
CAP-4630 Homework 3
Deadline: on November 14 (Tuesday) at 2:05 in lecture or 2:00 on Moodle
There are 100 total points: point values are listed with each question.

1. Planning (50 pts)

Congratulations, your research project has just been accepted at a prestigious conference to be held
in Tokyo this summer! As a conscientious student of AI, you of course decide to model your problem
of attending the conference as a planning problem. The Conference Attendance planning domain is
defined as follows:

• A student starts at Miami.

• The student must travel to Tokyo, attend the conference, and return to Miami.

We recommend a semi-automated approach to answering the following questions: you may feel free to
use any combination of manual and code-based construction of the plan graph and SAT/CSP problem.
Please hand in any code that you do use, along with the manually-entered data which it works from.

(a) Write the planning domain above using a STRIPS-like language. Recall that this involves speci-
fying a set of state predicates and actions (an example is given in the lecture notes). Be sure to
describe the pre-conditions and post-conditions of all of the actions you listed. If your represen-
tation contains more than 2–3 distinct operators, you are probably trying to put in more detail
than is necessary for this problem. Also specify the initial state and goal predicate. (10 pts)

(b) Draw the plan graph that represents the task of attending the conference as described above
(you need only draw enough levels to reach the first appearance of all of the goal
predicates). Separately, list (or print out) all mutex links (these links should not be added to the
graph). Please separate your list by type of mutex: contradictory post-conditions, interference
with pre-conditions, mutex pre-conditions, and literals that can’t be achieved by a pair of non-
mutex actions. You need not explicitly include mutexes between contradictory literals such as x
and ¬x, but you should of course consider these mutexes when deriving mutexes at the next level.
(20 pts)

(c) Using the techniques described in class (and in RN p. 402), take the plan graph of Problem 1b
and write it as a SAT problem in CNF. Note: if we deducted points for your plan-graph in
Problem 1b, you will not be further penalized in this problem as long as you correctly translate
the graph you showed. (10 pts)

(d) Use your plan graph to find a solution. Recall that you are free to use any combination of manual
and automated methods: for example, you could run formulate the problem as a CSP or ILP and
solve it using an approach similar to what you implemented for homework 2 (or you could use
the plan graph algorithm described in lecture). Write your solution as a partially-ordered list of
actions. How many operators did it take to solve this problem? How many levels did you need
in the plan graph? Did you need to extend your plan graph farther than required by 1b? (Recall
that the algorithm for finding plans from a plan graph dictates that, if we fail to find a solution
using a graph with a given number of levels, we should add another level and try again.) (10 pts)

2. Linear and Integer Programming (50 pts)

Consider the standard-form LP problem, x ∈ Rn:

minimize (or maximize):

cTx

subject to:

Ax = b

x ≥ 0

where A is an m × n matrix, with n ≥ m. The simplex method is an iterative algorithm for solving
this LP (geometrically, it travels from one vertex to another until a local minimum is found).
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At each iteration, the simplex algorithm returns a candidate solution x ∈ Rn. The vector x has the
property that at least n − m of its components are zero. Let N denote a set of n − m indices of x
that are zero, and let B denote the remaining variables. Variables with indices in B are called basic
variables, and variables with indices in N are called nonbasic variables. Let xB denote the vector of
basic variables, and xN denote the vector of nonbasic variables. Furthermore, let us assume that the
first m components of x are the basic variables (i.e., that x = [xB ;xN ]). We can assume this without
loss of generality, since otherwise we could just permute the elements of x and the corresponding
columns of A.

Now we partition A into two components. The first will be an m×m matrix consisting of the first m
rows and the first m columns of A. The simplex algorithm will only produce bases such that this first
block of A is invertible; we will call it S−1. Let C denote the remaining m× (n−m) submatrix of A,
so that A = [S−1 C], where S is a square m×m matrix.

Thus, we can rewrite our original system of constraints Ax = b, x ≥ 0 equivalently as

[Im SC][xB ;xN ] = Sb, x ≥ 0,

where Im is the m×m identity matrix. This system of equations is called the simplex tableau.

(a) Consider the following linear program:

maximize:

3x + 2y

subject to:

2x + y ≤ 10

x + 3y ≤ 12

x, y ≥ 0

What is the optimal solution of this LP? Please find this by hand by sketching the feasible region
and determining the intersection of the active constraints. (10 pts)

(b) Derive the dual of this linear program by hand. (10 pts)

(c) Now suppose we add the additional constraints that x and y are integers. We add two slack
variables s1 and s2 to put the LP into standard form, and then turn it into an ILP by constraining
all variables to be integral.

maximize:

3x + 2y

subject to:

2x + y + s1 = 10

x + 3y + s2 = 12

x, y, s1, s2 ≥ 0 and integer

Consider the LP relaxation of this ILP (which is obtained by dropping the integrality constraints).
Create the simplex tableau with basis B = {x, y}, using the procedure described above. (10 pts)

(d) Recall the Gomory cut algorithm described in lecture. Given a row from the simplex tableau, this
algorithm outputs an additional constraint known as a cut, which eliminates feasible solutions
from the LP relaxation without eliminating any integral points.

Please run the Gomory cut algorithm by hand using the row from your simplex tableau corre-
sponding to basic variable x. What is the resulting cut? Sketch the feasible region from part (a)
again, including the new cut you added. Does the new cut result in an integer optimal solution.
Will this always be the case for a Gomory cut? What about other families of cuts—in general, if
procedure A always returns a cut which results in an integer optimal solution, what can you say
about the runtime of procedure A (under any standard assumptions you wish to make)? (20 pts)

2


