 不得下 イヨト イヨト

Localization with Sensor Errors

- Some sensors might give incorrect outputs, errors.
- We assume that at most e sensors can give errors.
- As a result of event ℓ_x , output $\tilde{S}(\ell_x)$ is produced such that

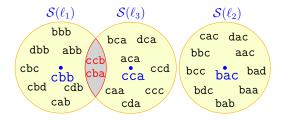
$$H(S(\ell_x), \ \tilde{S}(\ell_x)) \leq e$$
signature of ℓ_r

S(ℓ_x): set of all possible outputs corresponding to ℓ_x.



Localization with Sensor Errors

- Note that ℓ₁ can always be distinguished from ℓ₂ as S(ℓ₁) ∩ S(ℓ₂) = Ø.
- However, ℓ_1 cannot *always* be distinguished from ℓ_3 as $S(\ell_1) \cap S(\ell_3) \neq \emptyset$.



Detection of pair-wise events

In the presence of *e* sensor errors, ℓ_x can always be distinguished from ℓ_y (the pair-wise event $\ell_{x,y}$ is detectable) if and only if

$$H(S(\ell_x), S(\ell_y)) \geq (2e + 1).$$

Sensor Placement with Sensor Errors

• If $0 < H(S(\ell_x), (\ell_y)) < (2e+1)$, then still there can be outputs in $S(\ell_x)$ that accurately distinguish ℓ_x from ℓ_y .

• We define

$$f(\ell_{i,j}) = \begin{cases} 1\\ \frac{H(S(\ell_i), S(\ell_j))}{2e+1} \end{cases}$$

 $\begin{array}{c} S(\ell_1) & S(\ell_3) \\ bbb \\ dbb & abb \\ cbc & cbc \\ cbc & cbc \\ cbd & cca \\ cab \\ cab \\ cda \\ cca \\$

if $H(S(\ell_i), S(\ell_j)) \ge 2e + 1$ otherwise.

Sensor placement problem

- S_{tot}: set of all sensors,
- The sensor placement problem is,

$$\underset{\mathcal{A} \subset S_{\text{tot}}}{\operatorname{argmax}} \left(\frac{\sum_{\ell_{i,j}} f(\ell_{i,j})}{\text{Total number of pair-wise links}} \right)$$
subject to $|\mathcal{A}| \leq m$.

Sensor Placement with Sensor Errors

In terms of the pair-wise influence matrix, we need to select sensors such that each pair-wise event $\ell_{x,y}$ is covered k = 2e + 1 times.

• Influence matrix =

• Pair-wise influence matrix =

Set multicover problem (SMP):

Given a set of elements \mathcal{U} , a collection \mathcal{C} of subsets of \mathcal{U} , that is $\mathcal{C} = \{C_1, \cdots, C_t\}$, where $C_i \subset \mathcal{U}$, and a positive integer k; then select a sub-collection $\mathcal{C}_s \subset \mathcal{C}$ such that for every $in \in \mathcal{U}$, we get $|C_j \in \mathcal{C}_s : i \in C_j| \ge k$.

For k = 1, the problem is a well known set cover problem.

Sensor Placement with Sensor Errors

For set cover, and set multicover problem, greedy heuristics gives the best approximation ratios. 1,2

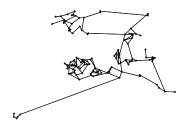
Greedy heuristics to place sensors

- 1. For each sensor S_i , compute the set of pair-wise link failures covered by the sensor.
- 2. In each iteration, select a sensor covering the maximum number of pair-wise link failures that are not yet covered for at least k = 2e + 1 times in previous iterations.
- 3. Perform *m* such iterations.
 - 1. Feige, A threshold of In n for approximating set cover, J. ACM, 1998.
 - 2. Berman et al., Randomized approximation algorithms for set multicover problems with applications to reverse engineering of protein and gene networks, Discrete Applied Mathematics, 2007.

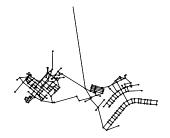
Performance Evaluation

Performance metrics

- Number of detectable pair-wise events
- Localization sets



 Water network 1 (126 nodes, 168 pipes) Identification score



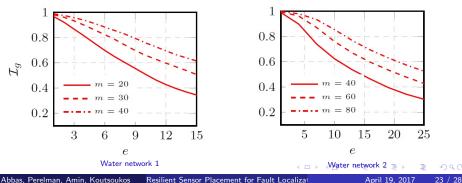
 Water network 2 (270 nodes, 366 pipes)

Performance – Identification Score

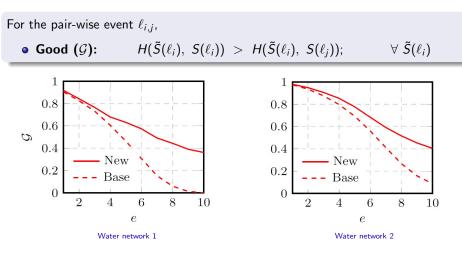
For a pair-wise event $\ell_{i,i}$, we have defines,

$$f(\ell_{i,j}) = \begin{cases} 1 & \text{if } H(S(\ell_i), S(\ell_j)) \ge 2e+1 \\ \frac{H(S(\ell_i), S(\ell_j))}{2e+1} & \text{otherwise.} \end{cases}$$

Identification score: $I_g = \frac{\sum_{\ell_{i,j}} f(\ell_{i,j})}{\text{total no. of pair-wise events}}$



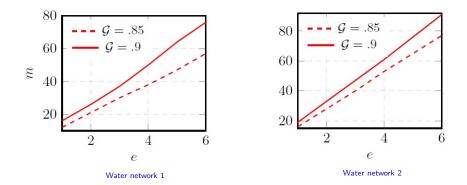
Abbas, Perelman, Amin, Koutsoukos Resilient Sensor Placement for Fault Localizat April 19, 2017



 \mathcal{G} as a function of sensor errors (e) for a fixed number of sensors (m).

April 19, 2017 24 / 28

Performance – Pair-wise Events

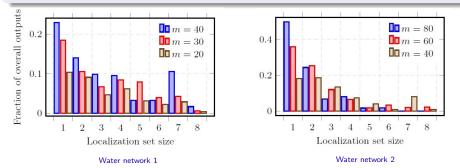


Number of sensors (m) as a function of sensor errors (e) for fixed \mathcal{G} .

Performance – Localization Sets

In the case of event ℓ_i , $\tilde{S}(\ell_i)$ is generated.

 Localization set: set of signatures that are at the same Hamming distance from S̃(ℓ_i).



• In WN-2 the percentage of outputs with localization sets of sizes at most 5 is about 90% and 80% for m = 80 and 60 respectively.

- Optimal sensor placement to maximize localization of pipe failures with sensor errors can be formulated as a maximum *k*-cover problem.
- We can efficiently compute approximate solutions.
- We can further improve localization by exploiting trade-offs between the number of sensors (m), features extracted from the failure signal (σ), possible number of sensors with errors (e).

Future Work

• An integrated approach to resilient localization (redundancy + diversity + hardening).

Acknowledgments

- National Science Foundation (CNS-1238959)
- Air Force Research Laboratory (FA 8750-14-2-0180)

Thank You